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Abstract-We propose a novel framework for a new class of 
two-channel biorthogonal filter banks. The framework covers two 
useful subclasses: 

i) causal stable IIR filter banks 
ii) linear phase FIR filter banks. 

There exists a very effcient structurally perfect reconstruction 
implementation for such a class. Filter banks of high frequency 
selectivity can be achieved by using the proposed framework 
with low complexity. The properties of such a class are discussed 
in detail. The design of the analysis/synthesis systems reduces 
to the design of a single transfer function. Very simple design 
methods are given both for FIR and IIR cases. Zeros of arbitrary 
multiplicity at aliasing frequency can be easily imposed, for the 
purpose of generating wavelets with regularity property. In the 
IIR case, two new classes of IIR maximally f i t  filters different 
from Butterworth filters are introduced. The filter coefficients 
are given in closed form. The wavelet bases corresponding to 
the biorthogonal systems are generated. We also provide a novel 
mapping of the proposed 1-D framework into 2-D. The mapping 
preserves the following: 

i) perfect reconstruction 
ii) stability in the IIR case 
iii) linear phase in the FIR case 
iv) zeros at aliasing frequency 
v) frequency characteristic of the filters. 

I. INTRODUCTION 

IG. l(a) shows a two-channel maximally decimated filter F bank, and Fig. l(b) shows the well-known polyphase form 

for this system. The applications of such multirate systems are 

well-known [I]-[7]. If for all input zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ ( n ) ,  the output of the 

system 2(n) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= C X ( ~  - no) for some nonzero constant c and 
integer no, the system is called a perfect reconstruction (PR) 

system. In the maximally decimated case, PR is equivalent to 

biorthogonality [5]. A number of PR or nearly PR systems 

have been reported before. In this paper we develop several 
new results for two-channel biorthogonal filter banks based on 

a useful class of polyphase matrices. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. Previous Work 

In FIR filter banks, all the four filters Ho, H I ,  Fo, and Fl ,  
are FIR filters while in the case of IIR filter banks. some or all 
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by using the polyphase representation. 

(a) Two-channel analysislsynthesis filter bank (b) redrawing of (a) 

of these filters are IIR filters. The earliest good designs for the 

IIR case were such that the analysis bank was paraunitary and 

the polyphase components of Ho(z )  and H I ( % )  were allpass 

(see [7], and p. 201 of [2]). Even though all the IIR filters 
are causal stable, the reconstructed signal suffers from phase 

distortion. IIR PR filter banks typically have noncausal stable 
filters or causal unstable filters [8]-[ 101. Recently the authors 
in [ 111 proposed a IIR PR technique providing causal stable 
solutions, but no satisfactory design method was given. 

In earlier design of 2-D filter banks, separable filters have 

been considered because of their advantage of low complexity. 

However nonseparable filters offer more freedom in the design 
and hence in general will give better performance. Recently, 

some results on the nonseparable filter banks have emerged 

[ 121-[ 141. However, few design techniques are available for 

nonseparable PR filter banks. In [12], a design method based 

on space domain approach is given. In [13], a subclass 
of 2-D paraunitary systems (which can be represented as 
a cascade of I-D paraunitary systems of degree one) is 
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considered. However, in both of the polyphase approaches 
above, the optimization in the designs involves a large number 
of nonlinear constraints. Thus other approaches, such as 1- 

D to 2-D mapping, have been considered [14]-[19]. In [14], 

even though PR property is preserved by the mapping, the 
frequency responses of the filters will change. In [15] and 
[16], a mapping of 1-D filter banks to 2-D filter banks 
is given. The authors apply the technique on a 1-D two- 

channel orthogonal IIR system to achieve a 2-D IIR filter 

bank. The resulting systems have either phase distortion or 

stability problem. In [17], the authors employ McClellan’s 
transformation on the 1-D maximally flat FIR halfband filters 

to obtain a 2-D biorthogonal filter bank. However, because 
of the lack of factorization theorems in the 2-D case, one 

of the lowpass filters is constrained to have all its zeros at 

the aliasing frequency. In addition, there is no simple way 

to ensure the frequency selectivity of all the filters. In [18], 
the authors introduce a mapping which can be viewed as the 

generalization McClellan’s transformation. 2-D two-channel 

PR systems with good frequency selectivity can be obtained 
by judiciously designing the mapping. However, the mapping 
works for the FIR case only and the resulting filters usually 

have a large number of coefficients. 
Some of the results in this paper were reported in the earlier 

conference papers [20]-[22]. For the 1-D case [20], both of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
the linear phase FIR and causal stable IIR solutions for PR 

filter banks similar to those proposed in this paper were given. 
For the 2-D quincunx case [21], the authors constructed a I-D 

to 2-D mapping (which is the same as the mapping given in 

Section V in this paper) that preserved many of the desired 
properties. However many of the properties of the 1-D and 2- 
D biorthogonal systems were not addressed in [20], [21], for 
example, the problem of imposition of zeros at the aliasing 

frequency which is important for the purpose of generating 

smooth wavelet basis functions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. The New Idea and Its Merits 

In this paper, we constrain the polyphase matrix E(z) such 

that [det E(z)] is a delay. Furthermore, we consider E(z) and 

R(z) to be either i) both causal stable IIR or ii) both FIR. 
In each case, the following properties can be simultaneously 

satisfied: 

1) Perfect reconstruction is preserved structurally and the 

structural complexity is very low. 
2) All analysis and synthesis filters are designed by con- 

trolling a single transfer function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP(z )  [allpass in the 

IIR case, and Type 2 (i.e., odd order symmetric linear 
phase FIR) in the FIR case]. So the design procedure is 
very simple. It is very easy to design P(z )  so that all 
filters have good responses (lowpass or highpass as the 

case may be). 

3) In the IIR case, all the analysis and synthesis filters are 

causal and stable. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4) In some applications such as image coding, the linear 

phase property of the analysis and synthesis filters is 

desired. In the FIR case, the filters are exact linear-phase. 

In the IIR case, we can force the phase response of the 

filters to be nearly linear in the passband, as we shall 
explain and demonstrate. 

5) The lowpass analysis filter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHo(z)  can be forced to have 

arbitrary number of zeros at w zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= T. Furthermore the 

lowpass synthesis filter Fo(z) is guaranteed to have the 
same number of zeros at T as Ho(z). In both of the 

IIR and FIR cases, we give closed form expression for 

the filter coefficients that provide maximum number of 

zeros at T .  

A new class of biorthogonal wavelet basis functions can be 
generated from the above filter bank. The regularity property 

can be directly controlled by imposing multiple zeros at T 

as desired. In the IIR case, since all filters are causal (in 

addition to being stable), the basis functions are all causal. 
In the FIR case, the linear phase property ensures symmetry 

of the wavelets, while at the same time providing a simple 

control on regularity (because the number of zeros at T is 

trivially controlled). 

