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Abstract. We extend our previous work on coherent paired states associated with the Lie 
group SU(1,  1).  Whereas the earlier states were defined with respect to a single type of 
canonical boson or (linear) quantum harmonic oscillator, the new states are defined in 
terms of two distinct types of bosons or oscillators. The new coherent states may again, 
on the one hand, be viewed as ordinary (Glauber) coherent states in the two-boson Hilbert 
space spanned by arbitrary numbers of two distinct Bogoliubov quasiparticles associated 
with the original bosons via a generalised Bogloiubov transformation. Alternatively, 
expressed wholly in terms of the original bosons these new coherent states are reached 
from the ordinary coherent states via a unitary (pairing) transformation which is shown 
to be associated with the entire so-called discrete series of representations of the group 
SU(1,  1).  As an important illustration of the use of these states and transformations, we 
study in detail a rather general class of quantum Lagrangians which includes the damped 
linear harmonic oscillator. We thereby illustrate their possible usefulness in applications 
to quantum many-body or field-theoretic processes involving fluctuation-dissipation 
phenomena in general. 

1. Introduction 

The existence of self-bound clusters of particles within a many-body system of like 
particles plays a fundamental role in condensed matter theory. As is well known, such 
clusters are intimately related to the existence of a lower (non-perturbative) vacuum 
state for the system and hence to the possibility of a new macroscopic phase. Cooper 
pairs and the associated superconducting phase provide a typical example, 

In a recent paper (Bishop and Vourdas 1986, hereafter referred to as I )  we considered 
the problem of pairing within a many-body system of identical bosons. In terms of a 
set of boson creation and annihilation operators ai  and a, respectively, we made initial 
connection with the idea of correlated pairs by focusing attention on the quadratic 
operators a*,  ai’ and uta.  In particular we noted how these operators could be arranged 
so as to close under commutation into the SU(1, 1) algebra. We then also considered 
a very particular unitary representation of the corresponding Lie group which is realised 
with the operators U2 = exp(zaf’ - z*a’) exp(ihata).  In this way we were led very 
naturally to the Bogoliubov canonical transformation, U z a U i  = ~u + vat b. The new 
operators b and b’ respectively annihilate and create the Bogoliubov quasiparticles, 
The presumption is that in the phase where pairing physically occurs, the so-called 
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perturbative vacuum IO), which is the vacuum for a-type bosons (a (0)  = 0) is not the 
real one. Instead there exists a lower vacuum, lo),,, which corresponds to that for 
b-type bosons. This is defined by the relation blO)b = 0, or equivalently as lo), = U210). 

Now, although the algebra SU(1 , l )  arose as outlined above from a general dis- 
cussion of pairing, it is important to realise that the pairing operators d o  form only a 
special representation of the algebra. In other words, the Casimir operator for the 
algebra takes only a particular value. It is natural, therefore, now to proceed by 
exploring other representations of the SU( 1 , l )  group, and in this paper we accordingly 
investigate the so-called discrete series of representations. We show that, whereas our 
previous representation could be associated with quantum states which could be realised 
by the ordinary harmonic oscillator (for which the operators a and at  may be thought 
of as the usual ladder operators), this is no longer the case for the discrete series of 
representations. Instead, we show how they may very profitably be associated with 
the damped harmonic oscillator, which may in turn itself be described with the help 
of not one but two commuting bosonic operators a, and a,. We show how to construct 
for this case the analogue V, of the previous unitary operator U,, and show how it 
correspondingly leads to a canonical transformation between the original operators a,  
and a, and two new operators b,  and b, .  We refer to this transformation as a generalised 
Bogoliubov transformation. 

Again, the operator V, is used to construct new coherent states, which turn out 
once more to be ordinary coherent states with respect to the transformed operators b ,  
and b, ,  but which have extremely interesting properties in connection with the original 
operators a, and a,. Interestingly, these states have also very recently been introduced 
by Caves and Schumaker (1985) into quantum electronics as an  extension of the older 
so-called squeezed states (Yuen 1976, Walls 1983). Within the context of quantum 
electronics, it is the properties of these states that are related with the uncertainty 
principle that are of most interest, and hence which have been most studied. By 
contrast, we study them here in connection with the generalised Bogoliubov transforma- 
tion and, more widely, show how they may very profitably be employed in the context 
of quantum many-body theory. For example, we show how the generalised Bogoliubov 
transformation may be used to study Hamiltonians of the general form 

H = w , a i a ,  + & J 2 a ~ a 2 + K U ~ U i + K * U l U 2  

where a ,  and a, are two independent (commuting) boson destruction operators, which 
obey the usual canonical commutation relations. Just such Hamiltonians have been 
studied, for example, in the context of quantum optics by Mollow and  Glauber (1967) 
as a model suitable for studying the phenomenon of parametric amplification. In this 
case the transformation maps the above Hamiltonian either into diagonal form for 
two free modes 

H I  = E,brb, +&,bib2 

H 2 =  &(b:b ,  - b ~ b , ) + i T ( b : b ~ - b , b , )  

or into the Hamiltonian of the single-mode damped harmonic oscillator, 

where in each case b,  and b2 are another pair of independent canonical boson 
operators. Whether H is mapped onto H I  or H 2  depends on whether the parameter 
A = : (U ,  + W I ) *  - 1 ~ 1 '  is positive or negative respectively. 

