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Introducing a shape parameter to an exponential model is nothing new. There are many ways to introduce
a shape parameter to an exponential distribution. The different methods may result in variety of weighted
exponential (WE) distributions. In this article, we have introduced a shape parameter to an exponential
model using the idea of Azzalini, which results in a new class of WE distributions. This new WE model
has the probability density function (PDF) whose shape is very close to the shape of the PDFS of Weibull,
gamma or generalized exponential distributions. Therefore, this model can be used as an alternative to any
of these distributions. It is observed that this model can also be obtained as a hidden truncation model.
Different properties of this new model have been discussed and compared with the corresponding properties
of well-known distributions. Two data sets have been analysed for illustrative purposes and it is observed
that in both the cases it fits better than Weibull, gamma or generalized exponential distributions.

Keywords: hazard function; log-concavity; RR2 ordering; maximum likelihood estimators; moment
estimators; Fisher information; moment generating function

1. Introduction

Different methods may be used to introduce a shape parameter to an exponential model and they
may result in a variety of weighted exponential (WE) distributions. For example, the gamma
distribution and the generalized exponential distribution are different weighted versions of the
exponential distribution. In this article we have used the idea of Azzalini [1] to introduce a shape
parameter to an exponential distribution which results in a new class of WE distributions.

Azzalini [1] first introduced the skew-normal distribution to incorporate a shape/skewness
parameter to a normal distribution. Since then extensive work has been done to introduce a skew-
ness parameter to a symmetric distribution. For example, skew-t, skew-Cauchy, skew-Laplace,
skew-logistic and in general skew-symmetric distribution have been defined and several proper-
ties and their inference procedures have been discussed, see for example, Arnold and Beaver [2],
Gupta and Kundu [3] and the recent monograph by Genton [4]. Arnold and Beaver [5] provided
a nice interpretation of Azzalini’s skew-normal model as a hidden truncation model, although the
same interpretation may not be true for other skewed distributions.
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622 R.D. Gupta and D. Kundu

Interestingly, although Azzalini’s method has been used extensively for several symmetric
distributions, an attempt has not been made to use the idea for non-symmetric distribution. In this
article, it is observed that if we apply Azzalini’s method to the exponential distribution, then it
produces a new class of WE distributions that has a shape parameter. From now on we denote
a member of this new class of weighted distributions as WE distribution. This shape parameter
governs the shape of the probability density function (PDF) of the WE distribution. It is observed
that the shape of the PDF of WE is very similar to the other generalization of the exponential
distribution, for example gamma, Weibull or generalized exponential distribution.

The main aim of this article is to introduce this model and study its different properties. It is
observed that although this model has been obtained as a WE distribution, it has several other
interpretations. It can be observed as a hidden truncation model, as was observed in the case of
the skew-normal distribution by Arnold and Beaver [5]. This model can also be obtained by beta
transformation as it was proposed by Jones [6]. Moreover, this model can also be represented as
a sum of two independent but non-identical exponential distributions. These different represen-
tations have been used to derive different properties of the WE distribution and also to generate
WE random deviate.

It is observed that the WE distribution function has a compact form and all the moments can
be computed explicitly. Therefore, mean, variance, skewness, kurtosis, coefficient of variation,
hazard function (HF), and mean residual lifetime, all can be computed explicitly. Interestingly, the
distribution of the sum of independent nWE random variables can also be obtained. The maximum
likelihood estimators (MLEs) of the two unknown parameters of the WE distribution cannot be
obtained in explicit form, but they can be obtained as a solution of a non-linear fixed-point type
equation. The moment estimators (MEs) of the unknown parameters can be obtained explicitly.
The asymptotic distributions of the MLEs are provided and they can be used for constructing the
asymptotic confidence intervals or for testing purposes.

The rest of the article is organized as follows. In Section 2, we provide the definition and
different interpretations. Different properties are discussed in Section 3. Statistical inferences of
the unknown parameters are carried out in Section 4. Two data sets have been analysed in Section 5
and finally we conclude the article in Section 6.

2. Definition, interpretations and generation

In this section, first we provide the definition of the WE model and then provide four different
interpretations. It may be observed that different interpretations can be used very easily to generate
WE random deviates.