I) A 1-D to 2 - 0  Mapping: Furthermore, we also provide a 

novel mapping of the proposed 1-D filter banks into the 2- 
D quincunx case, preserving all the desirable properties. In 

particular, there is the following: 

1) The perfect reconstruction property is preserved. 

2) In the IIR case, all the analysis and synthesis filters 

remain causal and stable. In the FIR case the linear phase 

property is preserved. 
3) Even though the filter bank is nonseparable, the com- 

plexity is that of a separable filter bank, growing linearly 

with the filter order. 

4) The frequency response supports for the filters are the 

diamond and diamond-complement as desired for the 
quincunx case [ 151, [2]. Moreover the filter frequency re- 

sponses are ensured to be good simply by designing the 

1-D filter having a good frequency response. Any desired 

specifications can be met by designing a 1-D transfer 

function p( z )  appropriately as we shall demonstrate. 

5) If the 1-D lowpass filter H&) has k zeros at T,  then the 

resulting 2-D lowpass filter will have its ith-order total 

derivative equal to zero at (T,  T), for i = 0,1,. . . , IC - 1. 

See Section V for details. 

We also provide a design example to show that the mapping 
can be easily applied to any dilation matrix (i.e., decimation 

matrix) with determinant 2. 

2) Relation to Other Results in the Literature: All the de- 

signs proposed in this paper are based on a single class of 

polyphase matrices to be described in Section V. However, 

some of the filter banks reported by other researchers are 

related to our work. In [23], the authors derive a class of 
biorthogonal linear phase FIR filter bank which turns out to 

be a special case of our two-channel framework. In the IIR 

maximally flat halfband case, our solution is different from 

the traditional IIR Butterworth design and has approximately 
linear-phase in the passband. In the FIR maximally flat half- 

band case, the solution agrees with the classical FIR maximally 

flat design [24]. However, our construction is different from 

those in [25] and [6] since the analysis filters are factors of 

maximally flat halfband filters in [25] and [6], whereas our 
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analysis filters are themselves maximally flat halfband. The 
2-D mapping proposed earlier in [15] and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[I61 is different 
from ours because it is known that the earlier mapping will 

not preserve the PR property in general. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C .  Outline zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the Paper and Notations 

Our presentation will go as follows: In the next section, 
we will derive a framework for the two-channel biorthogonal 
filter banks. Some properties of such class will be described 

in detail. In Section 111, we will discuss both the IIR and FIR 
filter banks which are covered in the proposed framework. 

In Section IV, wavelet basis functions generated from the 

proposed filter banks will be presented and imposition of zeros 
at aliasing frequency will be considered. Two new classes 

of IIR maximally flat solution are given in closed form. In 

Section V, we will first introduce a novel 2-D mapping for the 

quincunx case. Some properties of the mapping are discussed. 
Then both the IIR and FIR cases are considered. Furthermore 

numerical examples will be provided throughout the discussion 

to demonstrate the idea. 
1 )  Notations and Definitions: Capital boldfaced letters are 

used to denote matrices. I represents the identity matrix. 
The determinant of the matrix A is denoted by [det A].  
Superscript2-D is used to represent the 2-D function obtained 

by applying the mapping, for example, E2-D(z~ ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA21) is ob- 
tained by applying the 2-D mapping to E(z). The z-transform 
of h(n) is represented by H ( z ) .  The relation between the filters 

{ H k ( z ) ,  Fk(z)} and the polyphase matrices E(z) and R(z) 
can be described as follows: 

Hk(Z) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= E k , 0 ( Z 2 )  + z-1Ek, l (z2) ,  

Fk(2) = z-lRo,k(z2) + Rl,k(z2) and 

where Ei, j (z)  and Ri, j (z)  are, respectively, the zjth elements 
of the matrices E(z) and R(z). A filter Hk(z )  is halfband if 

either one of its polyphase components Ek,o(z),  Ek , l ( z )  is a 
delay. 

11. A FRAMEWORK FOR 1-D BIORTHOCONAL FILTER BANKS 

Consider Fig. 1 ,  where a two-channel system is shown. In 

general, R(z) = E-l(z) for perfect reconstruction. It is not 
easy to constrain [det E( z ) ]  to be minimum phase for stability 

of R(z); therefore, let us make it a delay. An example is 

Then, we get the following expressions for the analysis filters: 

H1(z) = -a(z2)Ho(z) + Z-2"-1. (4) 

A. Obtaining Ideal Responses with ( 4 )  

First notice that the filter Ho(z) can be made an ideal 
lowpass filter if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP(z )  has the following magnitude and phase 

responses: 

IP(ej2w)l = 1, vw ( 5 4  

(5b) 
(-2N + l ) w ,  for w E [ 0 , ~ / 2 ] ;  
2N + 1)w zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAZ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, for w E ( T / ~ , T ] .  

Lp(ej2w) = { (- 
From (4), we see that in the high-frequency region, Hl(ej") 
has unity gain since IHo(ej")l = 0. The function a(.) 
does not affect Ho(z)  and can be freely chosen to shape 
the response of H l ( z ) .  It should be chosen such that in the 

low frequency region, a(z2 )H0(z )  cancels with z-'"-l. 

For exact magnitude cancellation, la(ej")l must be unity. 

Since Ho(z)  is linear phase, it is necessary that a(.) has 
linear phase in the low-frequency region. Comparing these 

two requirements and the conditions in (3, we realize that 

p(z) is a suitable candidate for a(.). Indeed, if N' = 2N- 
1, H l ( z )  is an ideal highpass filter. In this case, we have an 
ideal filter bank, and the polyphase matrix E(z)  in Fig. l(b) is 

( 0.5 
0 )  (z;" z-2N+1 P(z> ) E(z) = - 0 . 5 P ( ~ )  1 

With this, we get the following expressions for the analysis 

filters, which we will repeatedly use in this paper. 

The perfect reconstruction can be achieved by choosing R(z) 
in Fig. l(b) to be 

With this, we obtain - 0.5p2(z) 
Ho(z)  = z-2N + z- lp(z2)  (2) = ( 0 . 5 z p N P ( z )  

but H l ( z )  = z-('"+l), which is a delay. Thus, even though 

Ho(z)  can be designed to be a good lowpass filter (as we 
will show), H l ( z )  is allpass and this is not useful for subband 

Ho(z) by taking the polyphase matrix to be 

The corresponding synthesis filters can be verified to have 

the following form: 

coding applications. We can modify H I  (2) without affecting Fo(z) = -H1(-z) ,  Fl(Z) = Ho(-z). (9) 

This choice of synthesis filters in (9) ensures that {Fo(z), 
F l ( z ) }  is a lowpass/highpass pair if {Ho(z ) ,  H l ( z ) }  is a 
lowpass/highpass pair. From (6) and (8), we have the imple- 
mentation of the filter bank shown in Fig. 2. The structure is 

similar to a ladder network structure [26]. 
(3) 

0 . 5 K z )  
= ( -O!?'t(z) -0 .5a(z )P(z )  + z-" 
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Ln-tr;lf- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-2N+1 - 
E(z) 

Fig. 2. Implementation of the proposed biorthogonal filter bank. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Remarks: Of course, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn ( z )  in (3) can be taken as 

functions different from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp(z) ,  as in the case of [20], [21], 
[23]. This will provide more freedom in the design. However, 
by taking them to be the same, the biorthogonal systems can 
have some additional useful properties. Therefore, we will only 

consider the case when a(.) = p(z ) .  