In the present paper we are more interested in the latter case of the damped 
harmonic oscillator, for which the Hamiltonian H 2  has been previously studied in the 
literature (Feshbach and  Tikochinsky 1977, Ghosh and Hasse 1981). Rather more 
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generally, there are many physical phenomena which may be associated with models 
wherein an oscillator loses its energy within some many-body medium which also gives 
rise to it. In  such descriptions the overall energy is, of course, conserved since just as 
some oscillators are damped, so others will be correspondingly amplified. A typical 
classical counterpart of the quantum systems that we have in mind is a system of many 
pendula coupled together by springs. Within quantum optics, these fluctuation-dissipa- 
tion phenomena have mainly been studied via the Langevin equation approach 
(Senitzky 1960, 1961, Lax 1966a, b). The basic process is that the damping and 
amplification cause a splitting of each otherwise unperturbed energy level (0) into 
two neighbouring ones (ai E ) .  The mathematical consequence of this, namely that 
the associated representations that we now consider in this paper can only be studied 
with the use of two ‘dual’ bosonic operators, is then easily intuited. 

In the present paper we explicitly construct the vacuum, other coherent states and, 
more generally, other states which are particularly appropriate for such problems. This 
is important, not only because of applications of the above example, but also because 
there are other problems related to it which may be of even greater significance. We 
have in mind here the many examples in quantum field theory and quantum many-body 
theory where double-well (or, more generally, multi-well) potentials play a key role. 
In these cases we have a flow of energy into and out of each well through quantum 
tunnelling. Again, the energy levels which each well would separately sustain in 
isolation now become split. Our hope is that the present work may be used to gain a 
further understanding of the vacuum and other states in such multi-well problems, 
and more generally in field theories with instantons (see, e.g., Coleman 1979). Where 
our work seems to be of particular promise here is that whereas these problems have 
in the past usually been studied with semiclassical ( WKB)  techniques, our own formalism 
is fully canonical. 

The Feshbach-Tikochinsky Hamiltonian is based on a dual-coordinate formalism. 
It has been argued that, rather than describing the damped quantum harmonic oscil- 
lator, it should be viewed as a fictitious Lagrangian system with two degrees of freedom, 
the equations of motion for which are those of a damped oscillator and its corresponding 
anti-damped counterpart. Ghosh and Hasse (1981) in particular have criticised the 
model due to the lack of normalisability of the states. We go to some pains to address 
their comments in the present context. We stress that the model may still find real 
practical applicability in fluctuation-dissipation phenomena, in just the same way that 
resonant states (and their corresponding anti-resonant counterparts) have been used 
as very profitable approximations to many collective aspects of quantum many-body 
systems. 

In 0 2 we introduce the new coherent states associated with the group SU( 1, 1) that 
we previously introduced in I. We also show explicitly how the generalised Bogoliubov 
transformation is generated, and we examine in some detail the properties of the 
associated new coherent states. After the discussion in § 3 of the illustrative application 
of these results to the problem that we have already mentioned, we conclude in § 4 
with some more detailed remarks about the formalism and with some comments on 
its further extension and other possible uses. 

2. Generalised Bogoliubov transformations and coherent states 

As in I ,  we let K , ,  K - ,  and K O  be three operators which are closed under commutation 
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and which satisfy the Lie algebra of SU(  1, l ) ,  namely 

[ K O ,  K * l = - t K *  [ K-,  K + ]  = 2Ko. 

The Casimir operator (which, by definition, commutes with each of these three 
operators) is defined as 

K 2 =  K i - f ( K + K - +  K-K,).  (2) 

By Schur's lemma this Casimir operator simply reduces for irreducible representations 
into a multiple of the unit operator I .  Since the operators K 2  and KO commute, they 
can be simultaneously diagonalised, and  we can thus define a suitable set of basis 
vectors Ik; p )  by the relations 

Since SU( 1, 1) is a non-compact group, the quantum number k is not constrained 
to take only discrete values. The various possibilities which form the spectrum of 
eigenvalues have been well studied elsewhere (Bargmann 1947, Barut and Fronsdal 
1965, Holman and Biedenharn 1966, Barut and  Girardello 1971, Perelomov 1977). 
The representations considered in I correspond to the eigenvalues k = a ,  $ .  By com- 
parison, in this paper we consider the so-called discrete series of representations for 
which k is positive and integral or half-integral, k = f ,  1, i, . . . . For a given representa- 
tion k in this series, the basis vectors are further specified by the quantum number 

= k + m, where m is a non-negative integer, m = 0,1,2,  . . . . It is not difficult to show 
that the action of the operators K, on this basis set of vectors is given as follows: 

K,lk; p ) = [ p ( p  * I ) - k ( k -  l)]1 '2/k;  p * 1). (4) 

Before presenting our  new results it is worthwhile briefly to recall our earlier unitary 
representation of the group SU(1, 1) which was realised in I with the unitary operators 

U2( p, 8, A ) =  exp(-$p e-"u"+$p e"a2) exp(iha'a) 

u;u,= 1 = u2u: 
P, 6, A E 

( 5 )  

where a and a' are standard annihilation and creation operators obeying the canonical 
boson commutation relations, [a ,  a ' ]  = I. In  this case the generators of the correspond- 
ing algebra are given by 

K + + f a i 2  K- + f a 2  KO+ fa 'a  +$ (6) 

(7) K 2 + - & I =  k(k -1 )1  4 9 4 .  

