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ABSTRACT At present, cloud robots tend to be intelligent and cooperative. Based on this, we proposed a

teaching method based on Imitation and a learning method that incorporates Incremental Learning and Meta

Learning. We use Imitation Learning to teach robots, and more concretely, we propose a natural teaching

method based on visual sense by using a depth camera, the robot can learn from the trajectory caught by

the camera. Meta Learning helps robots understand the task and split it into some subtasks which enhances

the level of generalization. Besides, once the circumstances change the robot can update the cloud database

using Incremental Learning. Using proposed method, we make robots capable of learning and cooperating

with other robots. It is no longer necessary for robots to learn based on a great number of data which is

a shortcoming of traditional robots. The greatest advantage of this method is that we improve the learning

efficiency of robots and enhance the level of generalization of the model. Our method was experimentally

verified in a laboratory and the results indicated that the method improved the learning efficiency of robots.

INDEX TERMS Imitation learning, cloud robot, incremental learning, meta learning.

I. INTRODUCTION

Nowadays, robot collaborative work has become an urgent

need, and the development of Industry 4.0 will accelerate this

process. Therefore, optimizing the human-robot cooperation

has been a very important matter in many recent works. As a

result, a new concept - cloud robots - was put forward. Cloud

robots, with the help of cloud platforms, allow robots to learn

from each other and share knowledge. The concept of cloud

robots was first proposed by Dr. Kuffner of Carnegie Mellon

university in 2010 [1]which was then quickly followed by

article [2] in which Steve Cousins summed up the concept

as ‘‘No robot is an island.’’ Cloud robot is the combination

of cloud computing and robotics. The robot itself does not

need to store all information or have strong computing power

and can connect to the relevant server and obtain the required

information when needed. Compared with traditional robots,

it has stronger learning ability. Cloud robots are developed

The associate editor coordinating the review of this manuscript and
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from traditional robot combining network and cloud comput-

ing, which has obvious advantages over traditional robots.

With a Shared knowledge base, robots can share informa-

tion, so that robots around the world can learn from each

other through the knowledge base. Nowadays tasks requiring

robots to perform are increasingly complex, traditional robots

have limited computing power and storage capacity, while

cloud robots store dense computing and large storage in the

cloud, providing a wider range of applications. In addition,

many behaviors and action sequences of cloud robots are

encapsulated asmodules, and the development based onmod-

ularization also brings convenience to the use of program

developers.

To this day, many researches have been done on the learn-

ing and sharing of knowledge among robots. For example,

a multi-robot, multi-tasking learning framework, after a robot

has passed the demonstration learning task, lessons learned

can be moved to other robots and used to perform another

task [3]. A learning framework of adaptivemanipulative skills

from human to robot to facilitate robot skill generalization is
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described in [4]. An adaptive data sharing method in collabo-

rative robots is described in [5]. A robot mutual learning sys-

tem, each robot in the system is individual but they can also

exchange information help each other learn [6]. A language

decision tree algorithm for multi-robot path learning problem

determines robot’s behaviors dynamically [7], and so on.

In previous works, Sumin Cho and Jo [8] proposed

an incremental learning method for teaching robots to

do tasks through selected kinesthetic teaching trials [8].

A. M. Ghalamzan E. proposed a method for learning a con-

trol policy for a task from demonstration [9]. Although [8]

requires kinesthetic teaching trials, which is not convenient

from a practical standpoint, a better way is to let the robot

learn directly from video. The empirical knowledge of [9]

also is not self-taught. But in order to improve the adaptability

of acquired skills to the environment and the generalization

of tasks, it’s important to make robots learn by themselves.

So, in this paper, a collaborative learning method for cloud

robots based on incremental learning is proposed.

The main contribution of this paper lies in the use of

human-like thinking to obtain effective methods suitable for

robot autonomous learning, including:
(1) A task understanding Meta Learning method based on

neural task programming is designed. The dynamic pro-

gramming idea of this learning method can effectively

deal with new tasks.

(2) Based on the essence of learning and the structure

of thinking, a human-assisted robot learning method

was proposed, and a skill teaching method oriented to

human-machine collaboration was constructed. Using

this approach, robots can quickly learn new skills with

a small amount of demo data.

(3) Combining the robot’s learning rules with the knowledge

structure characteristics of the robot’s brain, a collabora-

tive incremental learning method of openness, sharing,

and group cooperation is proposed to obtain a more

efficient robot autonomous learning framework.

The remaining sections are as follows. Section II is litera-

ture review. Section III is an overview of this paper. The task

understanding method is introduced in Section IV. The skill

teaching method is introduced in Section V. In Sections VI,

we introduce Incremental Learning. The whole collaborative

learning frame is introduced in SectionVII. VIII describes the

experiments and the results in detail. Finally, the conclusion

of this paper follows in Sections IX.

II. RELATED WORK

At present, cloud robots system allows robots to learn from

each other and share knowledge within the cloud platform.

Inspired by biology, John Lones proposed a robotic adaptive

approach [10]. Arren J. Glover proposes an incremental learn-

ing framework that enables lifelong learning and continuous

learning of new things [11]. The above researches verified the

feasibility of cloud robots.

In 2011, Eindhoven university et al. and Philips launched

the RoboEarth project jointly to build a world wide web for

FIGURE 1. The architecture of cloud robot system based on incremental
learning.

robots [12]. [13] discussed how to make multi-agent work

together, while a better solution is to enable multiple robots

to learn together.

Sumin Cho and Jo [8] proposed an incremental learning

method for teaching robots to do tasks through selected

kinesthetic teaching trials [8]. It demonstrates that robot

can incrementally refine and reproduce learned behaviors

that accurately represent the essential characteristics of the

teaching trials through incremental learning method and that

it can reject erroneous teaching trials to improve learning

performance.