B. Two Useful Approximations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof (5) 

The ideal choice of p ( z )  as in (5) requires infinite com- 

plexity. Therefore, we have to design p ( z )  to approximate the 

conditions in (5). However the approximation will not change 
the perfect reconstruction property because E(z) in (6) and 
R(z) in (8) satisfy R(z)E(z) = 0 . 5 ~ - ~ ~ + ~ 1 ,  regardless of the 
choice of P(z) .  Fig. 2 shows that the frequency responses of all 
the analysis and synthesis filters depend on one single function 
p( z )  only. The frequency selectivity of all four filters depends 

on how well p(z )  approximates conditions (5). This makes the 
design procedure simple. In the next section, we will provide 

two simple but useful approximations which correspond to 

the following two cases: 

Stable IIR case: Here, p(z )  is chosen to be a causal 
stable allpass function so that (Sa) is met exactly. We 

design the phase response of the allpass filter so that (5b) 

is approximately satisfied. This leads to a biorthogonal 

system with causal stable IIR analysis and synthesis 
filters. 
Linear phase FIR case: To satisfy the condition (Sb), 
p(z) can be chosen as a Type 2 linear phase function 

[2] (filter with a symmetric impulse response of even 
length). The magnitude response of p ( z )  is optimized 

to be as close to unity as possible so that (Sa) is well 
approximated. This leads to a linear phase biorthogonal 

system. 

C.  Additional Properties of the Filter Banks Designed as Above 

In Section I, we have outlined some properties. Properties 

1 4  mentioned at the beginning of Section I-B are clear from 
the above discussion and Property 5 will be discussed in the 

Section IV. In addition to these five properties, we have the 
following: 

1) Double haljband property: In all the previous construc- 

tions of two-channel PR filter banks, Ho(z)Fo(z) is a 
halfband filter, where Ho(z) is not necessary halfband 

-2N+1 $F& -1 z 

but a factor of a halfband filter. However in our con- 

struction above, one can verify that not only the product 

Ho(z)Fo(z) but also the filter Ho(z) is halfband. 
Poles of filters: In the IIR case, notice from Fig. 2 
that there is no feedback loop in both the analysis and 

synthesis ends in the ladder network. Therefore, the 
filters have the same poles as those of p(z2 )  and stability 

depends solely on the allpass function /?(z). Moreover 
in the IIR case if the allpass filter p ( z )  is implemented 
by using the robust lattice structure [2], the filter bank 
is stable even when it is realized with finite wordlength. 

Robustness to round of noise: The ladder structure 
shown in Fig. 2 is similar to the structure considered 

in [26]. By using the same reasoning in [26], it can be 

verified that the round off noise in the analysis end is 
compensated by that in the synthesis end. Combining 
this with the structurally PR property, we conclude that 

the implementation in Fig. 2 preserves PR even when 
all the coefficients are quantized to a finite precision and 

all the intermediate results are rounded off. However, if 
the subband signals are quantized (which is usually the 

case), this property is lost. 

Zeros of the filters: We can verify that FO ( z )  and HI (2) 

in (9) and (7) can, respectively, be rewritten as 

FO(2) = ( 2 f Z N + 1  - p(z2))Ho(z) ,  

H I ( Z )  = (22-2N+1 + p(z2))F1(2). (10) 

These factorizations give the filter bank an interesting 

structure shown in Fig. 3. From (lo), it is clear that if 
p( z )  is FIR, the zeros of HO (2) are also zeros of Fo (2). 

Even when P(z )  is an irreducible IIR transfer function, 

this is true since Ho(z )  is in the form of (7) and the 
zeros of denominator of p ( z 2 )  cannot cancel the zeros 
of Ho(z). Moreover, if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIp(ej") l  < 2, both Fo(e3"') and 

&(e3") have the same set of zeros on the unit circle. 
The same is true for the pair of H l ( z )  and Fl(z) .  In 

particular, if H o ( z )  has T zeros at z = -1, this implies 
that Fo(z) has no fewer than T zeros at the same point. 
This property is important in the generation of wavelets 
since for biorthogonal wavelets, we need both of the 
analysis and the synthesis wavelets to be regular. By 
increasing the number of zeros of Ho(z) at z = - I, 
our construction ensures that Fo(z) has at least the same 

number of zeros at z = - 1. This is the property which 

I 



PHOONG zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal.: NEW CLASS OF TWO-CHANNEL BIORTHOGONAL FILTER BANKS AND WAVELET BASES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA653 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Fig. 3. Redrawing of Fig. 2, where Ho( : )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO . ~ ( Z - ~ ' ~  + -'-l j ( z 2 ) )  and F I ( : )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHO(-:). 

does not appear in the previously existing constructions 

of biorthogonal filter banks. 
5 )  Ripple sizes of thefilters: Since Ho(z) is a halfband filter 

and Ho(z )  + Fl(z) = z - ~ ~ ,  we have the following 
relationship between the passband ripple zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6, and the 
stopband ripple 6,: 

Moreover, by using (10) and the fact that p ( z 2 )  z 
-z-2N+1 in the high frequency region, we get 

~ , ( F o )  = ~ & ( H o ) ,  &(HI) = 3&(F1) (12) 

(2010g3 x 9.5 dB). This property ensures that by 
designing Ho(z) to have sufficiently high stopband 

attenuation, we can ensure that all the other three filters 

will also have good frequency selectivity. 
6) Complexity: From Fig. 2, it is very clear that the analysis 

and synthesis banks have the same complexity. Assume 

that ,f?(z) has order N .  For the IIR case, by using the one 
multiplier lattice structure for allpass function [2 ] ,  we 

need approximately 2N multiplications, 6N additions, 

and 5N delays. For the FIR case, by exploiting the 

symmetry, we need approximately N multiplications, 
2 N  additions and 3 S N  delays. All the operations are at 
a lower rate. Therefore, the analysis (or synthesis) bank 
requires N and 0.5N multiplications per input sample 
for the IIR and FIR case, respectively. 