It is now simple to see that in this case the basis vectors of (3) are just the states In) 
of definite boson number 

(8) 
Making use of (4) and  (6)-(8), it is now easily seen that for even particle number, 
n = 2N, we have the k = $ representation, and the state / 2 N )  is simply equivalent to 
the state I$; N +$} in the notation of (3). In particular the vacuum state 10) containing 
no bosons is identical to the state I$;  a). Similarly the k = $ representation maps onto 
the states of odd particle number, n = 2 N  + 1, and the state 12N + 1) in the notation 

from which it is trivial to evaluate the Casimir operator of ( 2 )  as 
k = '  3 

u t a  I n )  = n 1 n )  In) = ( n  !) -1'2(a')" IO). 
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of (8) is equivalent to the state 1;; N+:) in the notation of ( 3 ) .  The lowest state here 
is the single-boson state 1 1 ) ~  1:; a). It is clear that the set of states 

1 2 N ) s I i ;  N + i )  \ 2 N + l ) + ;  N + $  (9) 

for N = 0,1 ,2 , .  . . , comprises an orthonormal basis which spans the entire Hilbert 
space HI of the harmonic oscillator. 

After these introductory remarks we now consider the so-called discrete series of 
representations of SU(1, l ) ,  which clearly are associated with quantum states which 
cannot be realised by the single (undamped) oscillator above. As is already well known 
(Bargmann 1947, Barut and Fronsdal 1965, Holman and Biedenharn 1966, Barut and 
Girardello 1971, Perelomov 1977), these states may be expressed in terms of a pair of 
commuting bosonic operators a ,  and a2 

K ,  + a:ai  K -  + ala2 K , + ~ ( a : a , + a ~ a , + l )  (10) 

which satisfy the commutation relations of (1) when 

From (10) and (1 l ) ,  it is trivial to show that in this case the Casimir operator becomes 

K 2 +  - S + ~ ( U : U ~  - u ; u ~ ) ~ .  (12) 

Im, n) = ( m !  n ! ) - " 2 ( u ~ ) ' " ( u ~ ) n ~ ~ ,  0 )  

a:a,lm, n) = m/m,  n) 

We now introduce the joint number operator eigenstates [m,  n),  

(13) 

where the notation of separating the eigenvalue labels by a comma should be contrasted 
with the semicolon convention employed in the previous states defined by (3), so that 
no confusion can arise. Again, the states Im, n) clearly form an orthonormal basis that 
spans the entire Hilbert space H 2  = HI@ HI of the two oscillators. In  the case where 
the difference m - n = in, (no  > 0) is a constant integer, we readily see from (12 j that 
K 2 =  k ( k -  111, with the (positive) solution k =+(1+ no). As the constant no runs over 
the non-negative integers, the index k then runs over values corresponding to the entire 
series of representations that we have earlier defined as the so-called discrete series. 
It is also now clear that in the two notations of ( 3 )  and (13), the equivalent states 

(14) 
constitute a basis for the discrete series irreducible unitary representations of the group 
SU(1 , l ) .  

We now also introduce the usual standard (or atomic or Glauber) joint coherent 
states IA,, A,) in H 2  as simply the product IAl)lA2) of each of the standard coherent 
states for each space H1 separately: 

a:a,lm, n) = nlm, n) 

/ n  * no, n)= If(l+ no); ;(I + no)+ n )  

IAi, A J  = /Ai)IAJ' Ui(A, ,  A2)lO, 0) 

Ui(Ai, A21 = U'il)(Ai) U/"(Az) (15) 

UI')(A,)= exp(A,a:-ATa,) U ,  ( 2 )  ( A 2 ) = e x p ( A , a ~ - A ~ a 2 ) .  
As usual, these standard coherent states are readily shown from (15) to be eigenstates 
of each boson destruction operator, 

a, lA, f A,)= AIIAI, A,) (16) azIAif A,? = AzlAi, A?). 
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In terms of the states Im, n )  of definite boson number from (13), one can readily show 
from (15) that these standard coherent states can be expressed in the equivalent form: 

( A , ,  Az)=exp[- i ( (A, (2+(A, \2) ]  2 (m!n!)-'"AI"A;lm, n ) .  (17) 

We note also that these standard coherent states are eigenstates of the SU( 1, 1) operator 
K -  + u,u,, 

m=O n = O  

K-IAi, A,) = AiA2IAi9 A,). (18) 

