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Abstract: The theoretical basis and quantitative evalua-
tion of a new approach for modeling biofilm growth are
presented here. Soluble components (e.g., substrates)
are represented in a continuous field, whereas discrete
mapping is used for solid components (e.g., biomass).
The spatial distribution of substrate is calculated by ap-
plying relaxation methods to the reaction–diffusion mass
balance. A biomass density map is determined from di-
rect integration in each grid cell of a substrate-limited
growth equation. Spreading and distribution of biomass
is modeled by a discrete cellular automaton algorithm.
The ability of this model to represent diffusion–reaction–
m icrobial grow th system s w as tested for a w el l -
characterized system : im m obil ized cells grow ing in
spherical gel beads. Good quantitative agreement with
data for global oxygen consumption rate was found. The
calculated concentration profiles of substrate and bio-
mass in gel beads corresponded to those measured.
Moreover, it was possible, using the discrete spreading
algor i thm , to pred ict the spat ial tw o- and three-
dimensional distribution of microorganisms in relation
to, for example, substrate flux and inoculation density.
The new technique looks promising for modeling diffu-
sion–reaction–microbial growth processes in heteroge-
neous systems as they occur in biofilms. © 1998 John
Wiley & Sons, Inc. Biotechnol Bioeng 57: 718–731, 1998.

Keyw ords: bio f i lm ; m odel ing; react ion–di f fusion–
growth; cellular automata; immobilized cells; structure

INTRODUCTION

There are now several mechanistic mathematical models

that describe fairly well conversion of soluble substrates by

biofilms and, with reasonable insight, population dynamics

(Arvin and Harremoës, 1990; Characklis and Marshall,

1989; Wanner and Gujer, 1986; Wanner and Reichert,

1996). Both features can be well predicted provided the

biofilm structure is known. With rare exceptions, all math-

ematical models treat the biofilm as a one-dimensional

structure. However, structural heterogeneity, including non-

uniform distribution of cells and polymers, variable biofilm

thickness and surface shape, and variable density and po-

rosity, has been proven and quantitatively measured by

many researchers (Gjaltema et al., 1994; van Loosdrecht et

al., 1995; Zhang and Bishop, 1994a, b). In the current bio-

film models, biofilm density, porosity, and surface shape are

to be specified as model input. No available model can

predict these properties associated with biofilm heterogene-

ity. We believe that a combined discrete representation of

the solid phase (e.g., by cellular automata, CA) with clas-

sical continuous methods for soluble components offers the

possibility to predict the biofilm structure.

The geometrical structures of several biological commu-

nities have already been modeled by CA methods. For bac-

teria colonies, a diffusion-limited aggregation (DLA) model

was used by Fujikawa (1994) and a different random-walk

model was applied by Schindler and Rataj (1992) and

Schindler and Rovensky (1994). All these models can pro-

duce complex growth patterns as observed on agar slabs

(Matsushita and Fujikawa, 1990), but no explicit conversion

of ‘‘nutrients’’ has been included. Biomass accumulation

rate, mycelial density, and differentiation of filamentous

fungi on solid surfaces have also been generated by a proba-

bilistic CA (Laszlo and Silman, 1993). There is also a series

of CA models for proliferation of animal cells (Hawboldt et

al., 1994; Lim and Davies, 1990; Zygourakis et al., 1991). A

more realistic representation of colony growth was made by

Ben-Jacob et al. (1994) who included in their model the

explicit growth of bacteria in a substrate gradient field. Both

in this study and in that of Takács and Fleit (1995), who

modeled the filamentous bulking of activated sludge, the

nutrient field was solved by finite difference methods. The

first mentioned application of CA modeling in biofilm re-

search was in a recent study by Wimpenny and Colasanti

(1997), based on ideas discussed earlier by Colasanti

(1992). This model is, however, strongly comparable to the

DLA models because growth is only considered at the sur-

face (where unoccupied space is available) and hardly in-
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side the biofilm structure. A quite different approach was

used in the model by Barker and Grimson (1993), in which

both diffusion and reaction of substrates forming biomass

are represented by CA algorithms.