7) Near linear phase in the IIR cases: From (7), since in 

the passband the magnitude response of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHo(z) is ap- 
proximately one, the transfer function , f?(z2) x z-2N+1. 
Therefore, Ho(z) has approximately linear phase in the 

passband. Similar argument is true for Hl (z ) .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
111. DESIGN PROCEDURES FOR THE TWO 

CLASSES OF BIORTHOGONAL FILTER BANKS 

In this section, we will discuss the two cases of the 
approximations of (5) given in the last section. Simple design 

procedures will be given for both cases. 

A. Causal Stable IIR Biorthogonal Filter Banks 

stable real allpass function 

In this section, /3(z) in (6)-(9) is taken to be the causal 

where U N ~ , ~  = 1 and a N l , k  are real. In this case, Ho(z)  is 
a sum of a delay and an allpass function. See (7). It is an 

IIR halfband filter and has been studied by some researchers 

[27], [28]. Ho(z) can be made lowpass with large stopband 
attenuation and small passband ripples by designing the phase 
response of the allpass function to approximate (5b) [29]. 

I )  Choice of N I :  From the monotone decreasing phase 

property [2] of a causal stable allpass function, we know 
that the phase of  AN^(^^) spans a range of 4N1x when w 
spans a range of 2x, but from (5b), ,0(z2) spans a range of 
4Nx or 4 (N  - 1)x. To make the range spanned by both 
of the functions equal, we set NI = N or N -  1 and this 
results in two classes of causal stable IIR filter banks. Since 
the derivation and properties of both of the classes are very 

similar, in the rest of the paper, we consider only the case 

NI = N (we will point out at those places where the second 
class has a different property). With this choice, the analysis 

filters can be written as 

~ ~ ( 2 )  = - A N ( z ~ ) H ~ ( ~ )  + z-4N+1. (14) 

The relationship between the synthesis and analysis filters is 
the same as (9) .  

2 )  Additional Properties of the Above IIR Filter Banks: 
1) Preservation of zero ut aliasing frequency: Substituting 

z = - 1 into the expression of Ho(z) in (14), we find 
that Ho( z )  always has a zero at z = - 1, independent of 

the coefficients a N , k .  In particular, the zero is preserved 

even when all U N , k  are quantized coarsely. This means 

that one zero at z = - 1 is structurally imposed. This is 

important in the generation of wavelet bases since one 
zero at z = - 1 is a necessary condition for the existence 
of the wavelet functions 161. Note also that Hl(z)  will 
always have a structurally imposed zero at z = 1. 

2) Low sensitivity: Since there exists low sensitivity lattice 

structure for allpass function [2], the filters have low 
passband sensitivity. Since the halfband property of 
Ho(z)  is structurally imposed, it has low stopband 

sensitivity as well. 
3 )  Bump in the transition bund: Substituting w = x / 2  into 

the expression for Hl(e3") and Fo(eJ") and using the 

fact that  AN(-^) = (-l)N, we find that (Hl(eJ")J = 
IFo(eJ")I = at w = x / 2 ,  independent of the 
allpass function AN (2). This means that JH1( e3") 1 and 

IFo(eJ")I always have a bump of approximately 4 dB 
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Fig. 4. (Example 3.1) Frequency responses of the causal stable W filter 
bank: (a) Magnitude responses of the analysis and synthesis filters; (b) group 
delays of H o ( z )  and HI(:). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw = ~ / 2 ,  no matter how we design A N ( z ) .  The 
width but not amplitude of the bump can be reduced by 

increasing the complexity of AN ( z )  . 
Example 3.1-1-0 Causal Stable IIR Filter Banks: In this 

example, N = 3. Therefore,  AN(^) is a third-order allpass 

function. The filter bank has very low complexity: To im- 
plement the analysis (or synthesis) bank, we need only three 

multiplications per input sample! By using the eigenfilter ap- 

proach for allpass functions [29], we optimize the coefficients 
Uk such that maximum attenuation in the stopband of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHo(z) 
is achieved. The coefficients are obtained as ~ 3 , 1  = 0.473, 
~ 3 , 2  = - 0.094, and u3,3 = 0.025. For the filter Ho(z), the 
passband edge wp = 0.4~ and the stopband edge w, = 0 . 6 ~ .  
The stopband attenuation ~ , ( H o )  = 41.9 dB. The magnitude 
responses of the all four filters are shown in Fig. 4(a). From the 
plots, relations of ripple sizes in (1  1) and (12) can be verified 

and it is clear that &(z )  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFo(z) have the same set of zeros 
on the unit circle. The bump of approximately 4 dB around 

~ / 2  is clearly seen. The group delay for Ho(z) and Hl(z) is 
shown in Fig. 4(b). The filters are approximately linear phase 
in the passband and the stopband. 

B. Linear Phase FIR Biorthogonal Filter Banks 

In the linear phase FIR case, since Ho(z) is a linear phase 

halfband filter, it can be designed by employing the trick 

developed in [30], viz., by taking P ( z )  in (5H8) to be a Type 
2 filter [2] which has a symmetric impulse response of length 

r - 1  

Fig. 5. (Example 3.2) Magnitude responses of the linear phase FIR filter 
bank. 

2N1. In this case, the number of multiplications required to 
implement P(z )  is NI, the same as the Nlth-order allpass 
function A N ~ ( Z )  in (13). More precisely, let P(z )  have the 
following form: 

k=l 

where the coefficients Vk satisfy 

?wk = 0.5 
k=l 

so that V(ejo) = 1 and Ho(ejo) = 1. It is well-known that 

a Type 2 linear phase filter always has a zero at z = -1. In 
order to satisfy the condition (5b) exactly, it can be verified 

that NI should be equal to N. By employing the trick in 1301, 
the coefficients Vk can be optimized such that the amplitude 
response of V(ej") is as close to unity as possible. In this 

case, the analysis filters are: 

H1(z) = -V(z2>Ho(z) + z-4N+1. (17) 

Example 3.2-1 -D Linear Phase FIR Filter Banks: N = 6. 
To implement the analysis bank, we need six multiplications 
per input sample, double the number in Example 3.1. The 

Type 2 linear phase function V(z) is designed by using 

McClel1an"Park algorithm. The coefficients are obtained as 

0.0272, and 216 = -0.01 44. For the filter Ho(z),  the passband 

edge wp = 0.4~ and the stopband edge w, = 0.67r, same 
condition as Example 3.1. The stopband attenuation 6, (Ho) = 
39.2 dB and 6,(H1) = 30 dB. The magnitude responses of all 
four filters are shown in Fig. 5. The relations of ripple sizes 
in (11) and (12) can be verified. 