Chelsea Finn et al. [14] present a meta-imitation learning

method that enables a robot to learn how to learn more

efficiently, allowing it to acquire new skills from just a single

demonstration [14]. It combines meta-learning with imita-

tion, enabling a robot to reuse past experience and, as a result,

learn new skills from a single demonstration. This proves that

in the field of robotics, the use of meta-learning can greatly

improve the efficiency of robotic learning methods. In [15],

based on meta-learning technology, robots can learn from

human original video pixels.

In what follows, we will propose a collaborative learning

method for cloud robots based on incremental learning.

III. OVERVIEW

Fig. 1 illustrates the architecture of the proposed cloud

robot system based on incremental learning. The first part

of the system is a collaborative learning platform for cloud

robots, which will recycle information from terminal robots

to improve the skills learning network and evaluate different

states and actions. The second part of the system is the use

of terminal robot. The terminal robot first splits the task

into different skill combinations during the execution of the

task, and at the same time, acquires the skills according to

the human’s imitative learning for the unknown task, and

optimizes the acquired skills by obtaining the execution result

during the actual execution and updating the new network, the
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new network will be able to better understand the relationship

between action and success. In this way, at each regular inter-

val, each robot will obtain a copy of the upgraded learning

network from the cloud robot collaborative learning platform,

and then begin to use the skills information in these new

learning networks to guide the action. Because these loop-

updated learning networks will do a better job in assessing

real-world actions, the robot itself will achieve better results.

This virtuous circle is repeated in the continuous improve-

ment of the task. By that means, the performance of hybrid

intelligent networks is improved.

IV. TASK UNDERSTANDING METHOD BASED ON

NEURAL TASK PROGRAMMING

Current AI based learning methods, especially deep learning,

require large amount of previously labeled data for better

training results. However, since robots generally take sev-

eral seconds or even minutes to complete the learning task,

generating a relatively good amount of training data is rather

difficult. Furthermore, traditional robot teaching is usually

conducted in a structured environment with poor scalability.

So, we need a new method to train robots efficiently.

This study adopts a robot task learning and understand-

ing framework of new neural task programming (NTP).

It supports a few-shot learning from presentation and neural

network program induction [16]. As a novel meta-learning

method, NTP is a hierarchical model that recursively splits

a large task into simple subtasks that are suitable for

robotic demonstration learning like MOVE_LEFT, FOL-

LOW_THE_CURVE, PICK_UP AND DROP_INTO.

The structure of a task mainly consists of three variations:

1) Repeat Times: the number of times the task needs to be

executed; 2) Task Execution Sequence; and 3) Task Content:

what the robot need to do and what is the success conditions.

Define T as the set of all simple subtasks, note that T can

be infinite. S as the environment state space, A as the action

space. For each task t ∈ T the Boolean function g as

described in Eq.(1) is the success condition of the task.

g : S × T → {0, 1} (1)

Given the state s ∈ S, if task t is completed in states, then

g(s, t) = 1, otherwise g(s, t) = 0. Then, we use Task

Description ϕ(t) ∈ 9 to describe each task, where 9 is a

collection of all possible task descriptions. Formally, the task

description is treated as a sequence of random variables:

ϕ(t) = {x1, x2, . . . , xN } (2)

NTP takes the task description ϕ(t) as input to instantiate

strategies and is defined as a time series that describes the

task process and the ultimate goals. In many real-world tasks,

robots cannot access the underlying environment state. It only

receives the environmental observation sample o ∈ O corre-

sponding to the state s, whereO is the observation space. Our

goal is to learn a ‘‘meta-policy’’ that instantiates feedback

strategies from a mission statement as below:

π̃ : 9 → (O→ A) (3)

During the test, each new task description ϕ(t) is fed into

NTP. Then the meta-policy generates a strategy as Eq. (3) to

achieve the mission completion state sT :

π (a|o;ϕ(t)) : O→ A (4)

where g(sT , t) = 1. For example, NTP splits the task of robot

moving objects into subtasks.

NTP has three key components: task description interpreter

fTDI , task description encoder fTDE , and core network fCN .

The task description is a time series that can describe the

entire task step and the final goal, such as the human teaching

video or the trajectory of the object. The task description

encoder encodes a task description ψ into a vector space v.

The core network uses the state s, the program p, and the

task description ψ to produce the program key k and an

end-of-program probability e. Then we get a program i that

gets maximum with the key k in a memory that stores all

programs. And when the probability reaches the threshold

δ, the program returns. The task description interpreter takes

the task description as input and chooses to perform one

of the following two operations: (1) When the current pro-

gram is not the bottom, it predicts the corresponding subtask

description for the next subroutine;(2) When the program is

the bottom (can be the basic skills of the robot or the API

provided by the robot), the task description encoder converts

the task description into a vector space.

Define [M
key
j ; M

prog
i ] is a learnable key-value memory

structure used to generate sub-program, fen(o) is a domain-

specific task encoders used to map an observation to a state

representation. The core network takes status, program, and

task descriptions as input, to generate the next subroutine to

be called and the probability of program ending as shown in

Algorithm 1.

