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ABSTRACT 
This paper presents a new class of Tchebichef moments in 
polar coordinate form, using which rotational invariants 
can be easily constructed.  The structure of the invariants 
is very similar to that of Zernike and Pseudo-Zernike 
moments, and their computation does not involve discrete 
approximation of continuous integral terms. The 
invariants are thus very robust in the presence of image 
noise, and have far better recognition capabilities when 
compared with Zernike/Legendre moments. The new 
class of moment invariants presented in this paper can be 
used in pattern and character recognition tasks. 
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1.  Introduction 

     Zernike and Pseudo-Zernike moments are popular 
types of orthogonal moments that are used in several 
pattern recognition applications. Owing to the polar 
coordinate representation of the kernel functions, the 
rotational invariants of these moments can be easily 
obtained. However, the computation of invariants require 
a coordinate space transformation to a subspace of the 
unit  circle, and also a discrete approximation of the 
continuous moment integrals. The above two processes 
are often cited as the primary limitations of all forms of 
continuous orthogonal moments. 

     Tchebichef (sometimes also written as Chebyshev) 
moments were recently introduced as image feature 
descriptors, in [1]. The Tchebichef moments of order p+q 
of an image f(i, j) are defined using the scaled orthogonal 
Tchebichef polynomials, which are the simplest among 
discrete orthogonal functions of unit weight [2].  
Tchebichef moments provide several computational 
advantages over moments based on continuous orthogonal 
functions [3].  

     Instead of combining two independent Tchebichef 
polynomials to form a kernel function in Cartesian 
coordinates, we can use a one-dimensional polynomial 
along radial directions and a circular-harmonic function 
for the orthogonal direction, to  construct moments in 
radial-polar form. The advantage with this type of 
representation is that rotational invariants can be easily 
derived. Since the kernal functions are orthogonal in the 
image coordinate space, the invariants are expected to 
have a far better feature recongnition capability than its 
continuous counterparts. This paper presents the complete 
mathematical framework of radial-Tchebichef moments, 
and proposes rotation-invariats based on them, for pattern 
recognition applications. Experimental results showing 
the image reconstruction capability of radial Tchebichef 
moments and their invariant characteristics, are also 
included. 
 
 
2.  Zernike Moments 
 
     The Zernike moments have complex kernel functions 
based on Zernike polynomials [4,5], and are often defined 
with respect to a polar coordinate representation of the 
image intensity function     f(r, θ) as 

     Znl  =  ∫ ∫
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where r ≤ 1, the function Vnl(r, θ) denotes a Zernike 
polynomial of order n and repetition l, and  * denotes 
complex conjugate. In the above equation n  is a non-
negative integer, and l is an integer such that    n−|l|    is 
even, and    |l| ≤ n.  The Zernike polynomials are defined 
as 

Vnl(r, θ)  =  Rnl(r)  e jlθ                     (2) 
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where  j = (−1)½ ,   and  Rnl()  is the real-valued Zernike 
radial polynomial given by [6] 
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     When an image undergoes a rotation by an angle α, the 
moment functions Znl in Eq.(1) get transformed into Z′

nl  
according to the equation 

 Z′
nl  = Znl e−iqα.                   (4) 

     From the above equation, the following primary 
rotation invariants can be derived: 

 ϕ1  = Zp0 ; ϕ2  = |Zpq|2 ,                   (5) 

where  p > 0,  and p−|q|  is even.   
       
     If we define real-valued radial polynomials using the 
equation 
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and use them to replace Rnl(r) in Eq. (2),  then we get 
pseudo-Zernike moments nlZ~   of order n. 
 