For comparison, we will consider Johnston's design with 

nearly the same specifications. The Johnston's filter 24C in 
(see appendix 7.1 of [31]) has 6, = 30 dB and w, = 0.586~.  
For Johnston's filter 32-D, 6, = 38 dB and w, = 0.586~.  
To implement the analysis bank, we need respectively 12 
multiplications and 16 multiplications per input sample for 

the above two cases. Thus, as compared to six multiplications 
in our filter bank, the Johnston's design has more complexity 

VI = 0.630, ~2 = -0.193,~3 = 0.09 72, 214 = -0.05 26, 215 = 
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than our design. Moreover, there is reconstruction error (0.1 

dB for 24C and 0.025 dB for 32D) in Johnston’s filter bank. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.8 
U) 

0 
% 0.6 

Iv .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIMPOSITION OF MULTIPLE ZEROS AT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT 

The relation between continuous-time wavelet and discrete- 
time perfect reconstruction filter bank is well known. A way 

to construct the scaling and wavelet functions from the filter 
coefficients was first given by Daubechies in 161. Starting from 

the impulse response coefficients zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAho(n) and h l (n ) ,  a pair of 

such that they satisfy: 

a“ ~ 

0.4 

0 = 0.2 

continuous-time functions q 5 ~ ~  ( x )  and $ H ,  ( 2 )  are constructed 0 0.1 0.2 0.3 0.4 0.5 
0 

Normalized Frequency 

Fig. 6. Magnitude responses of the IIR maximally flat filters of the form 
0 . 5 [ ~ - ~ ”  + z - ’ . - I .~ (z ’ ) ] .  where d,v(z) is a Nth-order all pass function, 00 

4Ho(Z) = hO(n)q5Ho(2x - n) ,  (18a) for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 = 1, 2, . . . .  10. 

n=O 
M 

( 8b) 
I )  Maximally Flat IIR Wavelets: To obtain a maximally flat 

solution, i.e., maximum possible number of zeros at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn consis- 

tent with the constraint that Ho(z )  = 0 . 5 ( ~ - ~ ~ + z - ~ A ~ ( z ~ ) ) ,  

we set TO in (21) as large as possible. However, if TO 2 N +  1, 
then we can list the first ( N +  1) linear constraints given by 

(21) as follows: 

$ H I  ( x )  = h l ( n ) d H 0 ( 2 x  - 
n=O 

Here, q 5 ~ ~ ( x )  and $ H ~  ( x )  are respectively called the analysis 

scaling and wavelet functions. For the synthesis end, we can 

write similar expressions for the synthesis scaling and wavelet 
functions, q 5 ~ ~  ( x )  and $119 (x). The conditions for the existence 

of such limit functions were given in [ti]. It is always desirable 

to have smooth or “regular” limit functions. It was shown that 

in order to achieve limit functions of high regularity, we need 

n. Therefore in the rest of this section, we will show how to 

impose zeros at T for the proposed filter banks. 

A .  Causal Stable IIR Wavelet Bases 

1 . . .  (+ ;? $)  ( 2 1  ... ) 
x ( z q  = (!) (22) 

(20) ( 2: $; . . .  .. x? ) [ x 2  ... ) 

22” X N  to have a sufficient number of zeros at the aliasing frequency x ;N $5” . . .  
\ + 4 

Vandermonde 

For the purpose of achieving regularity, we impose multiple 

zeros, we consider only the ”-Erator of Hob). Except 

for a delay, the “ Y a t o r  of Hob) can be written in terms 
of a N , k  as follows: 

zeros of Ho(z )  at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR. Since the denominator does not provide 
a N , N  

where x k  = 1 - 4k. Since all the % k  are nonzero and distinct, 
the two matrices on the left hand side are nonsingular and 
hence invertible. We get [ a ~ , g a ~ , ~  .. . u N , N ] ~  = 0 which 
violates the requirement that U N , O  = 1. This proves under the 
constraint that Ho(z) = 0 . 5 [ ~ - ’ ~  + z - ’ A ~ ( z ’ ) ] ,  the filter 

Ho(z) can have at most 2N + 1 zeros at n. Indeed we can 
show that the maximally flat IIR filter has exactly 2N + 1 
zeros at T .  To see this, we set TO = N and rewrite the set of 
N linear equations given by (21) as follows: 

N 

p R ( W )  = a N , k  cOs(2k - 1/2)W. (I9) 
k=O 

To obtain r zeros at z = -1, we set 

(i) A d( i )  
1 PR ( T )  = -PR(w) = 0, for i = 1 , 2 , .  . . , T - 1. 1 1 ... 

dw(z)  Ll 
1 2 X N  

x 2 N - 2  x 2 N - 2  . . .  % 2 N - 2  Note that when i is even, @)(T)  is always equal to zero. N 
This proves that PR(w) always has an odd number of zeros at 

w = R. Therefore, we can write T = 27-0 + 1. In this case, we 

obtain a set of TO linear constraints as follows: 
x (Z:::) = - (1) (23) 

N a N , N  
a N , k (  1 - 4k)2z-1 = 0, for 2 = 1, 2 ,  . ‘ ’ , TO. (21) 

where xk = 1 - 4k and the fact that ~ N , O  = 1 has been 
imposed. These equations fully determine AN ( z )  (hence all 

the filters) and there is no further parameter to be optimized 

numerically. As the matrices are invertible, the solution for 

a N , k  always exists and it is unique. Furthermore, it is shown in 

k=O 

The set of linear constraints in (21) can be satisfied exactly in 

the optimization of the phase response of the allpass function 

A N ( z )  by using the efficient eigenfilter approach 1291, 1321. 
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Fig. 7. 
(b) analysis wavelet function; (c) synthesis scaling function; (d) synthesis wavelet function. 

(Example 4.1 i)) The limit functions generated by using the IIR filter bank in Example 3.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Ho(:) has one zero at *): (a) Analysis scaling function; 

Appendix A that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa N , k  has the following closed-form solution: The closed form solution for a N - l , k  is given as 

(24) 
where (i) = A. The frequency responses of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH&) 
corresponding to N = 1, 2, + . , 10 are shown in Fig. 6. Note 
that although these filters have a numerator of degree 4N- 
1 (excluding the trivial delay factor), they have only 2N+ 1 

zeros at z = - 1. This implies that some of the zeros are not 
at z = - 1 for N > 1 and therefore these IIR maximally 

flat filters are different from the Butterworth halfband filters. 
Moreover they have nearly linear phase in the passband, as 

justified at the end of Section I1 and demonstrated in Fig. 4(b). 

For the case 6f N = 1, one can verify that the solution is a 
third-order Butterworth filter. 

Remarks: 
1) If the function p ( z )  is taken as (N - 1)th-order allpass 

filter (i.e., NI = N - l ) ,  then we will get a second 

class of causal stable IIR wavelet. In this case, under 

the constraint that Ho(z) = 0 . 5 [ ~ - ~ ~  + z - ~ A N - ~ ! ~ ’ ) ] ,  
the process of imposition of zeros at 7r is very similar 
to the derivation above. The maximally flat IIR filter 
Ho(z )  of this second class will have 2N- 1 zeros at 7r .  