NTP is a task-independent learning algorithm that can

be applied to various tasks with a potentially hierarchical

structure, whose key idea is to learn reusable representations

that are shared across tasks and domains. NTP explains a task

Algorithm 1 NTP Inference Procedure

Inputs: task description ψ , program id i, and environment

observation o

function RUN (i, ψ)

e← 0, p← M
prog
i , s← fen(o), v← fTDE (ψ)

while e← δ do

k, e← fCN (v, p, s), ψ
′← fTDI (ψ, p, s)

i′← argmax j=1...N (M
key
j , k)

if program i′ is primitive then if i′ is an API

a← fTDI (ψ
′, i′, s) decode API args a

RUN_API(i′, a) run API i′ with args a

else

RUN (i′, ψ ′) RUN program i′ with ψ ′

end if

end while

end function
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and instantiates a hierarchical strategy as a neural program,

where the underlying program is the basic operation or cor-

responding basic skills that can be performed in the environ-

ment. This hierarchical decomposition facilitates information

hiding and modularity because the underlying module can

only access the corresponding subtask descriptions related to

its function, which prevents the model from learning spurious

reliance on training data for better reusability. At the same

time, NTP solves the problem of task generalization. As for

the basic task at the bottom level, One-Shot learning (One-

Shot learning) mode [17] can be used to train new skills and

optimize existing ones by incremental learning parameters

obtained from human-computer collaborative learning. This

section will be described in detail below.

For tasks that are difficult for the robot to understand or

tasks that the robot has never met, that is, tasks that cannot

be resolved by NTP, the analysis can be assisted by human

intervention. For NTP, humans only need to provide task

description information in the input of task description inter-

preter or split and combine the targets so that NTP can split

the corresponding skills.

V. SKILL TEACHING METHODS FOR HUMAN-COMPUTER

COLLABORATION

In terms of teaching and learning, in many robot-learning

methods, a video would be provided to the robot to demon-

strate how to do a certain task, which illustrates the trajectory

and actions of the task. The combination of the interpreta-

tion of the task demonstration by the human through natural

interaction and the simulation of the robot can speed up the

learning process. Programming by demonstration (PbD) can

intuitively teaches robots sophisticated motor skills without

the need for an amount of technical knowledge to program

the robot [18]–[20]. However, there is a problem with this

approach that any minor changes to the task require further

demonstrations. Inspired by neurobiology, robot motion is

divided into discrete motion states or ‘‘motion primitives,’’

which have significant advantages in inferring logical struc-

tures and inducing task execution procedures. The common

method is to split the trajectory into a series of key points.

If enough information locations are selected, interpolation

between key point sequences can produce movements close

enough to the original demonstration. However, the disadvan-

tage is to ignore important information about changes along

the trajectory, or a fixed path between the key points, or add

complex point-to-point methods to consider modifications to

the path. This paper proposes a new demonstration learning

method (Learn from Demonstrations, LfD), which fills these

shortcomings by avoiding the definition of state machines

or reward functions. The goal of LfD is to learn strategies

that can extend beyond the provided examples and be robust

to disturbances. Use meta-learning methods to help robots

quickly learn new tasks from gradient-based strategy updates

[14]. Essentially, it is to learn strategy parameters. A new skill

can be directly learned given a single demonstration, allowing

the robot to efficiently learn new skills without any other

mechanism. The process is performed in a low dimensional

subspace where the trajectory of the robot can be effectively

controlled. The goal of this project is to learn a strategy that

can quickly adapt to new skills. Aiming to eliminate the need

for a large amount of task-specific demonstration data, the

scheme will reuse demonstration data from other skills to

achieve efficient learning of new skills. Through cross-skill

adaptation training, meta-learning effectively treats the entire

skill as data points. The amount of data available for each

individual skill is relatively small. In the context of robotics,

this is the universal robot we want to develop—the ability

to provide a small amount of supervision for every new skill

a robot should perform. Consider a strategy π that maps

observations o to predictive actions â. DuringMeta Learning,

the strategy was trained to accommodate numerous tasks.

Formally, we set each simulation skill as:

T i=
{

τ={o1, a1, . . . , oT , aT} ∼ π
∗
i ,L

(

a1:T , â1:T
)

,T
}

(5)

which is composed of demo data τ generated by the human

expert strategy π∗i and a loss function L for simulation. The

feedback is provided by the loss function as below.

L
(

a1, . . . , aT , â1, . . . , âT
)

→ R (6)

We use a mean squared error loss as a function of policy

parameters plc as follows:

LTi
(

fplc
)

=
∑

τ (j)∼Ti

∑

t

||fplc

(

o
(j)
t

)

− a
(j)
t ||

2
2 (7)

We detail the procedure in Algorithm 2.

Due to imperfections in the actions provided in the demon-

stration video, we further use a neural network to let the robot

learn directly from the video frames as shown in Fig. 2., for

Algorithm 2 Meta-Imitation Learning

Require: p(T ): distribution over tasks

Require: α, β: step size hyper parameters

randomly initialize ε

while not done do

Sample batch of tasks Ti ∼ p(T )

for all Ti do

Sample demonstration τ = {o1, a1, . . . oT , aT } from Ti
Evaluate ∇εLTi (fε) using τ and LTi in Eq. (2)

Compute adapted parameters with gradient descent:

ε′i = ε − α∇εLTi (fε)

Sample demonstration τ ′i =
{

o′1, a
′
1, . . . o

′
T , a
′
T

}

from Ti for the meta-update

end for

Update ε← ε − β∇ε
∑

Ti∼p(T )
LTi (fε′i ) using

each τ ′i and LTi in Equation (7)

end while

return parameters ε that can be quickly adapted to new

tasks through imitation.
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FIGURE 2. Diagrams of meta-imitation learning architecture.

which the loss function is defined as follows:

L∗Ti

(

fplc
)

=
∑

τ (j)∼Ti

∑

t

||Wy
(j)
t + b− a

(j)
t ||

2
2 (8)

where y
(j)
t is the set of post-synaptic activations of the last

hidden layer, W and b is the weight matrix and bias of the

final layer. With gradient descent and the meta-learned loss

function L∗Ti , we can get the adapted parameter θ ′i of each task

Ti. So, we can get meta-objective as follows:

min
θ,W ,b

∑

Ti∼p(T )

LTi (fθ ′i
) =

∑

Ti∼p(T )

LTi
(

fθ − α∇θL
∗
Ti
(fθ )

)

(9)

In general, some current image classification networks,

such as VGG, can be used to extract 2D position points.