However, we believe that, for a system scale of millime-

ters, only the solid particle dynamics (bacteria, polymers,

carrier) must be modeled in a discrete way, whereas the

nutrient field is solved by finite difference methods. This

leads to a faster (and more realistic) model solution, afford-

able on a common personal computer.

A common drawback the aforementioned models is the

use of abstract, mathematical parameters (‘‘units of re-

source,’’ ‘‘random-walk distance,’’ etc.), which are not ex-

plicitly linked to the macroscopic physical/chemical/

biological parameters commonly used to describe biofilm

systems (yields, concentrations, rates, fluxes of nutrients).

Past models produce various patterns as a response to

changing parameters, but they evolve in abstract time. By

combining differential with discrete models, we can predict

biofilm structure, together with correct time evolution of

concentrations, fluxes, and conversion rates.

As far as we know, the model we describe in this work is

the first quantitative validation of a biofilm model that in-

cludes CA rules. To validate this approach, we applied the

model to a well-characterized system: the growth of immo-

bilized cells in a gel matrix (Wijffels et al., 1991a). A good

quantitative agreement with data for global oxygen con-

sumption rate was found. The model-predicted concentra-

tion profiles of substrate and biomass in the gel beads also

corresponded to those measured. Due to the ‘‘discrete

spreading’’ algorithm for biomass, it is possible to correctly

predict the spatial two-dimensional (2D) and three-

dimensional (3D) distribution of microorganisms in relation

to, for example, the substrate flux and inoculation density.

MODEL DEFINITION

The Space

The physical space is represented by a rectangular uniform

grid. Either square elements are used as tiles to fill the 2D

space or cubic volume elements are used to fill the 3D

volume. In the N × M × L 3D Cartesian grid, coordinates of

volume elements are given by a vector (x,y,z) e (0 . . . N −

1, 0 . . . M − 1, 0 . . . L − 1).

The Variables

Two variables are chosen to represent the state of the system

that simulates the biofilm development in the simplest case:

the soluble limiting substrate concentration (S) and biomass

density (C) (both in dimensionless form). In addition, we

use a third matrix for ‘‘solid components,’’ called c. In this

matrix we store information about the occupation state of

space with solid particles (bacteria, gel, substratum, etc.).

The States

Each element, Sx,y,z, of the substrate matrix, S, will take real

values between 0 and 1. The biomass content of each vol-

ume element (represented by matrix C) also varies in the

same range. The occupation state of space (matrix c), takes

the value of 0 for an unoccupied site (meaning liquid phase),

1 for occupied with biomass, and 2 for occupied with carrier

(or gel in immobilized cells systems). One bacterial cell fills

the whole elemental volume only when we work with large

matrices (so that the grid size is small enough, as we will see

later). Otherwise, when the size of a grid element is larger

than the bacterial size, cx,y,z 4 1 means that the element is

marked as containing biomass (no matter if there is a colony

or only one cell).

The Rules

The matrices S, C, and c are updated according to different

rules, corresponding to different processes that can affect

their state. Whereas the substrate and biomass concentration

fields are found by differential methods, tracking the bio-

film development is done by discrete (CA) rules.

The substrate concentration in grid elements depends on

the balance between transport mechanisms and reaction in-

side the biofilm. In the present model only the diffusive

transport of substrate is considered for the cases studied:

growth of colonies in the gel bead and for growth on a solid

carrier. Therefore, only the reaction–diffusion equation

must be solved in a 2D or 3D space to obtain the substrate

concentration field.