The overlap integral between two such standard coherent states is given by 

(A, ,  A 2 ( B l ,  B , ) = ~ X ~ [ A : ' B ~ + A T B ~ - ~ ( ( A ~ ~ ~ + ( A ~ ( ~ + ~ B , ( * + ( B , ~ ~ ) ~  (19) 

(20) I M , ,  A2 1 B ,  , & ) I 2  = exp(-IA, - Bl12 - /A2 - Bz12) 

and the identity operator in H 2  can also be resolved in terms of them as 

. T T - ~  5 d'A, d2Az ] A l ,  A,)(A,, A,] = I (21) 

where d2A = d (  Re A)  d( Im A).  
By analogy with the unitary operator U2 of (5) that we introduced in I in connection 

with the representation of (6) of the SU(1, 1) algebra, we now similarly consider an 
operator V, in connection with the present discrete series representation of (10): 

It is straightforward to prove that the two boson creation and  destruction operators 
are unitarily transformed by V, as follows: 

V2a,  Vs = e-'"[cosh(fp)a, +e-" sinh(fp)a:] = b,  

Va"7- , , - ei"[e" s inh ( fp )a ,+cosh ( fp )a~]  = bl 

V,a2Vi = e- iA[cosh(~p)a ,+e- i8  sinh(ip)a:]= b2 

V.a; Vl  = eiA [e" sinh($p)a, + cosh($p)ai]  = b:. 

The inverse transformations are then trivially obtained as 
a ,  = e  , A  cosh(ip)b,  -exp[-i(O+A)] s inh( fp)b i  

a:  = -exp[i(e+A)] sinh($p)b,+e-iA cosh(fp)b: 

a2 = e ih  cosh($p)b2 - exp[-i( 8 +  A ) ]  s inh(fp)br 

a i =  -exp[i(O+A)] s inh ( fp )b ,+e - iA  cosh($p)b;. 

In view of the unitarity of V, it  is clear that the transformation is a canonical one in 
the sense that the transformed operators obey the same canonical boson commutation 
relations as their original untransformed counterparts: 

[ b , , b ? ; ] = [ b 2 , b ~ ] = I  

[ b, , bJ = [ b,  , bl]  = [ b?;, b,] = [ b', bi] = 0. 
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We also note by direct use of (23) that the operator involved in the Casimir operator 
of (12) is, as expected, form-invariant: 

U ; U ,  - U ~ U ,  = bFbI - bib,. (26) 
We refer to the transformations of the basic boson operators in (23) as the 

generalised Bogoliubov transformation. Use of (23), together with the unitarity of V,, 
then further shows how an arbitrary function f ( a , ,  a:, a* ,  a : )  of the basic boson 
operators transforms under V, as 

V2f(a,, a:, a> ,  aZ)V:=f(b,, bl, b,, b:)++V,f(a,, a?, a,, 4) = f ( b , ,  b:, b,, b31V2. 
(27) 

The operator V, defines a unitary isomorphism of the Hilbert space H ,  onto itself. To 
each state 1s) E H? corresponds the mapped state V21s), and to each operator 0 = 
@(a , ,  a:, a,, a:)  corresponds the mapped operator O , , ,  = V,@(a,, a; ,  a,, ai)VZ = 
O(b, ,  b:, b,, bi). It is trivial to prove that, if Is) is an eigenstate of 0 ,  then V,Is) is 
an  eigenstate of O , , ,  corresponding to the same eigenvalue. We now finally apply 
these general ideas to the case where the state 1s) is one of the standard coherent states 
IA,, A,) in H , ,  which we introduced previously in (15). 

In this way we are led to introduce the states 

IAi, A?; P ~ A ) ~  V,(P, 8, h) IAi ,  A,)= V,(P, 8, A)Ui(Ai ,  A2)IO, 0).  (28) 
Using (27) we easily prove that they are eigenstates of the mapped destruction operators 
b, and b,: 

The mapped vacuum state 10, 0; p8h) = V,( p, 8, A )  IO,  0) is of particular importance as 
the vacuum for b , -  and b,-type bosons, since it obeys the relations 

b, 10, 0; p8h) = 0 = bz/O, 0; p8A). (30) 
More generally, (29) shows that the mapped state lA l ,  A,; p8A) is just a standard 
coherent state with respect to both b-type bosons, although it is considerably more 
complex in terms of the original a-type bosons. Thus, in terms of the transformed 
boson operators, it can be written as 

14 > Az; peh) = V,( p, 8, 1 Ul (A , ,  A,) Io, 0) 
= exp(A,b: -ATb, + A2b: -Afb,)  VI( p, 8, A )  10,O) 

= e x p ( A , b ~ - - A ~ b , + A , b ~ - A f b , ) ( O ,  0; p8h). (31) 
Alternatively, it can be written in terms of the states lm, n; p8h) of definite particle 
number for both b-type bosons: 

bw“ V,(p,8,A)Im,n) 

b:b, 1 m, n; p8h) = m I m, n; p8h) (32) 
b;b21 m, n; p8A) = n 1 m, n; peh) 

by analogy with (17), in the form 

I4 3 A,; 
. r c €  

=exp[-t(lA,lZ+lA,)*)] c c (m!n!)-”’AyA;/m, n; p8A) (33) 
m=O n = O  
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3. Application: the damped quantum oscillator 