The robot information and position information are fused

by the full connection layer and the action feature vector

is output.

VI. INCREMENTAL LEARNING

With the development of artificial intelligence and machine

learning, people have developed many machine learning

algorithms. Most of these algorithms are batch learning

(Batch Learning) modes. That is, all training samples can be

obtained once before training. After learning these samples,

the learning process is terminated and no new knowledge

is learned. However, in practical applications, the training

samples of robots are not usually available all at once, but are

gradually obtained with time, and the information reflected

by the samples may also change with time. The cloud robot

based collaborative learning system is an agent that can con-

tinuously learn new knowledge from new samples and can

save most of the knowledge that has been learned before.

Incremental learning is very similar to human’s own learn-

ing patterns. Because people learn and receive new things

every day while they are growing up, learning is gradually

carried out. Moreover, human beings generally cannot forget

the knowledge they have learned. Therefore, the incremental

learning method is very suitable for the shared collaborative

learning model of cloud robots. With the continuous increase

in data size, the demand for time and space will increase

rapidly, which will eventually lead to the speed of learning

not being able to keep up with the speed of data update. If the

new sample arrives the robots need to learn all data again,

it will consume a lot of time and space, so the batch learning

algorithm cannot meet this requirement. Only the incremental

learning algorithm can gradually update the knowledge, and

can correct and strengthen the previous knowledge, so that

the updated knowledge can adapt to the newly arrived data

without having to relearn all data. The incremental learning

algorithm should simultaneously satisfy the below charac-

teristics: 1) New knowledge can be learned from new data;

2) Data that has been previously processed does not require

processing repeatedly; 3) Only one training observation sam-

ple is seen and learned at a time;4) Learning new knowledge

while preserving most of the previously learned knowledge;

5) Once learning is completed, training observations samples

are discarded; 6) The learning system does not have prior

knowledge of the entire training sample. The importance of

incremental algorithms is reflected in the following aspects:

In an actual database, the amount of data tends to increase

gradually. Therefore, when dealing with new data, the learn-

ing method should be able to make some changes to the

trained system to learn the knowledge contained in the new

data; The time to modify a trained system is usually lower

than the cost of retraining a system. Besides, cloud resources

can promote incremental learning [21].

Assume the old skills network have n groups feature map-

ping nodes and m groups broad enhancement nodes. The new

learned skill feature mapping group nodes can be denoted as:

Zn+1 = φ(XWn+1 + βn+1) (10)

Its enhancement nodes are as follows:

Hm = [ξ (Zn+1W1 + β1), . . . , ξ (Zn+1Wm + βm)] (11)

where Wi and βexi are randomly generated. Assume A is a

n×m pattern matrix of the cloud robots knowledge network

and Amn+1 = [Amn |Zn+1|Hm] is the upgrade of new mapped

features and the corresponding enhancement nodes. The rel-

atively new pseudo-inverse matrix is as follows:

(Amn+1)
+ =

[

(Amn )
+ −MBT

BT

]

(12)

BT =

{

(C)+ if C 6= 0

(1+MTM )−1MT (Amn )
+ if C = 0

(13)

where M = (Amn )
+[Zn+1|Hm], C = [Zn+1|Hm]− A

m
nM

Then, the upgraded weights are:

Wm
n+1 =

[

Wm
n −MB

TY

BTY

]

(14)

Now we can use (Amn+1)
+ and Wm

n+1 update the network,

the above is the steps of incremental learning to add new skill

into network.

This paper introduces a mature incremental learning

method for multi-machine collaborative learning, such as the

network structure of Broad Learning System (BLS) proposed

by Prof. Junlong Chen [22]. The BLS can be extended hor-

izontally, using the characteristics of the input mapping as

the network’s feature node, and then enhanced to randomly

generate weights (enhanced nodes), and connect the mapping

features and enhancement nodes to the output directly. The
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corresponding output coefficients can be obtained by fast

Pseudo pseudo-inverse. In this way, with the newly added

neural nodes, including the newly added feature nodes, BLS

does not need to start from scratch. It only needs to adjust

the weights associated with the newly added nodes, and it can

also perform incremental learning on the newly added inputs.

Such a network is very suitable for multi-robot sharing col-

laborative learning. The above section has already introduced

that the robot can learn through human teaching and can also

learn through the experience knowledge of other robots. This

allow the robot to think like a human being would and learn

to execute new tasks by itself without being any specific

programming. Incremental learning methods can adapt to

constantly learning new information and can use visual, audi-

tory, and tactile as inputs of data. Facing new tasks, the robot

will automatically look for previous experiences, and share

knowledge and communicate with other robots through the

internet.

Assume A is a n × m pattern matrix of the cloud robots

knowledge neural network which has n group of feature

mapping nodes and m group of enhancement nodes, W are

connecting weights. X is a new knowledge learned by a

robot, and Znx = [φ
(

XWe1 + βe1
)

, . . . , φ
(

XWen + βen
)

] is

the incremental features updated by X . The new node can be

described as:

Ax =[φ
(

XWe1 + βe1
)

, . . . , φ
(

XWen + βen
)

|

ξx
(

ZnxWh1 + βh1
)

, . . . , ξx
(

ZnxWhm + βhm
)

] (15)

whereWei ,Whj and βei , βhj are random variation origin from

the neural network, and ξx is a unique random mappings.

Then Amn is updated as below:

xAmn =

[

Amn
ATx

]

(16)

The new knowledge updating algorithm is shown in

Algorithm 3.

As a result, the pseudo-inverse of xAmn can be deduced as

follows:

(xAmn )
+ = [(Amn )

+ − BDT |B] (17)

where DT = ATx A
m+
n .