( - 1 ) k  N - 1  N - l  ( 2 i  + 1) 
a N - 1 , k  = - 2 k + l (  IC ) rI ( 2 k + 2 2 + 1 ) ’  

2=1 

1 I I C S N - 1  

(25) 

and a N P 1 , 0  = 1. 

2) Notice that for a perfect reconstruction system, if we 
interchange the analysis and synthesis filters, the perfect 

reconstruction property is retained. In many applications 
such as coding, compression, storage and approximation, 

the regularity of the synthesis functions is more impor- 
tant [17]. Thus we can choose the wavelet with higher 

regularity among $ H ~  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x) and $po (z) as the synthesis 
wavelet. 

Example 4.1: We generate the limit functions, 

$H,, , $ H ~ ,  $ F ~ ,  and $ F ~ ,  corresponding to the filter bank 
in Fig. l(a). To generate the analysis/synthesis scaling and 

wavelet functions, we use the cascade algorithm in [6] for 
eight iterations. We consider the following two cases: 

i) No linear constraint is set, Ho(z) has only one zero at 7r .  

The analysis and synthesis filters are the same as those 
in Example 3.1. For the analysis bank, the scaling and 
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Fig. 8. 
(b) analysis wavelet function; (c) synthesis scaling function; (d) synthesis wavelet function. 

(Example 4.1 ii)) Limit functions generated by using the IIR maximally flat filter bank zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Ho zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( Z )  has seven zeros at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK ) :  (a) Analysis scaling function; 

wavelet functions, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4~~ and ~ ! J H ~ ,  are respectively shown 

in Fig. 7(a) and (b). The scaling and wavelet functions 
corresponding to the synthesis bank, 4po and ~ ! J F ~ ,  are 

shown in Fig. 7(c) and (d). 

ii) As a comparison, we also generate the scaling and 

wavelet functions corresponding to the IIR maximally 
flat filters (4,,, and for N = 3. In this case, the 
filter Ho(z)  has seven zeros at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7r. The limit functions are 

shown in Fig. 8. For a better comparison on smoothness, 

in Fig. 9 we show a zoom-in for Figs. 7(a) and 8(a). We 
see that the limit functions in Fig. 8 are more regular 

than the functions shown in Fig. 7. 

B .  Linear-Phase FIR Wavelet Bases 

To impose multiple zeros at 7r for the linear phase FIR case, 

the procedure is very similar to that given above. Another set 

of linear constraints can be obtained and incorporated in the 
procedure of optimization. It can be verified that for this case, 

Ho(z) always has an even number of zeros at 7r. 
I) Maximally Flat Linear Phase FIR Wavelets: The FIR 

maximally flat filters have been studied by a number of 

researchers [24], [331, 161, [25]. In [6] and [25], a maximally 
flat halfband FIR filter is used to construct compactly 

1.1 

0.9 

0.7, 

OH0 

4-80 

- 
. ...... . .. . 

Time 

Fig. 9. 
larity” obtained by imposing zeros at K .  

Zoom-in for Figs. 7(a) and 8(a) demonstrating the improved “regu- 

supported maximally flat wavelets. In our linear phase FIR 

filter bank, if all the freedom is used to impose zeros at 7r, 
we will arrive at the same solution as that in [6], [25]. The 

closed form solution for FIR maximally flat halfband filters 
was in [33], [25]  as 

(26) 
(-1)N+”-l n ; f 0 ( N  + 1/2 - i) 
2(N - Ic)!(N - 1 + lc)!(2t - 1). 

‘vk = 
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Fig. 10. (Example 4.2 i)) Symmetric limit functions generated by using the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFIR filter bank in Example 3.2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Ho(s)  has two zeros at a): (a) Analysis scaling 
function; (b) analysis wavelet function; (c) synthesis scaling function: (d) synthesis wavelet function. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2 )  Differences Between Our Construction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand that in [25] 
and [6]: In [25], Ho(z )  is taken to be a factor of a maximally 
flat halfband filter. In [6 ] ,  power spectral factorization is 
considered. However, in our linear phase structure, Ho(z )  is 
taken to be this halfband filter itself, and not a factor. Since 

the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHo(z) constructed in [6] is a power spectral factor of 
the Ho(z) in our structure, our linear phase scaling function 
&p(x) is related to that constructed by Daubechies in [6 ] ,  
~ D ( x )  as: 

(6LP(z) = $ D ( z )  * d)*D(-x) (27) 

where * denotes convolution and f D  denotes the complex 

conjugate of 4 ~ .  From (27), it is clear that the regularity 

of &p(z) is twice that of ~ D ( Z ) .  However the order (and 
the number of zeros at R) of Ho(z )  in our construction is 

twice that of Ho(z )  in the construction in [6]. Comparing the 
complexity, both of the constructions have approximately the 

same number of multiplications (because in our construction, 
linear phase property can be exploited). 

Example 4.2: In this example, we construct the limit func- 

tions corresponding to the filter bank in Fig. l(a) for the 
linear phase FIR case. The cascade algorithm is used for eight 

iterations. We consider two cases: 

i) First, Ho(z )  is designed such that no linear constraint 
other than (16) is satisfied, therefore it has two zeros at 

x .  The analysis and synthesis filters are the same as those 
in Example 3.2. The limit functions ( q 5 ~ , ,  , $ H ~ ,  +F,, and 

$ F ~ )  are respectively shown in Fig. lO(a)-(d). 
ii) For a comparison, we show the limit functions of the 

maximum flat case and $max) for N = 6. In this 

case, Ho(z)  has twelve zeros at R. The plots are shown 
in Fig. 11. It can be verified that the limit functions in 

Fig. 11 are smoother than those in Fig. 10. 

V. MAPPING INTO 2-D QUINCUNX 

PERFECT RECONSTRUCTION FILTER BANKS 

In this section, we will generalize the I-D framework 

discussed in Section I1 to the 2-D case. We will focus on 
the quincunx subsampling case which has the subsampling 

lattice shown in Fig. 12. Notice that the dilation matrix has 

determinant 2. The corresponding maximally decimated filter 
bank has only two channels. Furthermore it represents the 

simplest nonseparable subsampling lattice. 
In the 2-D case, we know that the desired passband supports 

of the filters depend not only on the lattice but also on the 

choice of dilation matrix M [12]. In the rest of this section, 

r- - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 



PHOONG zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al.: NEW CLASS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOF TWO-CHANNEL BIORTHOGONAL FILTER BANKS AND WAVELET BASES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA659 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-0.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI I 1 
0 10 20 

Time 

(a) 

1.5 I I I 

-1.0 ' I I 
5 15 25 

Time 
(b) 

Time 
(4 

Fig. 11.  
function; (b) analysis wavelet function; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(c)  synthesis scaling function; (d) synthesis wavelet function. 

(Example 4.2 ii)) Symmetric limit functions generated by using the FIR maximally flat filter bank zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Ho( z )  has 12 zeros at K): (a) Analysis scaling zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
. 0 . 0 .  