Definition The random variable X is said to have WE distribution, with the shape and scale
parameters as α > 0 and λ > 0, respectively, if the PDF of X is

fX(x; α, λ) = α + 1

α
λe−λx(1 − e−αλx); x > 0 (1)

and 0 otherwise. We will denote it as WE(α, λ). Note that in the model (1) the location parameter
can be easily incorporated.

Interpretation 1 This model can be obtained from two independent identically distributed
(i.i.d.) random variables exactly the same way Azzalini [1] obtained the skew-normal distribution
from two i.i.d. normal distributions. Suppose X1 and X2 are two i.i.d. random variables, with the
PDF fY (·) and cumulative distribution function (CDF) FY (·), then for any α > 0, consider a new
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Statistics 623

random variable X = X1 given that αX1 > X2. Note that the PDF of the new random variable
X is

fX(x) = 1

P(αX1 > X2)
fY (x)FY (αx); x > 0. (2)

Now Equation (1) can be obtained from Equation (2) by replacing fY (x) = e−λx and FY (x) =
1 − e−λx .

Interpretation 2 This model can be obtained as a hidden truncation model as it was observed
by Arnold and Beaver [5] in case of skew-normal distribution. Suppose Z and Y are two dependent
random variables with the joint PDF as given below for λ > 0;

fZ,Y (z, y) = λ2ze−λz(1+y); z > 0, y > 0. (3)

The contour and the joint PDF of Z and Y are plotted in Figure 1. Consider a new random variable
X = Z given that Y ≤ α. It is easily observed that the PDF of X is Equation (1). Therefore, it can
be interpreted as the hidden truncation model as follows. Suppose Z and Y are two correlated
random variables with the joint PDF (3) and we can not observe Y, we only can observe Z, if
Y ≤ α, then the observed sample can be regarded as drawn from a distribution with the PDF (1).

Interpretation 3 Recently Jones [6], see also Nadarajah and Kotz [7], obtained a class of
distribution functions from a Beta(a, b) distribution as follows. Suppose U has a Beta(a, b)

distribution, then for any c > 0 consider a new random variable V, such that U = e−cV , which
has the PDF

fV (v; a, b, c) = �(a + b)

�(a)�(b)
ce−acv(1 − e−cv)b−1 v > 0. (4)

Therefore, the PDF of WE Equation (1) can be obtained as a special case of Jones’ model by
taking a = 1/α, b = 2 and c = αλ.

Interpretation 4 Suppose U and V are two independent exp(λ) and exp(λ(1 + α)), i.e. expo-
nential random variables with mean 1/λ and 1/λ(1 + α), respectively, then it can be easily
observed that if

X = U + V, (5)

then X has the PDF (1). In fact the stochastic representation of X can be used as a characterization
of WE distribution. The following result can be stated without proof, as it can be easily obtained
using the moment generating function (MGF).

Figure 1. The contour plot and the joint PDF of Equation (3) are plotted for λ = 1.
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624 R.D. Gupta and D. Kundu

Result The random variable X has a WE(α, λ) distribution if and only if X can be written as
Equation (5), where U and V are same as defined earlier.

Generation Note that all the above four interpretations can be used for WE random deviates
generation purposes. The simplest way to generate WE random deviate is to use the stochastic
representation (5), i.e. generate two independent exponential random variables with parameters
1 and 1 + α, respectively. The sum of the two has the WE(α, 1) distribution.

3. Properties

In this section we study the different properties of the WE distribution. Without loss of generality
we assume λ = 1 and for brevity we call it as WE(α). The PDF of the WE distribution is provided
in Equation (1). The graph of PDFs of different WE(α) is provided in Figure 2. Since the PDF of X

is always log-concave, and fX(x; α) vanishes as x → 0 or x → ∞, therefore, the PDF is always
unimodal with mode at ln(1 + α)/α. In fact it will be seen later that the Pearsonian measure of
skewness, i.e. (mean-mode)/σ , and the measure of skewness β1 = μ3/σ

3, see Equation (12) for
details, both are always positive.