The relatively upgraded pseudoinverse matrix (Am+1)+ is

deduced as follows:

(Am+1)+ =

[

(Am)+ − DBT

BT

]

(18)

Meanwhile, the new weights are:

xWm
n = Wm

n + (Y Ta − A
T
xW

m
n )B (19)

where Ya are the labels of X .

VII. COLLABORATIVE LEARNING FRAME FOR CLOUD

ROBOTS BASED ON INCREMENTAL LEARNING

Fig. 3 shows the cloud robot collaborative learning method

proposed in this paper. This way of accessing information,

just like accessing resources on the Internet, has obvious

Algorithm 3 Collaborative Incremental Learning

Require: X a new knowledge learned by a robot

i = 0;

while i <= n do

Random Wei, βei;

Calculate Zi = [φ(XWei + βei)];

i++;

end while

Set the feature mapping group Zn = [Z1, . . . .,Zn];

for j = 1; j <= m do

Random Whj, βhj;

Hj = [ξ (ZnWhj + βhj)];

end

Set the enhancement nodes group Hm = [H1, . . . ,Hm];

Calculate A+ = lim
λ→0

(λI + AAT )−1AT ;

while The error of model is not small enough do

if p enhancement nodes are added then

Random Whm+1 , βhm+1;

Calculate Hm+1 = [ξ (ZnWhm+1 + βhm+1 )];

Update Am+1n ;

Set D = (Am)+ξ (ZnWhm+1 + βhm+1 );

update (Am+1)+ with Eq. (8)

Set C = ξ (ZnWhm+1 + βhm+1 )− A
mD;

if C 6= 0 then

BT = (C)+;

else

BT = (1+ DTD)−1BT (Am)+;

end

m++;

else

Set new knowledge as X;

update Ax ,
x Amn by Eq. (16),(17);

update (xAmn )
+ and (xWm

n )
+ by Eq. (18),(19);

end

end while

returnW ;

advantage. For tasks that robots do not understand, robots

can search for ready-made solutions from the cloud resources

(same task solution methods). When a robot starts acting,

we will assist in adjusting the actions it chooses. In this way,

the results of behaviors will sometimes be better than the

execution results of experiences, and sometimes it will be

worse because of human’s incorrect guidance. This allows

every robot to explore different ways of handling a certain

task. The actions taken by the robots, their behavior and the

records of the result are ultimately sent to the cloud robot.

The server collects information about all robots and uses

them cyclically (incremental learning) to improve the neural

networks used to evaluate different states and actions.

This method mainly applies the current cutting-edge tech-

nologies including cloud storage, cloud computing, and big

data processing. In addition to the function of sharing knowl-

edge and experience which is analogous to what other most

current cloud robot platforms have, another major function
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FIGURE 3. Collaborative learning framework based on cloud robots.

of the cloud robot collaborative learning platform is collab-

orative learning. Fig. 3 shows a diagram of collaborative

learning model based on a cloud robot platform. Within this

framework, the robot does not need to store any empirical

knowledge or skill experiences locally. Instead, it acquires

experiences or verified knowledge from the cloud robot.

Cloud robots store skill knowledge learned by all robots and

are open to all robots. When dealing with tasks, terminal

robots only need to obtain relevant knowledge and experience

through the Internet platform. When they cannot cope with

tasks, they can learn by means of human’s collaboration. The

new skills and knowledge obtained by the terminal robot

learning or the result data obtained by performing tasks and

so on can be used to train the copied version neural network

obtained from the cloud robot platform. The updated network

parameters are used to update the network parameters of the

cloud robot platform. Therefore, the newly acquired experi-

ence knowledge can be transmitted synchronously to other

robots to realize the function of mutual learning and improv-

ing together.

We put forward the collaborative learning frame for cloud

robots based on incremental learning as shown in Fig. 4. First

when the robot is confronted with a new task, the robot splits

the task by using the NTPmethod, which has been introduced

in III. This recursively divides large tasks into simple sub-

tasks, which are suitable for robot demonstration learning.

We first define a set of subtasks T, which can be combined

into all the tasks we need. The image data collected by

Kinect2 is used as the current environmental state. For each

subtask, we delegate a neural program to perform tasks. The

neural program performs end-to-end training with the task

decomposition mechanism. We define three key components

of NTP: task description interpreter, task description encoder,

FIGURE 4. Collaborative learning frame for cloud robots based on
incremental learning.

and core network. The task description encoder is a BP neural

network. In the core network, CNN is used to encode the state

of the environment, and RNN is used to encode the program

into vector features, and these two features are concatenated

with the task description vector as the input of the BP neural

network.

When a task that cannot be split is encountered, a human

expert can intervene, and once the split is done, a series of

skill sequence combinations are obtained, and then the central

brain, namely the cloud robot, is used to search for related

skills. The skills that the cloud robot had mastered, if any,

are used to perform the task. For the skills that are dimmed

difficult for the robot to master, a human expert input is pro-

vided and the robot can then directly learn from imitation and

combine with the above-mentioned already acquired skills to

complete the task. In this imitation learning setup, a new skill

that was extracted from a generated demonstration by sample

batch of tasks. During the meta-training, the strategy is to

use a demo of the expert about sample batch of tasks to train

and then test in a new demo to determine its training and test

errors based on the loss. Then, improve the strategy by taking

the changed test errors with the new demo of parameters into

account. Therefore, the test error of sample demonstrations

is a training error in the meta-learning process. At the end

of meta-training, new skills are extracted from task set and

meta-performance is measured by a demonstrated strategic

performance. The result of meta-training is a strategy that can
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adapt to new skills through a single demonstration. There-

fore, during the meta-test, a new skill will be sampled and a

demonstration of the skill will be provided, and themodel will

be updated to obtain the strategy of the skill. During meta-

testing, a new skill may involve new goals or new operations

or previously unseen objects.