0 . 0 . 0  

. 0 . 0 .  : I  0 0 . 0 . 0  + 0 . 0 .  "0 

Fig. 12. Quincunx subsampling lattice. 

we will consider 

M = ( :  :J 

diamond and diamond-complement, QO and !ill, correspond 
to the low frequency and high frequency regions respectively. 

One can verify that M defined in (28) has its eigenvalues X i  
equal to *fi and M2 = 21. It has a dilation in both the 

directions. Therefore, M satisfies the conditions for a well- 
behaved matrix defined in [19]. Given the dilation matrix M 
as in (28) and the coset vectors in (29), the simple delay chain 
system and the noble identities are shown in Fig. 14(a) and 

(b), respectively. 

Although the discussion in this paper is mainly on the 
quincunx subsampling case with the dilation matrix M and 

the coset vectors k; defined above, we will provide a design 
example in the last section to show that the method discussed 
in this section can be easily generalized to any 2-D system 
with decimation matrix M having [det MI = 2. 

A.  A I -D zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto 2-0 Mapping 

In this section, we will first give a 2-D mapping and then 

apply the mapping to the framework developed in Section 

11. Given any 1-D biorthogonal systems with the polyphase 
matrices of the form in (6) and (8), we will use the following 
transformation on the polyphase components: 

The coset vectors are, respectively 

k o =  (;), k 1 =  (;). (29) 

With this M, the ideal supports for alias free decimation, 

SPD ( T M - ~ )  [2, ch. 121 is shown in Fig. 13, where the 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA13. Ideal supports for alias-free decimation in quincunx case. 

i) First replace the 1-D transfer function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP ( z )  with the 

ii) Replace all the remaining 1-D delay 2-l with the 2-D 

This results in nonseparable analysis and synthesis filters 
as we will see. Under this transformation, the polyphase 

matrices E2-D(zo,z1) and R2-D(zo,z1) of the 2-D system 
can be written, respectively, as (30) and (31), which appear 

at the bottom of the page. From (30) and (31), we have the 
implementation of the 2-D perfect reconstruction filter bank as 

Fig. 15. By using the noble identities in Fig. 14, we can write 
the analysis and synthesis filters as 

separable 2-D transfer function P(zo)P(zl). 

delay zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz; z; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA'. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 )  Comparison of the Above Transformation with Those 

in [15]-[17]: McClellan's transformation is used in [17] to 
obtain a FIR maximally flat halfband filter. The transformation 

proposed in this paper differs from McClellan's transforma- 
tion in the sense that the former operates on the polyphase 

components while the latter operates directly on the filter. In 

(b) 

Fig. 14. 
reconstruction system; (b) noble identities. 

Some details for the quincunx decimator: (a) Delay chain perfect 

[15], [16], the authors obtain a 2-D filter bank from 1-D by 
employing the following transformation: 

(33) 

where Ei,j is the (i,j)th element of E. It is clear that in our 

transformation Ei-jD(zo, 21) # El,l(zo)El,l(zl). Therefore, 
our mapping is different from that in (33). 

2 )  Properties of the proposed 2 - 0  mapping: Properties 1-5 

in Section I1 continue to hold after minor modifications to suit 

the 2-D context. In addition, the 2-D filter bank satisfies the 
following properties: 

1) Double Halfland Property: It is easy to see that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
~ O ( z 0 , z l )  satisfies ~ o ( z 0 ,  z l ) + ~ o ( - z o ,  -z1) = z;2N 

and Ho(zo, zl)Fo(zo, z1) satisfies a similar property. 
This is the extension of the 1-D double halfband property 
in the 2-D quincunx case. 

2) Stability of the 2 - 0  Analysis and Synthesis Filters: If 
the 1-D transfer function P(z )  is causal then so are 
the functions P(zo)P(z1) in Fig. 15. That is P(zo)P(zi) 

is a first-quadrant filter (the impulse response is zero 

unless no 2 0 and n1 2 0). If P ( z )  is BIBO stable, 
then so is P(z0)P(zl) so that the polyphase matrix in 
Fig. 15 is also BIBO stable. Since the analysis filters 
are obtained from this stable structure, these filters 

are guaranteed to be BIBO stable. However we see 

E;,;D(zo zi)  = Ei,j (zo)Ei,j (21 

1- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 
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Fig. 15. 2-D biorthogonal filter bank obtained from Fig. 2 by mapping. 

that the term zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP ( ~ 0 . z ; ~ )  has entered the expressions 

for the analysis filters because of the noble identities, 

see Fig. 14(b). It can be shown that this violates the 

condition for the so-called first-quadrant stability [35, 
p. 1661. This is explained by the fact that the analysis 

filters are not first-quadrant filters, even though BIBO 
stable. This is consistent with the observation that the 

quincunx decimator M in (28) has the negative entry 

-1. Indeed, the expression g(n) = z(Mn) means zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
~ ( n o ,  n1) = z(n0 + 711, no - n l )  so that there is a time- 
reversal operation buried in the decimation process. The 

same remarks apply for the synthesis filters, that is the 

2-D synthesis filters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFO(ZO, 21) and Fl(z0,  21) are BIBO 
stable even though they are not first-quadrant filters. 

Perfect reconstruction is preserved. 

If the 1-D lowpass filter Ho(z) has k zeros at T ,  then the 
frequency response of Ho(ejwo, ej"1) can be written as 

- (1+C' 2 ) lipz (WO , w1 ) 
. ~ d l  + 2 n  

(34) 

where ~ P I ( T ,  T ) I  and ~PZ(T, .)I are finite quantities. The 
proof of (34) is given in Appendix B. Notice that both of 

are zero at ( T , T ) .  Furthermore one can verify that all 

the mixed partial derivatives satisfy 

1 the factors [ l+e-03j ( W O + W  '1 and [ 1 + ~ - O . ~ J ( W O - - W I + ~ ~ )  

(35) 

From (35), we conclude that the total derivatives [36] 

an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i=O a w & 3 w y  

x H o ( r , r )  = 0, for n < k .  (36) 

According to [34], (36) is a necessary condition for the 

regularity of 2-D wavelet. The necessary and sufficient 
condition is still unknown. 

In the FIR case the linear phase property of the analysis 
and synthesis filters is preserved. 

In the IIR case, the 2-D analysis and synthesis filters 

have a line of zeros in the frequency plane at W O  = 0 

or at WO = T .  