As a physical application of the above discrete series of representations of the group 
SU( 1, l ) ,  we now turn our attention to the damped quantum harmonic oscillator. This 
has been previously studied both by the Hamiltonian methods (Feshbach and 
Tikochinsky 1977, Ghosh and Hasse 1981), which are of interest to us here, and by 
other means (Kostin 1972, 1975, Immele et al 1975, Svin’in 1975, Stocker and Albrecht 
1979). The applicability of two bosonic operators to this problem can be envisaged 
from the outset, once one recalls that the damped oscillator is characterised by two 
separate frequencies which describe the (undamped) oscillations and the damping rate. 

We start our discussion by consider the classical equations of motion 

X +  ( R / m ) x +  w2x = 0 

j -  ( R / m ) y  + w’y = 0 
(34) 

for, respectively, the damped oscillator (coordinate x )  and its dual (or time-reversed) 
amplified oscillator (coordinate y),  where the positive constants m and R are respec- 
tively the inertial (mass) and damping parameters, and w is the natural frequency in 
the absence of damping or amplification. The classical solutions are 

y - exp[(*is + R/2m)t]  x-exp[(*ie -R/2m)t ]  

E = (0’- R2/4m2)‘I2. 
(35) 

We assume here and henceforth that R < 2mw, so that E is real, which corresponds to 
the classical case of under-critical damping. In the opposite case ( R > 2 m w )  of 
over-critical damping there is no classical oscillatory motion superimposed on the 
damping or amplification. It is readily checked that the Lagrangian 

(36) 

leads via the usual Euler-Lagrange equations to the equations of motion (34). In turn 
this Lagrangian leads to the canonically conjugate momenta p\- and pI., and hence to 
the Hamiltonian H, given by 

L = mxj  + iR(xj, - xy) - mw ’xy 

This system may now be quantised by following the standard canonical prescription 
of replacing the classical c-number coordinates x, y and their canonically conjugate 
momenta px, by operators which satisfy the usual canonical commutation relations: 

[x, Pxl = [Y, PI1 = i h l  

[x, Y l =  [x, PYI = [Y, Prl = r Px, PI 1 = 0. 

Alternatively, if one introduces the following linear combinations: 
a = 1  

1 - z“)-”’r( Pr +P, ) - im&(x +Y)l 

a: = +(mhs)-”’[( pA + p ,  ) + ime(x + y)]  

a 2 = 2 ( m h ~ ) - 1 ’ 2 [ ( p ,  -I - p l )  -imE(x -y) ]  

a, = z( mhE ) - I ” [ (  p, - pI ) + ims ( x  - y ) I  t 1  

(39) 
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it is easy to show that, if the coordinates and momenta obey the commutation relations 
(38), then these new operators obey the commutation relations ( 1  1 )  appropriate to 
two independent bosons. It is easy to show that the Hamiltonian of (37) may be 
rewritten in terms of the boson operators of (39) in the form 

We note also the readily proved fact that the two pieces Ho and H ,  of the Hamiltonian 
written in this form commute: 

(41 1 
This is important for later purposes. 

Before proceeding we note that the presence of damping (and amplification) has 
necessitated within this formalism the introduction of a second boson, and the con- 
sequent 'doubling of the energy levels'. This phenomenon of splitting of the energy 
levels is by no means restricted to the present example, but rather is a familiar feature 
in many quantum mechanical situations. We point out that, in the case of zero damping 
(R = 0), the present formalism does not simply reduce to the one-boson case. While 
the coordinates x and y then obey the same undamped equation of motion, the doubling 
still remains. One finds normal coordinates (x * y ) ,  with positive energy for one mode 
and negative energy for the other mode. 

In order to construct the eigenstates of H, the commutation relation (41) can be 
used to find simultaneous eigenfunctions of Ho and HI,  thereby lifting the degeneracy 
inherent in Ho alone. Of particular use in this regard is the general relation 

[ H o ,  HI1 = 0. 

exp( - y K ,  - y* K - )  KO exp( y K ,  + y* K - )  

= cos(21yl)Ko+(21y()-' sin(2lyl)-I(yK,- y * K - )  

where y is an arbitrary complex constant, and which is easy to prove, using the 
commutation relations ( 1 ) .  On putting y = * x / 4 ,  and using the representation of (IO), 
we then find 

i hR 
2m 

H ,  e x p [ i f x ( a ~ a ~ + a , a , ) ]  = F-exp[*tx(a:aS+ a , a 2 ) ] ( a ~ a ,  + a l a z +  1 ) .  (43) 