Because each robot has a different environment and its own

individual differences and other reasons, each skill performs

differently on each robot. For the execution result after the

completion of the task, humans can give a certain evaluation

according to the execution situation, and when the robot

shows a deviation or error, it can be timely corrected by

humans. Humans utilize the execution result data to retrain

the skill model. Then when robots in different circumstances

uploadwhat they learned, there is always something same and

something different. In this case, we use incremental learning

to improve the learning efficiency of robots. We only keep

the different part and update it to the cloud robot platform to

optimize the mastered skills and increased the skill numbers

in the cloud database.

VIII. EXPERIMENT

A. ENVIRONMENT OF EXPERIMENT

To verify the feasibility of the proposed method, we used

Robot-A (GRB3016), Robot-B (UR3) and Robot-C (KUKA)

as our test platforms. Robot-A, Robot-B and Robot-C had

all been connected to the Cloud. We use prior knowledge

to define a set of valid subtasks T, which include actions

such as move, insert, remove, etc. The image data collected

by Kinect2 is used as the current environmental state data.

In addition, when there is an indivisible task, the experi-

menters on the side will step in and mark it manually. Before

the experiment, we will use the end-to-end method to train

the imitation learning network. The input of the imitation

learning network is some videos of the same task. In the

experiments, PbD trials were first carried out on Robot-A

and the learned trajectories were stored for the purpose of

teaching the remaining robots. Fig. 5 shows the environments

for our experiments. We put a steel plate on the experimen-

tal platform that was in front of the robot. And the opera-

tor stood beside the experimental platform to demonstrate

the correct trajectory to the robot by gestures as shown in

Fig. 7 experiment site 1. Our robots have a shaft and a depth

camera attached to the end of arm. The camera can catch the

image of the steel plate and then tell the robot how deep it

should be.

FIGURE 5. Environments for experiment.

FIGURE 6. Steel plate arrangement and projection. (a) The steel plate
parallel to the table. (b) A steel plate with an edge contacting the
platform forming an angle of θ degrees. (c) Steel plates with long sides
forming an angle of β degrees with the ground and short sides forming
an angle of α degrees with the ground. (d) The width of the slot. (e) The
width of the slot. (f) The width of the slot.

FIGURE 7. Experiment without incremental learning.

FIGURE 8. Experiment with incremental learning.

Below two experiments are presented. In each experiment,

we placed the steel plate parallel to the table and demon-

strated the trajectory to Robot-A [see Fig. 6(a)]. However, for

Robot-B, we made only one edge of the steel plate contact

with the platform to form a θ degree angle. As for Robot-

C we made only the corner of the steel plate contact with

the platform. In this case, the longer edge of the steel plate

and the platform formed a β degree angle while the shorter

one and the platform formed a α degree angle as shown

in Fig. 6(b)-(c).

As it is known to us all, the projection of an object depends

on the placement of the object. Therefore, the projection and

the trajectory were the same for Robot-A. The width of the

slot was greater than the diameter of the shaft at any position

as shown in Fig. 6(d). The black line was the projection of the

trajectory and the red point of was the projection of the shaft at

the end of arm. For Robot-B, things changed. Because of the
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FIGURE 9. Time and Length of trajectory of Peg-into-hole and Trajectory tracking. (a) The trend of the time and the length of trajectory when robots
pegged their shaft into the hole. (b) The trend of trajectory tracking. (c) The trend of the time and the length of trajectory when robots pegged their shaft
into the hole. (d) The trend of trajectory tracking.

angle, the shape of the projection changed so that the width

of the projection was less than that of the trajectory at some

positions. Maybe it would become less than the diameter of

the shaft as shown in Fig. 6(e). Because the placement of the

steel plate became more different for Robot-C, the projection

deformed more seriously. It meant that there might be more

space where the diameter of the shaft was less than the width

of the projection of the trajectory as shown in Fig. 6(f). In the

similar circumstance, we let robots peg the shaft into the hole

to see results.

B. RESULT ANALYSIS

For the first time, the operator demonstrated the correct

trajectory to Robot-A. Robot-A learned the skills by track

tracking and then it shared skills with Robot-B and Robot-C

through the cloud. And then the shaft succeeded to go along

the track without touching the steel plate.

But when Robot-B learned the skill, as we mentioned

above we changed the layout of the steel plate and we didn’t

revise the solution. Thus similarly to Robot-A, Robot-B

inserted the shaft vertically into the steel plate. Thus Robot-B

just likewhat Robot-A did inserted the shaft vertically into the

steel plate. As a result, the shaft touched the steel plate and

Robot-B had to stop working to prevent damage. Robot-C

was the same as Robot-B failing to find the solution that is

perfect to the problem. Because it didn’t learn the correct

trajectory from the failure of Robot-B as shown in Fig. 7.

But it’s not absolute. We found the angle had a critical value.

If the angle was greater than the critical value robots is sure

to fail because when they inserted the shaft vertically into

the steel plate, the width was too small for the shaft to pass.

However, if the angle is less than the critical value, because

there was enough space for the shaft to pass, robots was able

to accomplish the task.

In the second experiment, the operator did something dif-

ferent, showing Robot-B how to find the correct solution

when the placement of the steel plate had been changed. Then

Robot-B used incremental learning technology and uploaded

the skills it learned to the cloud for other robots(Robot-C)

to refer. In this case, when Robot-C tried to solve the prob-

lem, it didn’t insert the shaft vertically into the steel plate

directly. Firstly, it found the placement of the steel plate had

changed through an image returned by the camera. Then it

adjusted the arm making the shaft perpendicular to the steel

TABLE 1. The feasibility of trajectory tracking with different methods
when the angle changes.