Proof: Substituting zo = -1 into the expression for 

Ho(z0,z l )  in (32a) and using the fact that P(zoz1) 
is allpass, one immediately finds that H o ( - l , z l )  = 
0, Vz1. Since Fo(zo, 21) contains Ho(z0, z1) as a fac- 

tor, Fo( -1, z1) = 0. Similarly, we can prove that 

7) The lowpass/highpass characteristics of the frequency 

Proofi Assume that P(z )  satisfies the ideal conditions 

Fl (1 ,Z l )  = Hl (1 ,Z l )  = 0,  v z1. 

responses of the filters are preserved. 

in (5). Then we have 

for E [ o , T / ~ ] ;  

E (7r/2,7r]. 
- ( z O z l ) ~ ,  - -SN+ l  for 

By using the above equations, we find that 

/ ? ( z ~ z l ) p ( z o z , ~ )  is equal to -2N+1 when 

(w0,wl)  E 00 and equal to 2;2N+1 when 

(wO1wl) E 0 1 .  This proves that H O ( Z O , Z I )  has 
the ideal diamond support 00. Similarly it can be 
shown that H l ( z ~ , z l )  will have the support of ideal 

diamond-complement. Thus when the conditions in (5) 
are well-approximated by the 1 -D transfer function 

p ( z ) ,  the response of the 2-D filters will be good. 

3 )  Comments on the Complexity: Though the 2-D analysis 
and synthesis filters are nonseparable, it is clear from the 
expressions for the polyphase matrices that the complexity is 
comparable to that of a separable filter bank. More precisely, 

it is equal to twice the complexity of the 1-D transfer function 

ab). 

B. 2-0  Nonseparable Filter Banks 

In this section, we will give two numerical examples to 

demonstrate the mapping proposed above. We separately apply 

the 2-D mapping to the filter banks in Example 3.1 (IIR) and 

Example 3.2 (FIR), respectively. 
Example 5.1-2-0 IIR Filter Banks: In this example, we 

transform the 1 -D filter bank in Example 3.1 into the 2-D case 
by using above mapping. Since N = 3, the allpass function 

A ~ ( z )  needs only three multiplications. Since the complexity 

of the 2-D analysis (or synthesis) bank is equal to twice that 
of A ~ ( z ) ,  we need only six multiplications per input pixel 
to implement the analysis (synthesis) bank. The responses of 
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fO o v o . 4  
0 .4  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(b) (b) 

Fig. 16. (Example 5.1) Magnitude responses of the perfect reconstruction 
IIRanalysisbank: (a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH o ( z o . z ~ ) ;  (b) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH1(~o.~i).Thenormalizedfrequency 

Fig. 17. 
FIR analysis bank: (a) Ho(zo .=i ) ;  (b) Hi(;o,;i). 

(Example 5.2) Magnitude responses of the perfect reconstruction 

f, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl l , , / h .  

Ho(zo,zl) and Hl(zo,z l )  are shown in Fig. 16(a) and (b), 
respectively. The supports of the two filters are diamond and 

diamond-complement, respectively as desired. The stopband 
attenuation S,(Ho) x 42 dB and S,(H1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM 32 dB. Again, we 

see that H I  is about 10 dB worse than Ha in the stopband. 

The line of zero of H1 at WO = 0 is clearly seen in Fig. 16(b). 

Example 5.2-2-0 FIR Filter Banks: In this example, the 
1-D filter bank in Example 3.2 is transformed into the 
2-D case. To implement the 2-D analysis (or synthesis) 

bank, we need 12 multiplications per input pixel. The 

magnitude responses of Ho(zo,z1) and Hl(zo ,  z1) are shown 
in Fig. 17(a)-(b), respectively. The stopband attenuation 

6,(Ho) M 40 and 6,(Hl) M 30 dB. 

VI. CONCLUDING REMARKS 

In this paper, we have derived a framework for a new class 
of two-channel biorthogonal filter banks. The filter banks under 

the framework allow a structurally perfect reconstruction im- 

plementation as in Fig. 2. It is interesting that we can arrive at 

precisely the same ladder in Fig. 2 by using the novel approach 

in [26] developed for a totally different application, namely 
cancellation of roundoff error. The proposed systems have very 

low complexity. Filter banks of high frequency selectivity can 

be achieved by controlling a single transfer function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp ( z )  in 

Fig. 2. Two different choices of @(z)  lead to causal stable IIR 
and linear phase FIR filter banks, respectively. The properties 

of the proposed filter banks were discussed in detail. We 

showed that zeros at aliasing frequency can be imposed. Two 

new types of IIR maximally flat filters were derived and the 

solutions were given in closed form. In addition to perfect 

reconstruction property, these IIR filters have nearly linear 

phase in the passband. Furthermore, we also mapped the 1- 
D filter banks derived in this paper into 2-D cases. The design 

of a 2-D biorthogonal (stable IIR or linear phase FIR) filter 

bank reduces to the design of a single I-D transfer function. 
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Fig. 18. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

"I 
Ideal supports for alias-free decimation for M defined in (38). 

The new transformation preserves many of the properties of 
the 1-D systems. Before we conclude the paper, we would 
like to provide an example to demonstrate that the mapping in 

Section V can be easily generalized to arbitrary dilation matrix 

M with determinant equal to 2. 
Example zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6.1-2-0 IIR Filter Banks: The 1-D prototype fil- 

ter bank is taken to be that in Example 3. l .  The dilation matrix 

and the coset vectors are respectively: 

M =  (; i ) '  k o =  (;) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk1= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3). (38) 

With the above matrix and coset vectors, the ideal passband 

support for the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHO(ZO,  z 1 )  is SPD(TM-~),  which is shown in 
Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA18 (shaded area). By using the transformation introduced 

in Section V, we find that the polyphase matrices in this 
example are the same as those in Example 5.1. Thus, it also 

has very low complexity. The only differences are the dilation 
matrix and the coset vectors. With the M and k; chosen as 
(38), the responses of Ho(z0, z 1 )  and Hl(zo ,  z 1 )  are shown in 

Fig. 1 9 ( ~ )  and (b). We see that Ho and H1 have approximately Fig. 19. (Example 6.1) Magnitude responses Of the perfect reconstruction 
analysis bank with the decimator M defined in (38): (a) Ho( -0.  ~ 1 ) ;  (b) 
H l ( Z 0 . Z l ) .  

the desired support. 

APPENDIX A N 
(2' - (A.3b) 

(2k + 2 j  - 1). 
PROOF OF (24) 

It is shown in [33] that there exists closed form solution for j = k + l  3 j = k + l  

a N , k  satisfying system of linear equations: 

N 
Combining (A.3a) and (A.3b), we get (24). 

1 + a N , k x r  = 0, for T = 1 ,2 ,  ' . . , N .  (A. 1) APPENDIX B 
k = l  

PROOF OF PROPERTY 4 IN SECTION V-A 
With some modification, the solution to (23) can be written as 

64.2) 

Supposing that the 1-D filter Ho(z)  has IC zeros at T ,  then 
we have 

2=1 e ~ w ~ o ( e j w )  = , ( - 2 N + l ) j w  
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From (B.2), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAejwoHg(ejwo, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe j ” ’ )  can be rewritten as 
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