Asα → ∞,WE(α) converges to exp(1) and asα → 0, it converges to a gamma distribution with
shape parameter 2. When α = 1, WE(α) coincides with the generalized exponential distribution,
see Gupta and Kundu [8], with shape parameter 2, which represents the lifetime distribution of a
parallel system with two i.i.d. exp(1) lifetime distributions. Although, in general WE distribution
represents the lifetime of a system with one spare component, the lifetime distributions of the
original and standby components are independently distributed with distributions exp(1) and
exp(1 + α), respectively.

The distribution function and the HF of X can be written as

Fx(x; α) = α + 1

α

[
1 − e−x − 1

1 + α
(1 − e−(1+α)x)

]
; x > 0, (6)

and

hX(x; α) = (α + 1)(1 − e−αx)

(1 + α − e−αx)
; x > 0, (7)

Figure 2. The plot of Equation (1) for different values of α, when λ = 1.
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Statistics 625

respectively. Since fX(x, α) is always log-concave, therefore hX(x; α) will be an increasing
function x for all α > 0, see Jones [6] also in this respect. For any α, the HF will start at 0 and
will converge to 1 as x → ∞. Since the HF is increasing, this is suitable for modelling lifetime
data when wear-out or ageing is present.

Ordering of distributions, particularly among the lifetime distributions, plays an important role
in the statistical literature. It can be easily seen that the WE family is a reverse rule of order two
(RR2) family, see Shaked and Shantikumar [9]. Since it has the RR2 ordering, therefore it has
the likelihood ratio ordering, which implies that has the hazard rate ordering and the stochastic
ordering. As it has the likelihood ratio ordering, this implies there exists a uniformly power test
(UMP) or uniformly most powerful unbiased test (UMPU) for one-sided or two-sided hypothesis
on the shape parameter, when the scale parameter is known. Also from the stochastic ordering, it
is clear that if α1 < α2, then WE(α2) has thinner tail than WE(α1).

Now let us consider different moments of WE(α) distribution. If X follows WE(α), then the
MGF of X for −1 < t < 1 can be obtained as

MX(t) = EetX = α + 1

α

[
(1 − t)−1 − 1

1 + α

(
1 − t

1 + α

)−1
]

=
(

1 − t

1 + α

)−1

(1 − t)−1.

(8)

The MGF exists in a compact form, and moreover all the moments exist in this case. It might be
easier to work with ln MX(t) to compute the cumulants. Since

ln MX(t) = − ln(1 − t) − ln

(
1 − t

1 + α

)
, (9)

therefore differentiating ln MX(t) and having t = 0, we obtain;

μ = E(X) = 1 + 1

1 + α
, σ 2 = V (X) = 1 + 1

(1 + α)2
, E(X − μ)3 = 2

[
1 + 1

(1 + α)3

]
(10)

and the k-th cumulant τk can be obtained as

τk = (k − 1)!
[

1 + 1

(1 + α)k

]
, for k = 3, . . . (11)

Some other measures, like coefficient of variation (CV) and skewness (β1) can also be easily
obtained in explicit forms, as

CV =
√(

1 − 2(1 + α)

(2 + α)2

)
and β1 =

√
4((1 + α)3 + 1)2

((1 + α)2 + 1)3
. (12)

Note that the mean and variance are both decreasing functions of α and both of them decrease
from 2 to 1. Both the CV and skewness are functions of α and the CV increases from 1/

√
2 to

1, whereas skewness increases from
√

2 to 2. Although, it is not possible to compute the median
explicitly, but from Figure 3 it is observed that

mode = log(1 + α)

α
< median <

α + 2

α + 1
= mean.

The mean residual life at the time point t is

μX(t) = E(X − t |X ≥ t) = 1

1 − 1/(1 + α)e−αt

[
1 − e−αt

(α + 1)2

]
− t,

and it is a decreasing function of t .
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626 R.D. Gupta and D. Kundu

Figure 3. The mean, median and mode of WE for different values of α, when λ = 1.