TABLE 2. The feasibility of peg-into-hole with different methods when
the angle changes.

plate. Finally, Robot-C accomplished the task successfully as

shown in Fig. 8.

The result is shown in TABLE 1. When the angle θ was

less than 27 degrees, the three methods performed well when

they tried to solve the trajectory tracking problem. And the

situation was the samewhen the angles α and β were less than

35 and 24 degrees, respectively. But when the angle became

greater, we found only our method with incremental learning

worked out while the other two methods couldn’t accomplish

the task. This is because, in these cases, the motion planning

of the robotic arm can change significantly. Models with-

out incremental learning cannot compare well with previous

scenarios and learn such changes, while models using incre-

mental learning can update and optimize neural networks that

evaluate different states and actions and upload these changes

to the cloud robot.

And unsurprisingly we saw the same case when robots

pegged the shaft into the hole in TABLE 2. The first exper-

iment we simulated the traditional batch learning model.

Once learned the robots won’t continue to learn to revise or

optimize the solution. They only repeat what they learned

and the learning process is one-way as shown in Fig. 7. So,

once the circumstance change, robots will fail to complete the

work. And then we will have to make one robot learn how to

work in the new circumstance and upload what it learned to

the cloud. It’s too troublesome.
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TABLE 3. The initial study time and the update learning time of robot-a
with different methods in two experiments.

We applied incremental learning in the second experiment.

The learning process is two-way as shown in Fig. 8. In this

case, every robot can upload what they learned in the different

circumstances to revise and optimize the solution to a kind

of problems instead of only one problem. With the growth

of the number of trails, the skills mastered became more

and more and were optimized by incremental learning. And

as shown in Fig. 8, it led that the time used to learn and

the length of trajectory both converged to optimal solution.

Fig. 9(a) shows the trend of the time and the length of trajec-

tory when robots pegged their shaft into the hole. Fig. 9(b)

shows the trend of trajectory tracking. And as what we can

see, they all become less in the process of experiment. End

results are just as shown in TABLE 3. Learning from scratch

requires much more time than just updating the network.

The result proved that the model we proposed was really

make robot more intelligent and they learned from each other.

Also, the learning and working efficiency of cloud robot with

incremental learning is higher than that of traditional batch

learning through our experiment. Whenever a new task is

processed, it is not necessary to rebuild all the knowledge

bases, but only to update the changes caused by the new tasks

on the basis of the original knowledge bases. Incremental

learning makes full use of historical training results in the

current sample training, thereby significantly reducing the

time for subsequent training.

We proved that the learning and working efficiency of

cloud robot with incremental learning is higher than that of

traditional batch learning through our experiment.

IX. CONCLUSION

This paper presents an effective collaborative learning

method that incorporates Incremental Learning and Meta

Learning to train cloud robots. The knowledge is learned by

themselves rather than being added and edited by human.

Furthermore, the knowledge learned by a robot can be shared

with other robots once uploaded to the cloud.

Our experiment results show that the proposed method

using Incremental learning is more efficient than the with-

out, proving that incremental learning and Meta Learning

decrease the amount of time necessary to relearn a skill.

It makes it not necessary for robots to relearn from the begin-

ning. Also, our results proved that implementing our method

is not only feasible but also valid.

There are still some shortcomings in the current

research. At present, although we increase the learning and

working efficiency of cloud robot by using Incremental

Learning and Meta Learning, we only implement some

simple functions. Whether our system is intelligent enough

to accomplish a lot of complicated tasks remains to be

confirmed.

REFERENCES

[1] J. J. Kuffner, ‘‘Cloud-enabled robots,’’ in Proc. IEEE-RAS Int. Conf.

Humanoid Robot., Nashville, TN, USA, Nov. 2010, pp. 176–181.

[2] E. Guizzo, ‘‘Cloud robotics: Connected to the cloud, robots get smarter,’’

IEEE Spectr., Technol., Eng., Sci. News, USA, Tech. Rep., 2011.

[Online]. Available: https://spectrum.ieee.org/automaton/robotics/robotics-

software/cloud-robotics

[3] K. Pereida, M. K. Helwa, and A. P. Schoellig, ‘‘Data-efficient multirobot,

multitask transfer learning for trajectory tracking,’’ IEEE Robot. Autom.

Lett., vol. 3, no. 2, pp. 1260–1267, Apr. 2018.

[4] M. Zambelli and Y. Demiris, ‘‘Online multimodal ensemble learning using

self-learned sensorimotor representations,’’ IEEE Trans. Cogn. Develop.

Syst., vol. 9, no. 2, pp. 113–126, Jun. 2017.

[5] L. Kong, X. Chen, X. Liu, Q. Xiang, Y. Gao, N. B. Baruch, and G. Chen,

‘‘AdaSharing: Adaptive data sharing in collaborative robots,’’ IEEE Trans.

Ind. Electron., vol. 64, no. 12, pp. 9569–9579, Dec. 2017.

[6] T.-H.-S. Li, C.-Y. Liu, P.-H. Kuo, Y.-H. Chen, C.-H. Hou, H.-Y. Wu,

C.-L. Lee, Y.-B. Lin, W.-H. Yen, and C.-Y. Hsieh, ‘‘Reciprocal learning

for robot peers,’’ IEEE Access, vol. 5, pp. 6198–6211, 2016.

[7] H. He, T.M.Mcginnity, S. Coleman, and B. Gardiner, ‘‘Linguistic decision

making for robot route learning,’’ IEEE Trans. Neural Netw. Learn.Syst.,

vol. 25, no. 1, pp. 203–215, Jan. 2014.

[8] S. Cho and S. Jo, ‘‘Incremental online learning of robot behaviors from

selected multiple kinesthetic teaching trials,’’ IEEE Trans. Syst., Man,

Cybern. Syst., vol. 43, no. 3, pp. 730–740, May 2013.