 
3.  Tchebichef Moments 
 
     The Tchebichef moments of order p+q of an image   
f(i, j) of size N are defined using the scaled orthogonal 
Tchebichef polynomials tn(i), as 
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and has an exact image reconstruction formula (inverse 
moment transform),  

 f(i, j) = ∑∑
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     The inverse moment transform allows us to reconstruct 
the image intensity distribution from a set of computed 

moments. In Eq.(7), the polynomials tn(i), satisfy the 
recurrence formula: 
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                    n=  1,2 … N−2;       x = 0,1,… N−1.           (9) 

with the initial conditions 

   t0(x) = 1, 
   t1(x) = (2x−N+1)/N ,                 (10) 

and the squared-norm ρ(n, N) is given by 
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             n =0, 1, …, N−1.               (11) 

     The most important property of the set {tn(x)} that is 
utilized in a moment definition, is its orthogonality in the 
discrete domain: 
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     For a detailed description of the Tchebichef moment 
equations, refer [1]. 
 
 
4.  Radial Tchebichef Moments 
 
     Even though Tchebichef moments have several 
advantages over continuous orthogonal moments such as 
the Legendre, Zernike and Pseudo-Zernike moments, the 
form given in Eq. (7) is not very convenient for 
generating invariants.  We define the radial Tchebichef 
moments of order p and repetition q as 
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where the image size is NxN pixels, and  m denotes 
(N/2)+1.  Since θ is a real quantity measured in radians, 
we further generalize Eq. (13) and define, 

∑∑
−

=

−

=

−=
1

0

1

0
),()(

),(
1 m

r

n
jq

ppq rfert
mpn

S
θ

θ θ
ρ

        (14) 

     In the above equation, both r and θ  take integer 
values. The mapping between (r, θ) and image 
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coordinates x, y  is given by 
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     It can be easily shown that the definition in Eq. (14) 
yields a moment set that is orthogonal in the discrete polar 
coordinate space of the image. The inverse moment 
transform is given by the following equation: 

    ∑∑
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where P, Q  respectively denote the maximum order for p, 
q (P<m, Q<n) used for image reconstruction.  It may be 
noted that the term on the right-hand side in Eq.(14) is 
complex-valued. For the convenience of computing with 
real-valued quantities, we can rewrite the expression for 
Spq in terms of its real-valued components as discussed 
below.  The inverse transform can then be easily 
computed, and used to verify the correctness of the 
moments.  If we write 
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then the real-valued radial Tchebichef moments can be 
defined as 
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the inverse moment transform in Eq. (16) now becomes 

f(r, θ) =  

∑ ∑
= = 








++
P

p

Q

q

s
pq

c
pq

c
pp qSqSSrt

0 1

)()()(
0 )sin()cos(2)( θθ  

(20) 

     Similar to Eq. (5), we can write invariants of radial 
Tchebichef moments in the form 

 ϕ1  = Sp0  =  )(
0
c

pS ,  
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5.  Comparison 
 
     Zernike polynomials are defined only inside a unit 
circle, and therefore the computation of Zernike moments 
given in Eq.(1) requires a linear coordinate transformation 
from the image space to the interior of the unit circle, 
followed by a mapping from the rectangular coordinate 
system to the polar coordinate system. In the case of 
radial Tchebichef moments, the generalized mapping 
equations are given in Eq. (15).  The values of m, n can be 
selected to suit the desired sampling frequency.  Typically 
m has a value which is at least N/2, and n is at 360 when 
the image is sampled at one degree intervals (Fig 1): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1:  Discrete Pixel Sampling in Radial-Polar Form 

 

     The main difference to be noted here is that while 
Zernike moment definition uses real values for r and θ,  
with 0≤ r ≤ 1,  0 ≤ θ ≤ 2π;  the Tchebichef moment 
definition uses integer values for both r and θ , where 0≤ r 
< m,  0 ≤ θ ≤ n. 
   
     The discrete approximation involved in the 
computation of Zernike moment integrals, affect the 
orthogonality property of the feature descriptors. On the 
other hand, the radial Tchebichef moments given in 
Eqs.(14),(18) are perfectly orthogonal in the discrete 
coordinate space  0≤ r < m,  0 ≤ θ ≤ n.  Consequently, the 
radial Tchebichef moments exhibit a superior feature 
representation capability compared to Zernike moments. 
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r 

θ 

θ = 0 

θ = n-1 
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The invariant functions of Tchebichef moments are also 
expected to be  more robust than Zernike invariants. 