Finally, by making use of the fact that Ho commutes with the operator (aTai+ a laz) ,  
we can readily show that eigenstates of H with corresponding eigenvalues E',:,',, 

where the states In,,  nz) are defined in (13 ) .  
At first sight it seems clearly incorrect that the energy eigenvalues of (45) are 

complex since the Hamiltonian H of (40) undoubtedly appears to be Hermitian. This 
seeming paradox is resolved upon realising, however, that the normalisation integral 
for the eigenstates of (45) is divergent, so that H is indeed not a Hermitian operator, 
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and the relevant theorem about the reality of its eigenvalues fails to apply. On the 
other hand, the derivation of the Hamiltonian that we have already given via the 
classical damped and amplified oscillators certainly leads us to anticipate the complex 
conjugate pairs of eigenvalues as in (45). However, one big problem remains with the 
corresponding eigenstates of (45), namely that since they are not normalisable we may 
not work in the usual Hilbert space. Thus, we are unable to expand an  arbitrary state 
in terms of the eigenstates using the usual metric of the Hilbert space. Feshbach 
and Tikochinsky (1977) have suggested a possible way to surmount this problem by 
extending the usual metric of the Hilbert space to include such operators as the 
Hamiltonian H. They d o  this by defining a new metric wherein the inner product is 
calculated not with state vectors +, and +f as usual but with and  +:, where 4: is 
the time-reversed version of (L2. In particular we note that lF(n:A2) and IqL:,!?) are time 
reverses of each other, and  form a biorthogonal set with this new metric. 

This important topic has also been discussed by Ghosh and Hasse (1981). While 
it is not perhaps of immediate relevance for present purposes, we take this opportunity 
to pursue their discussion at this point in the light of further possible applications of 
our coherent states. There is no doubt that the method of dual coordinates as employed 
here does have problems with normalisation, as pointed out by Ghosh and Hasse. 
This has led some authors to believe that the Lagrangian of Feshbach and Tikochinsky 
is not a correct formulation for describing the damping of a quantum oscillator. One 
may take the view that what is actually being described by the formalism is a fictitious 
Lagrangian system with two degrees of freedom, whose equations of motion are those 
of a damped oscillator and the corresponding anti-damped oscillator. It seems quite 
clear that the Lagrangian of (36) does indeed not describe an  isolated damped oscillator, 
but rather a damped oscillator coupled with its amplified counterpart. 

Our own viewpoint is that this latter case is just the physically interesting one- 
particularly in applications to many-body or field-theoretic systems. We view the 
situation in complete analogy with the usual interpretation of the way that resonant 
and anti-resonant pair states arise in many-body systems, where the other (ignored) 
degrees of freedom are themselves responsible for the creation of the resonance 
phenomena. It appears to us that it is just because the formalism does not describe 
an  isolated damped quantum oscillator, but rather the dual damped and  anti-damped 
modes, that it may have particular relevance to real fluctuation-dissipation phenomena. 
We return to this discussion in our concluding remarks in § 4. 

We now wish to make use of our transformation V,  of (22) to study more general 
Hamiltonians that can be reached by unitarily transforming the above H = H { a }  of 
(40). Equation (27) immediately gives 

i hR 
2m 

H ’ { u } =  V > H { a } V : =  H { b } =  h&(b:b,-b:br)+-(b:bl-b,bz). (46) 

Explicit substitution from (23) then yields the expression 

H ’ { U } =  H ‘ =  h ( R + & ) a ~ U , + h ( ~ - E ) U ~ U Z + h ~ + K U : U ~ + K * U i U ~  (47) 

where 

R 
2m 

R = -- sin(2A + 6) sinh p 

i Rh 
- e-’@ [cos(2h + 6 )  + i  sin(2A + 6 )  cosh p ] .  
2m 
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We note that (48) can be inverted to find real p, 0, A for given arbitrary complex K 

and real R, only under the implied restriction that 1 ~ 1 ’ -  h2R2 = (Rh/2m)’> 0. Con- 
versely, Hamiltonians of the form of (47) can be written in the equivalent form of (46) 
only for I K / ’ >  h2R2. From our general discussion of § 2, we then immediately have 
that the eigenfunctions and corresponding eigenvalues of the Hamiltonian H‘ of (47), 
in the case / K / * >  h2R2, are 

P ~ l t ~ ) =  v 2 ( p ,  e , ~ ) e x p [ ~ ~ ~ ( u T u : + u , u ~ ) I ~ ~ , ,  nz> 

= e x p [ * f . i r ( b : b Z + b , b , ) l / n , ,  n , ;  p0A) (49) 
2 2 I /2  ~ : ~ : i  = h ~ (  n, - n 2 )  F i ( / K l 2 -  h R ) (n, + n2+  1 )  

with V2( p, 8, A )  given by (22) and the b operators given by (23), with parameters p, 8, A 
found by inverting (48), and with use made of the states defined in (32). 

For completeness, we also discuss the case I K / ’  < h2R2. In this case, the Hamiltonian 
of (47) cannot be unitarily transformed into that of (46). However, it is of considerable 
interest to note that even in this case an operator V, of the form of (22) may again be 
used, now to diagonalise the Hamiltonian. The most general transformed Hamiltonian 
that can thus be reached from H’ of (47), for arbitrary Cl and K ,  may be obtained by 
substituting the inverse generalised Bogoliubov transformation from (24). In this way 
we find 

H’{u}= h { b } =  V,h{u}Vl (50) 
where we have again used ( 2 7 ) ,  and where 

h { b } =  h ~ ( b l b 1  -b:b2)+ M ( b : b l +  bib,+ 1)+ Nb?bi+ N*b,b2 

M = hR cosh p - + ( K  e” + K *  e-”) sinh p (51) 
N 3 exp[-i(2A + O ) ] [ K  e‘’ cosh2($)+ K *  e- ’@ sinh2(bp) - hCl sinh p ] .  