Now we discuss the convolution of the WE distributions. We address the following questions.
Suppose Xi follows WE(αi) for i = 1, . . . , n and is independent, then what will be the distribution
of

∑n
i=1 Xi? Note that it is better to look at the problem from the stochastic representation point

of view. Suppose we write Xi = Ui + Vi , for i = 1, . . . , n, where Ui and Vi are independent
exp(1) and exp(1 + αi), respectively. Then studying the distribution is equivalent to studying the
distribution of S + T , where S and T are independent random variables, S follows gamma(n, 1)
and T is the sum of n independent non-identical exponential random variables with parameters
1 + α1, . . . , 1 + αn, respectively. Several authors have discussed the distribution of T , see for
example Johnson et al. [10]. Once we get the distribution of T , the distribution of W = S + T can
be easily obtained. For completeness purposes, we provide two representations of the distribution
function of W , when all the αis are equal to α. One representation is an infinite mixture of gamma
distributions and the other as the convolution of two gamma distributions. The density function
of W for w > 0 can be written as follows;

Representation 1

fW(w) =
∞∑

k=0

δk

(1 + α)n
gamma(2n + k − 1, 1), (13)

where

δ0 = 1, δk+1 = 1

k + 1

k+1∑
i=1

iγiδk+1−i , γk = n

k

(
1 − 1

1 + α

)k

; k = 0, 1, 2, . . . (14)

and gamma(a, 1) represents the gamma density function with shape and scale parameters as a

and 1, respectively.
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Statistics 627

Representation 2

fW(w) = 1

(α + 1)n(�(n))2

∫ w

0
(w − x)n−1e−(w−x)/(α+1)xn−1e−x dx

= e−w/(1+α)

(�(n))2(1 + α)n

n−1∑
j=0

�(n)

�(j + 1)�(n − j)
(−1)jwn−j−1

∫ w

0
xn+j−1e−αx/(1+α) dx

= e−w/(1+α)

(�(n))(1 + α)n

n−1∑
j=0

(−1)j
�(n + j)

�(j + 1)�(n − j)
wn−1−j

(
1 + α

α

)n+j

×
(

1 −
j+n−1∑

i=0

e−(wα/(α+1))(wα/1 + α)i

�(i + 1)

)
.

Note that in the first case it is an infinite mixture of gamma distributions. Since the mixture
coefficients go to zero at the exponential rate therefore the convergence is quite fast. In the second
case it is a finite representation, but the coefficients can take both positive and negative values.

Now we briefly discuss the similarity/dissimilarity between WE and truncated skew-Laplace
distribution, as suggested by a reviewer. It is expected that WE and truncated skew-Laplace
distributions should behave in a similar manner. The skew-Laplace distribution was originally
proposed by Balakrishnan and Ambagaspitiya [11] and later it was studied by several authors, see
for example Gupta et al. [12] and the references cited therein. The skew-Laplace distribution has
the PDF, see Gupta et al. [12]

fSL(x; α, λ) =
{

λe(α+λ)x if x < 0

λe−λx
(
1 − 1

2 e−αλx
)

if x ≥ 0.
(15)

Therefore, the truncated skew-Laplace distribution has the PDF

fTSL(x; α, λ) = 1 + α

2α + 1
λe−λx

(
1 − 1

2
e−αλx

)
for x ≥ 0. (16)

It may appear that the PDFs (1) and (16) are of similar forms. We have provided the PDFs
and HFs of fTSL(x; α, λ) of the truncated Laplace distribution for different values of α when
λ = 1, in Figure 4. The PDF of truncated skew-Laplace distribution is either unimodal (α > 1)
or a decreasing (α ≤ 1) function. Moreover at point 0, it will always be positive, unlike WE
distribution. The HF of the truncated skew Laplace distribution is either inverted bathtub or a
decreasing function.

Figure 4. The PDFs and HFs of the truncated skew-Laplace distribution for different values of α, when λ = 1.
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628 R.D. Gupta and D. Kundu

4. Statistical inferences

In this section, we consider the statistical inferences of the unknown parameters. First we calculate
the MLEs of the unknown parameters and then we consider their asymptotic distribution.