     The basis functions of both Zernike and radial 
Tchebichef moments are separable. Therefore the first 
equation in (18) can be equivalently expressed as follows: 
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The above decomposition allows )(c
pqS  (and similarly 

)(s
pqS )  to be evaluated in O(2N3) time,  instead of O(N4) 

time. The inverse transform in (20) can also be evaluated 
in two stages as 
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6.  Experimental Results 

     Fig. 2 shows the reconstruction of a binary image 
using radial Tchebichef moments (Eq. (20)). In this study, 
a threshold of 0.5 was applied to the reconstructed 
intensity values, to obtain a binary image. The 
reconstruction error  ε  in Fig.2  was computed as the total 
number of pixels that do not have the same value in both 
the original and the reconstructed binary images.  

     Fig. 3 shows the original and the reconstructed 
versions of a gray-level image of size 256x256 pixels. 
The values of the various parameters used for 
reconstruction of the ‘coin’ image are: 

  m = 128,  n = 700,  P = 80,  Q = 100  
(24) 

 

 

 

Original Image 
Image size N = 100 

 

Reconstructed Image 
m = 50 
n = 360 
P = 30 
Q = 30 
ε = 1711 

 

Reconstructed Image 
m = 50 
n = 360 
P = 40 
Q = 150 
ε = 425 

Fig. 2: Binary Image Reconstruction Using Radial 
Tchebichef Moments 

 

 

 

Fig. 3: Gray-Level Image Reconstruction Using Radial 
Tchebichef Moments 
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     Some preliminary results obtained for the rotational 
invariants, computed using a set of binary images, are 
given in Fig.4.  The images are transformed versions of 
the original image got by performing a rotation about the 
centre by a certain angle. The Zernike and Radial-
Techebichef invariants are then computed using Eqs. (5), 
(21) respectively. A detailed statistical analysis of the 
magnitude of the invariants with respect to image noise is 
currently being carried out, and is not included in this 
paper. In addition to the primary invariants given in      
Eq. (21), more complex forms of invariants can also be 
constructed as follows: 

    ϕ3  =  (Spq)*(Srs)k + [(Spq)*(Srs)k]*                 (25) 

 
Images Zernike 

Invariants 
Radial Tcheb 

Invariants 
0.016341 
0.054553 
0.102924 
0.089054 

0.085064 
0.084679 
0.092717 
0.142306 

0.016164 
0.054073 
0.102870 
0.089052 
 

0.084764 
0.086765 
0.093248 
0.141434 

0.014162 
0.047828 
0.095870 
0.088109 

0.084004 
0.098046 
0.071271 
0.139676 
 

0.013321 
0.045242 
0.091937 
0.084608 

0.080987 
0.094842 
0.062781 
0.132017 

 
 
 
7.  Conclusion 
 
This paper has presented a new class of discrete 
orthogonal moments based on Tchebichef polynomials 
with a radial-polar representation of the image 
coordinates.  The definition of radial-Tchebichef moments 
is very similar to that of Zernike moments, using a 
separable basis function which is a product of an 
orthogonal radial function and a circular harmonic term. 
However, radial-Tchebichef moments do not require the 

discrete approximation of continuous functions as in the 
case of Zernike moments, and are exactly orthogonal in 
the  discrete space. The polar coordinate representation of 
the kernel functions has also been made use of in deriving 
the rotational invariants.  Experimental results showing 
the recognition capability and the invariant characteristic 
of the proposed moment functions were also given.  

     Future research in this area is directed towards a more 
rigorous analysis of radial-Tchebichef moments, their 
invariant characteristics, and computational complexities 
with respect to different sampling frequencies along both 
radial and polar directions. An exhaustive comparative 
analysis of discrete and continuous rotational invariants 
using Zernike, Pseudo-Zernike and radial-Tchebichef 
moments also needs to be done to clearly ascertain the 
suitability of the proposed moments for pattern 
recognition tasks. 
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