In the general 3D system the mass balance for substrate

is:

­cS

­t
= DS S­2

cS

­x
2

+
­2

cS

­y
2

+
­2

cS

­z
2 D − rS~cS,cX! (1)

assuming only molecular diffusion and conversion of sub-

strate, with the boundary conditions depending on system

geometry and physics. The substrate conversion rate, rs,

depends on the substrate concentration, cs, and biomass den-

sity in the biofilm, cx. For biological processes, the rate, rs,

is usually defined as a Monod-like saturation function; for

example, in the form given by Eq. (10).

For numerical reasons, it is better to use a partially di-

mensionless substrate balance. The variables are related to

fixed quantities, preferably to the maximum value they can

get: the space coordinates to the characteristic length (e.g.,

the bead diameter),

X 4

x

d
, Y 4

y

d
, Z 4

z

d
;

the substrate concentration to the concentration in the bulk

liquid,

S 4

cS

cS0

;

PICIOREANU, VAN LOOSDRECHT, AND HEIJNEN: DIFFERENTIAL–DISCRETE MODELING FOR BIOFILMS 719



and the biomass concentration to the maximum biomass

density in a colony,

C 4

cX

cXm

.

There is no need to use a dimensionless time. Thus, with

the new notations, the balance equation for substrate be-

comes:

­S

­t
=

DS

d
2 S­2

S

­X
2

+
­2

S

­Y
2

+
­2

S

­Z
2D − rS~C,S! (2)

where rS(C,S) is the normalized rate of substrate consump-

tion. For example, using the particular Monod equation [Eq.

(10)], the normalized rate of substrate consumption is

rS(C,S) 4 rS/cS0. The partial differential equations were

solved numerically by finite difference relaxation algo-

rithms (see Appendices).

The biomass density is computed by direct integration of

the biomass balance equation, taking into account only

growth of colonies as a result of substrate consumption.

When the dimensionless biomass concentration in a grid

cell reaches maximum value (Cx,y,z 4 1), it will divide in

two equal parts. The first one will stay on the same place,

whereas the other will be placed somewhere in an adjacent

grid element, ‘‘pushing’’ the neighbors according to a cel-

lular automaton rule (see below).

Considering biomass accumulation to be the net result of

biomass growth and biomass decay, the dimensionless bio-

mass balance will be:

­C

­t
4 rX(C,S) (3)

where rX(C,S) is the normalized rate of biomass accumula-

tion. For the particular case discussed later, in which the

rate, rx, is given by a Monod with decay equation [Eq. (11)],

rX(C,S) 4 rX/cS0.

When this equation has no simple analytical solution, it

can be solved using, for instance, a forward Euler step:

C(t+dt)
4 C(t) + rX(C(t),S(t))dtC (4)

to obtain the evolution of biomass concentration in every

grid element.

The occupation matrix, c, is updated following a cellular

automaton mechanism. The state of a site is marked as

‘‘occupied with biomass’’ (cx,y,z 4 1) when the correspond-

ing biomass density is Cx,y,z > 0, as a result of the growth

process. At the same time, other processes, such as attach-

ment and detachment, can be simulated by appropriate rules

that change the occupation state of the solids matrix, but

they are not considered in the present study. The CA rule for

growth is as follows:

If (Cx,y,z ù 1) (this means that the biomass density reached

the maximum level in the elemental volume)

1. The biomass in (x,y,z) is divided in two parts. The first

stays at the same site, whereas the second part is counted

as a new grid element containing biomass and must be

placed in another space element.

2. A search for a free-space element is carried out among

the nearest-neighbor elements.

3. If there are more free adjacent sites around [e.g., at least

one cx,y,z 4 0, (x,y,z) being the coordinates of the four

nearest neighbors]

then put the new cell in one of them, randomly chosen

with equal probability, and the search ends.

4. If there are no free sites for the new cell [e.g., all cx,y,z 4

1, (x,y,z) being the coordinates of the four nearest neigh-

bors]

then the new cell will displace a neighbor cell chosen

at random.

5. The displaced cell will search again for a free-space

element (cf. steps 2–4).

Biomass Detachment

To maintain the spherical geometry of the gel bead system,

a mechanism for biomass detachment must be introduced.