4.1. Maximum likelihood estimates

In this case we re-parametrize α as β = αλ mainly for computational ease. By making this
re-parametrization it is possible to reduce the two-dimensional optimization problem to a one-
dimensional optimization problem. The log-likelihood function based on the observed sample
{x1, . . . , xn} is

l(x1, . . . , xn|β, λ) = n ln(β + λ) − n ln β + n ln λ − λ

n∑
i=1

xi +
n∑

i=1

ln(1 − e−βxi ). (17)

We need to maximize Equation (17) with respect to β and λ to obtain the MLEs. It can be easily
observed that for fixed β, the function (17) is maximized for the following λ;

λ̂(β) = 1

2x̄

(√
(βx̄ − 2)2 + 4βx̄ − (βx̄ − 2)

)
. (18)

Substituting λ̂(β) in Equation (17) we obtain the profile log-likelihood of β and we can obtain
the MLE of β by maximizing the profile log-likelihood of β with respect to β. The MLE of β can
be obtained as a solution of the following fixed-point type equation;

h(β) = β, (19)

where

h(β) =
(

1

β + λ̂(β)
+ 1

n

n∑
i=1

xie−βxi

1 − e−βxi

)−1

. (20)

The solution of Equation (20) can be obtained by a very simple iterative procedure. Suppose we
start with an initial guess β(0), then the next iterate β(1) can be obtained as β(1) = h(β(0)), similarly,
β(2) = h(β(1)) and so on. Finally the iterative procedure should be stopped when |β(i) − β(i+1)| <

ε, where ε is a preassigned tolerance limit. Once we get the MLE of β, the MLE of λ can be
obtained as λ̂(β̂) from Equation (18). From the MLE of β, MLE of α can also be easily obtained.

Now we discuss the MEs of α and λ. If x̄ and s2 denote the sample mean and sample variance
of the observed sample, then solving and equating the two moments, we obtain the MEs of α and
λ as

α̃ = −(x̄2 − 2s2) + √
(x̄2 − 2s2)2 − 2(x̄2 − s2)(x̄2 − 2s2)

x̄2 − s2
(21)

and

λ̃ = 1

x̄

(
1 + 1

1 + α̃

)
. (22)

It should be mentioned that the ME of α is obtained by solving a quadratic equation. It may have
two positive roots, but since the sample mean and sample variance are consistent estimators of the
population mean and population variance, respectively, and since 1/

√
2 < CV < 1, therefore, for

large n with high probability the estimate of α given by Equation (21) will be the only positive

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
K
u
n
d
u
,
 
D
e
b
a
s
i
s
]
 
A
t
:
 
0
2
:
5
2
 
4
 
N
o
v
e
m
b
e
r
 
2
0
0
9



Statistics 629

Table 1. Probability of obtaining feasible roots.

n → α ↓ 50 100 250 500 1000

0.25 0.413 0.449 0.483 0.499 0.536
0.50 0.449 0.503 0.582 0.621 0.718
0.75 0.507 0.590 0.680 0.775 0.872
1.00 0.551 0.664 0.776 0.871 0.959
1.50 0.635 0.769 0.904 0.972 0.997
2.00 0.689 0.843 0.962 0.995 0.999
5.00 0.819 0.943 0.993 1.000 1.000

root. But for small n both of them might be positive or there may be infeasible roots also. It can
be easily proved that the MEs exist and is feasible if and only if s2 < x̄2 < 2s2. We provide in
Table 1 for different values of α and n indicating the probability of obtaining feasible MEs. It is
clear from Table 1 that the MEs do not work well if α is small, even for very large sample sizes.

4.2. Asymptotic distributions: both parameters unknown

Now we provide the asymptotic distributions of the MLEs when both parameters are unknown. It
immediately follows from the Fisher information matrix of λ and β that if λ̂ and β̂ are the MLEs
of λ and β, then; √

n((̂λ − λ), (β̂ − β)) −→ N2(0, �1), (23)

where

�1 =

⎡⎢⎢⎢⎣
1

(β + λ)2
+ 1

λ2

1

(β + λ)2

1

(β + λ)2

1

(β + λ)2
− 1

β2
+ λ(β + λ)

β4
u

(
λ

β

)
⎤⎥⎥⎥⎦

−1

and for a > 0,

u(a) =
∫ 1

0
(ln(1 − y))2(1 − y)ay−1 dy.

Once we have the asymptotic distribution of (̂λ, β̂), we can easily obtain the asymptotic distribution
of (̂λ, α̂) by using the δ-method and the result can be stated as follows;

√
n((̂λ − λ), (̂α − α)) −→ N2(0, A�1A

T ), (24)

where

A =
[

1 0
αλ 1/λ

]
.