It is not difficult to see that, by a suitable choice of p and 0, either M or N (but not 
both) may be made zero, depending on whether h2R2< I K ( ‘  or h 2 R 2 >  I K / ’  respectively. 
In  the former case, the general Hamiltonian of (47) may be transformed to the 
Hamiltonian h + H of (40) by choosing the parameters p, 0 and A to satisfy (48). 
Conversely, when h2R2> I K I ’ ,  we can reduce the general Hamiltonian of (47) to the 
Hamiltonian h{ b }  -$ I?{ b} ,  where 

6 { b } =  h s ( b ; b 1 -  b~b2)+sgnR(h2C12-I~12)1’2(b;bl+  b ; b 2 + l )  (52) 

by the choice of parameters 

p = tanh-’ (E) 0 = -arg K (53)  

and A is arbitrary. In this case we then have that the eigenfunctions and corresponding 
eigenvalues of the Hamiltonian H‘ of (47), when h2R2> I K ~ ’ ,  are given by 

E ; , , , ~  = f i ~ ( n ,  - n 2 )  +sgn ~ ( f i ’ R ’ -  ~ K I ~ ) I ” ( ~ ,  + n2+ 1). 

It is perhaps finally worth pointing out that it seems to be widely believed that an 
urbirrury Hamiltonian of the form 

H ’ = w l U l U l  + w , U : U , + K U ; U Z + K * U l U 2  ( 5 5 )  
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can always be diagonalised by a Bogoliubov transformation of the form considered 
here. On the contrary, what we have shown here is that while the Bogoliubov transfor- 
mation is always useful, it only reduces the Hamiltonian ( 5 5 )  to diagonal form (i.e. 
two-mode free form) in the case where the parameter A =  + ( U ,  + u ~ ) ~ -  / K I *  is positive. 
Conversely, when A is negative the Bogoliubov transformation, while still applicable, 
reduces the Hamiltonian ( 5 5 )  to that of the single damped oscillator given by (40). 
We note that in both cases the parameter A is left invariant by the transformation. 

4. Conclusions 

We pointed out in I that whereas other authors (Barut and  Giradello 1971, Perelomov 
1977) have also considered coherent states of the group SU(1, l ) ,  both the states 
considered by us earlier in I and in the present work are certainly different from those 
discussed previously by others. We also pointed out that, whereas earlier work hinted 
at the relationship between these generalised coherent states and  the Bogoliubov 
transformation, our own work aimed to demonstrate this very clearly. Indeed this 
facet has again been given a central role here. Once more we have seen how starting 
with the concept of pairing (now between the unlike bosons) leads inexorably via the 
introduction of the only possible pairing operators to describe the phenomenon, to 
the Bogoliubov transformation itself. In  this context we reiterate that, since we hope 
as one of our  aims to extend this work to provide a more general formalism of all 
clustering (i.e. higher order than pairing) phenomena, this central feature is of particular 
relevance. We have again shown that, just as the standard coherent states in the 
two-boson Hilbert space H 2  = HI 0 H, may be defined as simultaneous eigenstates of 
the original single-boson destruction operators a, and a,, so our generalised coherent 
states, which now provide a representation of the so-called discrete series, may be 
viewed as simultaneous eigenstates of a pair of new single-boson destruction operators 
b, and b2.  These latter operators are themselves generated from the original a operators 
and their adjoints by the generalised Bogoliubov transformation. In other words our 
generalised coherent states may either be viewed in terms of pairing between unlike 
doublets of the original bosons, or as standard coherent states in terms of the unitarily 
transformed Hilbert space spanned by arbitrary numbers of the two types of Bogoliubov 
quasiparticles which again obey the usual bosonic canonical commutation relations. 

As is by now very well known, standard (Glauber) coherent states have found 
applicability in a variety of physical situations, typically involving correlation and 
coherence properties of the underlying quantum fields. One of the reasons for this is 
clearly that field expansions in terms of the (overcomplete sets of) coherent states 
greatly facilitate the taking of the appropriate classical limits. This feature is in turn 
connected with the property of the standard coherent states that they minimise the 
appropriate Heisenberg uncertainty relation. In fields such as quantum optics or 
quantum electronics it is usually this property of coherent states that is stressed from 
the outset, or indeed that is used to define them. Since we have already seen how our 
generalised paired coherent states may be viewed in terms of the Bogoliubov quasiparti- 
cles as standard coherent states, it is to be expected that they will also be of at least 
theoretical relevance in these fields. Thus in I we remarked how our previous 
generalised SU( 1, 1 )  paired coherent states, defined via the generators U?( p, 6, A )  of 
(S), could be used in connection with the possibility of a two-photon laser. Similar 
states have indeed been so introduced into quantum optics (Yuen 1976, Walls 1983), 
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where they have become known as squeezed states for reasons discussed earlier in I. 
In  the present context, we were particularly interested to learn that very recently Caves 
and Schumaker (1985) have discussed, in the field of quantum electronics, similar 
states to the ones defined via the generators V2( p, 0, A )  of (22) that we have considered 
in the present work. However, their connection with the discrete series of representa- 
tions of SU( 1 , 1 )  was not discussed by these authors. One of our present hopes is that 
our own work might extend the range of applicability of these states by stressing some 
of their broader features based on their underlying group-theoretical foundations. 