[9] L. Wang, M. Liu, and M. Q.-H. Meng, ‘‘Real-time multisensor data

retrieval for cloud robotic systems,’’ IEEE Trans. Autom. Sci. Eng., vol. 12,

no. 2, pp. 507–518, Apr. 2015.

[10] J. Lones, M. Lewis, and L. Canamero, ‘‘A hormone-driven epigenetic

mechanism for adaptation in autonomous robots,’’ IEEE Trans. Cogn.

Devel. Syst., vol. 10, no. 2, pp. 445–454, Jun. 2018.

[11] A. J. Glover and G. F.Wyeth, ‘‘Toward lifelong affordance learning using a

distributed Markov model,’’ IEEE Trans. Cogn. Devel. Syst., vol. 10, no. 1,

pp. 44–55, Mar. 2018.

[12] Roboearth.ethz.ch. (2010). What is RoboEarth? [Online]. Available:

http://roboearth.ethz.ch/

[13] L. Busoniu, R. Babuska, and B. De Schutter, ‘‘A comprehensive survey of

multiagent reinforcement learning,’’ IEEE Trans. Syst., Man, Cybern. C,

Appl. Rev., vol. 38, no. 2, pp. 156–172, Mar. 2008.

[14] C. Finn, T. Yu, and T. Zhang, ‘‘One-shot visual imitation learning via meta-

learning,’’ in Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 1087–1098.

[15] T. Yu, C. Finn, S. Dasari, A. Xie, T. Zhang, P. Abbeel, and

S. Levine, ‘‘One-shot imitation from observing humans via domain-

adaptive meta-learning,’’ Feb. 2018, arXiv:1802.01557. [Online]. Avail-

able: https://arxiv.org/abs/1802.01557

[16] A. M. Ghalamzan E., C. Paxton, G. D. Hager, and L. Bascetta, ‘‘An incre-

mental approach to learning generalizable robot tasks from human demon-

stration,’’ in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2015,

pp. 5616–5621.

[17] M. Chen and J. Shang, ‘‘Recursive spectral meta-learner for online com-

bining different fault classifiers,’’ IEEE Trans. Autom. Control., vol. 63,

no. 2, pp. 586–593, Feb. 2018.

[18] F. Stulp and O. Sigaud, ‘‘Robot skill learning: From reinforcement learning

to evolution strategies,’’ Paladyn. J. Behav. Robot., vol. 4, no. 1, pp. 49–61,

2013.

[19] S. Calinon and A. Billard, ‘‘What is the Teacher’s role in robot program-

ming by demonstration?—Toward benchmarks for improved learning,’’

Proc. Psychol. Benchmarks Hum.-Robot Interact., vol. 8, pp. 441–464,

Jan. 2007.

[20] A. Billard, S. Calinon, R. Dillmann, and S. Schaal, ‘‘Robot programming

by demonstration,’’ in Springer Handbook of Robotics. Berlin, Germany:

Springer-Verlag, 2008, pp. 1371–1394.

[21] M. Ciocarlie, C. Pantofaru, K. Hsiao, G. Bradski, P. Brook, and

E. Dreyfuss, ‘‘A side of data with my robot,’’ IEEE Robot. Automat. Mag.,

vol. 18, no. 2, pp. 44–57, Jun. 2011.

VOLUME 8, 2020 20847



G. Du et al.: New Cloud Robots Training Method Using Cooperative Learning

[22] C. L. P. Chen and Z. Liu, ‘‘Broad learning system:An effective and efficient

incremental learning system without the need for deep architecture,’’ IEEE

Trans. Neural Netw. Learn. Syst., vol. 29, no. 1, pp. 10–24, Jan. 2018.

[23] K.-T. Song, S.-H. Song, and H.-S. Liu, ‘‘Trajectory modification of a cloud

learning robot,’’ in Proc. Int. Autom. Control Conf. (CACS), Nov. 2017,

pp. 1–6.

GUANGLONG DU received the Ph.D. degree in

computer application technology from the South

China University of Technology, Guangzhou,

China, in 2013. He is currently an Associate

Professor with the Computer Science and Engi-

neering School, South China University of Tech-

nology. His research interests include intelligent

robotics, human–computer interaction, artificial

intelligence, and machine vision.

ZHIYAO WANG received the B.S. degree in soft-

ware engineering from the Wuhan University of

Technology, Wuhan, China, in 2018. He is cur-

rently pursuing the master’s degree in computer

science and technology with the School of Com-

puter Science and Engineering, South China Uni-

versity of Technology, Guangzhou, China. His

research interests include physiological electrical

signal analysis and human–robot interaction.

ZHELIN LI received the Ph.D. degree in computer

application technology from Design, South China

University of Technology, Guangzhou Higher

Education Mega Centre, Panyu, Guangzhou. He is

currently the Vice Director of the Guangdong

Human–Machine Interaction Design Engineering

Research Center. His research interests concen-

trate on the human factor and ergonomics, partic-

ularly in terms of the man–machine collaboration

and virtual digital human behavior.

20848 VOLUME 8, 2020


	INTRODUCTION
	RELATED WORK
	OVERVIEW
	TASK UNDERSTANDING METHOD BASED ON NEURAL TASK PROGRAMMING
	SKILL TEACHING METHODS FOR HUMAN-COMPUTER COLLABORATION
	INCREMENTAL LEARNING
	COLLABORATIVE LEARNING FRAME FOR CLOUD ROBOTS BASED ON INCREMENTAL LEARNING
	EXPERIMENT
	ENVIRONMENT OF EXPERIMENT
	RESULT ANALYSIS

	CONCLUSION
	REFERENCES
	Biographies
	GUANGLONG DU
	ZHIYAO WANG
	ZHELIN LI