Note that the asymptotic distributions of the MEs can also be obtained, but is not presented here.
The detailed comparison of the MLEs, MEs and other estimators and their asymptotic properties
are in progress and will be reported elsewhere.

Another interesting point (one referee has suggested) will be to compare the asymptotic corre-
lation of α̂ and λ̂, and asymptotic correlation of β̂ and λ̂, particularly when λ is close to one. It is
difficult to compare them theoretically because of the complicated nature of the correlations. We
have provided the two correlations and also the ratio of the correlations for different values of α

in Figure 5. It is clear from Figure 5 that the correlation between α̂ and λ̂ or between β̂ and λ̂ is
always negative. They are almost perfectly correlated (very close to −1) when α is small, but the
correlation decreases (absolute value) as α increases. Moreover, the ratio of the two correlations
is very close to 1 for small α, but it gradually decreases as α increases.
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Figure 5. Ratio of Corr(β̂, λ̂)/ Corr(̂α, λ̂) for different values of α and the two correlations are plotted separately.

5. Data analysis

Data Set 1: The data set consists of survival times of guinea pigs injected with different amount
of tubercle bacilli and was studied by Bjerkedal [13]. Guinea pigs are known to have high suscep-
tibility of human tuberculosis, which is one of the reasons for choosing this species. We consider
only the study in which animals in a single cage are under the same regimen. The data represents
the survival times of Guinea pigs in days. The data are given below:

12 15 22 24 24 32 32 33 34 38 38 43 44 48 52 53 54 54 55 56 57 58 58 59 60 60 60 60 61 62 63
65 65 67 68 70 70 72 73 75 76 76 81 83 84 85 87 91 95 96 98 99 109 110 121 127 129 131 143
146 146 175 175 211 233 258 258 263 297 341 341 376.

In this case n = 72, the mean x̄ = 99.82 and standard deviation s = 80.55. Since, 1 < x̄2/s2 =
1.536 < 2, therefore, the MEs of α and λ exist. They are α̃ = 2.6124 and λ̃ = 0.0128. We plot the
profile likelihood of β in Figure 6. Since it is an unimodal function, it has the unique maximum
and we obtain β̂ = 0.0224, λ̂ = 0.0138 and α̂ = β̂/̂λ = 1.6232. Just to see how good fit it is
we have plotted the empirical distribution function and the fitted WE distribution functions in
Figure 7 and the fitted PDF and relative histogram in Figure 8. The Kolmogorov–Smirnov (K–S)

Figure 6. The profile log-likelihood function of β for the Guinea pig data set.
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Figure 7. The empirical and the fitted survival functions for the Guinea pig data set.

distance between the empirical and fitted distribution functions is 0.1173 and the corresponding
p-value is 0.2748. It clearly indicates that the WE distribution provides a good fit to the data. For
comparison purposes, we have fitted Weibull, gamma and generalized exponential distributions
also. It is observed that the K–S distances are 0.1490, 0.1392 and 0.1349, and the corresponding
p-values are 0.0816, 0.1122 and 0.1349, respectively.
Data Set 2: The Indian Institute of Technology Kanpur is one of the famous technical institutes
of India. Here the admission to the different disciplines in the first year, is performed through the
Joint Entrance Examination (JEE). Approximately 450 students join each year in the first year.
Since the programme is very tough and the competition is also very high, the students can choose
a slow pace programme that works as follows. In the first year all the courses are compulsory
for everybody. In the first mid-semester examination if students get below than certain mark (not
fixed in each year and vary from one subject to others) in a particular subject they can go for a
slow pace programme which may extend their programme duration. In 2003, the marks of the
slow pace students in Mathematics in the final examination were as follows;

Figure 8. The fitted PDFs and the relative histogram for the Guinea pig data set. (i) WE, (ii) GE (iii) Weibull and (iv)
gamma.
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Figure 9. The profile log-likelihood function of β for the marks set.

29 25 50 15 13 27 15 18 7 7 8 19 12 18 5 21 15 86 21 15 14 39 15 14 70 44 6 23 58 19 50 23 11
6 34 18 28 34 12 37 4 60 20 23 40 65 19 31.