Indeed, we have been at pains to stress that the unitary operators V2 of (22) do 
not only map the standard coherent states IAl, A2)  in the original Hilbert space 
H 2  = HI@ HI of the two fundamental types of bosons, into the new paired coherent 
states IA,, A,;  p0A) of (28). Rather, each of the operators V,-associated with the 
entire discrete series of representations of the group SU(1, 1) of original relevance to 
the problem of pairing-provides a unitary isomorphism of the Hilbert space H 2  onto 
itself. Thus, an arbitrary state Is) of the space is mapped into another state 1s; p 0 A )  
belonging to the space. In particular an arbitrary eigenstate of any operator is mapped 
by V, into a corresponding eigenstate of the unitarily transformed operator, with the 
same eigenvalue. We especially made use of this result in our illustration in § 3 of a 
particular example of the use of this mapping, namely the application to the theory 
of damped linear harmonic oscillators. 

This example is of particular importance as a first step toward a general theory of 
‘quantum friction’. A quantum mechanical description of dissipation is of importance 
in many different areas of physical interest. Within quantum optics, for example, the 
quantum theory of lasers and of photon detection provide examples. On the other 
hand, there are also several areas in the theory of the atomic nucleus where dissipative 
processes play a key role. In this respect one may mention both fission and the deep 
inelastic scattering of heavy ions off nuclei. In the former case, much experimental 
data indicate that in fission much of the energy associated with the fission degrees of 
freedom (typically described by a small number of collective coordinates through some 
such model as the liquid drop model) is transferred, or dissipated, into other channels 
(typically associated with one- or few-particle degrees of freedom). Similarly, in 
heavy-ion reactions, it is often observed that a phenomenon known as deep inelastic 
scattering occurs. In this case a large part of the incident kinetic energy is converted, 
or dissipated, into internal energy of the reaction products. Such dissipative processes 
occur very widely in many-body or field-theoretic systems. In the present paper we 
show in particular how a very wide class of Hamiltonians can be related by our methods 
to that of the damped linear harmonic oscillator. 

We have already alluded in P 3 to problems associated with normalisation of the 
states in the Feshbach-Tikochinsky formalism. We view the damped and amplified 
oscillators described by the model Lagrangian in the same way that we view the 
resonance and anti-resonance states in many-body systems-namely as very useful 
approximations to some collective behaviour of the system. One knows that no such 
resonant or anti-resonant state can be an exact solution to the many-body Schrodinger 
equation, since the associated energy eigenvalues are not real. However, the dual 
appearance of the resonant and anti-resonant pairs still enables the total energy to 
remain real and conserved. The damped and amplified oscillators of the Feshbach- 
Tikochinsky (effective) Lagrangian may be viewed in a similar fashion. One knows 
that the familiar resonant and anti-resonant states (of, for example, atomic physics or 
condensed matter physics) have problems associated with the fact that they are not 
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true energy eigenstates, and hence not proper quantum mechanical states in the 
many-body Hilbert space. Their infinite norm is a well known example, and we have 
already mentioned the analogous feature of the Feshbach-Tikochinsky formalism, as 
discussed by Ghosh and Hasse. In the present case we take the stance that, while the 
objections raised by Ghosh and Hasse are formally correct, the states may still profitably 
be viewed as approximations to important collective modes, and their lack of normalisa- 
bility does not prevent one extracting physical meaning from them. As a basis for this 
viewpoint we cite the entire corpus of theory of resonant states in many-body systems. 
I t  is this viewpoint that also leads us to believe that the present coherent states could 
have applications to general fluctuation-dissipation phenomena. 

Of central importance to us here is that we are able to study canonically the 
phenomenon of the splitting of the energy levels which arises from the damping process 
in this model. In particular we contrast our fully canonical description with related 
semiclassical work. We believe that our method may be very profitably extended to 
other models where there is a classical degeneracy lifted by quantum tunnelling. Such 
phenomena, which are again very widespread in quantum field and many-body theory 
applications, have more usually been treated in the past with various semiclassical 
approximations. 

Finally, it is our hope to extend the present approach beyond the phenomenon of 
pairing investigated here to include higher clustering correlations. In this way we hope 
to generalise the associated Bogoliubov transformation to include transformations and 
the associated generalised coherent states appropriate to clustering phenomena involv- 
ing more than two particles at a time, and to the condensed matter phases that would 
presumably arise because of them. 
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