We do not have the access to the first semester marks, so we do not know the cut-off. In this case
n = 48, the mean x̄ = 25.89 and standard deviation s = 18.60. Since, 1 < x̄2/s2 = 1.937 <

2, therefore, in this case also the MEs of α and λ exist. The MEs are α̃ = 0.4384 and λ̃ =
0.0655. The profile log-likelihood of β can be seen as a unimodal function (Figure 9). The
MLEs are obtained as follows: β̂ = 0.0200, λ̂ = 0.0685 and α̂ = β̂/̂λ = 0.2919. The empirical
survival function and the fitted survival function are plotted in Figure 10. The fitted PDF and
the relative histogram are plotted in Figure 11. The Kolmogorov–Smirnov distance between the
empirical and fitted distribution functions is 0.0932 and the corresponding p-value is 0.7986.
The K–S distances between the empirical distribution function and the fitted Weibull, gamma and

Figure 10. The empirical and fitted survival functions of the marks data.
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Figure 11. The fitted PDF and the relative histogram for the marks data. (i) WE, (ii) Weibull (iii) gamma and (iv) GE.

generalized exponential are 0.1177, 0.1031, 0.0937 and the corresponding p-values are 0.5186,
0.6638 and 0.7929, respectively. Interestingly in both the cases it is observed that WE fits better
than the Weibull, gamma or generalized exponential distributions, although it may not always be
true. Moreover, the tail behaviour in both the cases for all the four fitted distributions are very
similar in nature.

It may be argued (as one referee pointed out) that how are we fitting the WE distribution to
the marks data, when it is known that the maximum marks can be only 100. But it is not very
uncommon to fit a normal distribution when it is known that the data are bell shaped even when
it has a finite range. Moreover, in this case the MLE of P(X > 100) ≤ 10−41. This justifies that
even if X is bounded above, it is possible to use WE distribution in this case, since the fit is also
very good otherwise.

6. Conclusions

In this article we have considered a WE distribution obtained using the method of Azzalini. The
proposed WE distribution is a generalization of the exponential distribution similar to the well-
known Weibull, gamma or generalized exponential distributions. Although for all the above three
cases, the exponential distribution can be obtained as a special case, in case of WE distribution,
the exponential distribution can be obtained only as a limiting distribution. It is observed that
the PDF of the WE distribution is very similar to the corresponding PDFs of the well-known
Weibull, gamma or generalized exponential distributions. Therefore, the WE can be used quite
effectively to analyse positively skewed data similar to those above skewed distributions. It can
be observed as a hidden truncation model, and therefore if it is known that the data are coming
from a hidden truncation model, then it can be used quite effectively instead of other skewed
distributions.

Now for comparison purposes, we have provided the different characteristics of Weibull,
gamma, generalized exponential and WE models in Table 2. We have assumed in all the cases
that α represents the shape parameter and the scale parameter is 1, without loss of generality. One
very important and natural question is how close or different these four distributions are? It is not
very easy to answer, and more work is needed in this direction.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
K
u
n
d
u
,
 
D
e
b
a
s
i
s
]
 
A
t
:
 
0
2
:
5
2
 
4
 
N
o
v
e
m
b
e
r
 
2
0
0
9



634 R.D. Gupta and D. Kundu

Table 2. The different characteristics of the four families of distributions.

Shapes of the Shapes of the Ordering
Model Range of α Density function Hazard function Mean Mode relation

Generalized
exponential

0 < α < 1 D (from ∞ to 0) D (from ∞ to 1) 0
α = 1 D (from α to 0) C (at α) ψ(α + 1) − ψ(1) 0 TP2
α > 1 U (starts from 0) I (from 0 to 1) log(α)

Gamma 0 < α < 1 D (from ∞ to 0) D (from ∞ to 1) 0
α = 1 D (from α to 0) C (at α) α 0 TP2
α > 1 U (starts from 0) I (from 0 to 1) α − 1

Weibull 0 < α < 1 D (from ∞ to 0) D (from ∞ to 0) 0

α = 1 D (from α to 0) C (at α) �

(
1 + 1

α

)
0 N

α > 1 U (starts from 0) I (from 0 to ∞)

(
α − 1

α

)1/α

WE α > 0 U (starts from 0) I (from 0 to 1)
α + 2

α + 1

log(1 + α)

α
RR2

D = decreasing, I = increasing, U = unimodal, C = constant, N = neither.
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