We adopted, in the 3D model, the most simple approach: if

the space in which the newly formed biomass has to be

placed is located outside the carrier sphere then the micro-

organisms are removed. Although the colony expulsion

seems also to be a real mechanism of cells’ detachment

from the gel beads (Wijffels, 1994), only this ‘‘single-cell

release’’ mechanism is considered here. In the future, more

attention will be paid to detachment of biomass from bio-

film structures.

Boundary Conditions

The substrate uptake from the environment is governed by

a set of specific boundary conditions. For colonies expand-

ing in a spherical bead (the particular case discussed in this

article), the substrate concentration is maximal and constant

outside the bead. If we neglect external mass transfer effects

then the boundary condition is:

S = 1 = constant (at any t)

for r~x,y,z! = =x
2 + y

2 + z
2 . Rbead (5)

If the external mass transfer resistance is important, the

value of the substrate concentration surrounding the gel

bead is computed as:

S 41 −
1

Bi

dS

dX
U

X=1

(at any t)

for r~x,y,z! = =x
2 + y

2 + z
2 . Rbead (6)

where the dimensionless parameter, Bi 4 kSd/DS, repre-

sents the ratio between the maximum substrate transfer rates

outside and inside the bead. This type of boundary condition

has been used in the 3D simulations.
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Initial Conditions

The initial conditions, as well as the boundary conditions,

are specific for the case studied. We will present here only

the initial states of variables used in modeling the system in

which cells are growing immobilized in gel beads (see

Model Evaluation section).

Substrate

At time zero, substrate is at its maximum concentration and

uniformly distributed in the space S(t40)
x,y,z 4 1 for all (x,y,z)

elements.

Biomass Density

A certain initial concentration of cells must be specified

within the representative volume. How to distribute the bio-

mass depends on the particular system geometry (and on the

problem in question). Biomass can be uniformly distributed

throughout a sphere of gel carrier and this case will be

presented in this work. For development of a biofilm on a

planar surface or on a sphere, microorganisms can randomly

attach to the target surface; this application will be dis-

cussed in a forthcoming article.

Due to the fact that the number of volume elements (N3

elements for cubic space or N × M × L for any other rect-

angular space) is much higher than the initial number of

bacteria introduced in the reference space, we can assume

that there is only one bacterium in each element that be-

comes inoculated. Thus, the biomass density in each inocu-

lated grid element is simply the ratio between the mass of a

single bacteria (mcell) and the volume of a grid element with

the size, d/N,

mcell

Velem

= mcell ·
N

3

d
3
.

Then, the fraction of biomass from the maximum density

will be:

f =
mcell

cXm

N
3

d
3

(7)

where d is the dimension of the considered space (in the

example in what follows, the diameter of gel sphere). Thus,

the biomass content in each inoculum volume element is

C(t40)
x,y,z 4 f.

Occupation State

Calculation of the initial number of volume elements inocu-

lated begins with the assumption that the initial concentra-

tion of biomass in the gel is X0 (kg biomass m−3 bead).

Knowing the bead diameter, d, the mass of bacterial cells,

mb (kg biomass), introduced in one bead is:

mb4

pd
3

6
X0 (8)

If the mass of one bacterial cell is mcell, then the number of

volume elements inoculated is:

n0 =
pd

3
X0

6mcell

(9)

GENERAL PROCEDURE

The algorithm for microbial cells growing in a diffusional

gradient of substrate is as follows:

● Initialization. Seed the carrier surface or bead volume

with microorganisms. n0 volume elements will be inocu-

lated randomly with an amount of biomass f and the

corresponding sites on the solids matrix will be marked

as ‘‘occupied.’’ Specify also the initial substrate field.

● Step 1. Find the substrate distribution at time t + dtC:

S(t+dtC). The balance equation will be solved by an itera-

tive algorithm (overrelaxation or the alternating-

directions implicit method, see Appendices), starting

with S(t), until a quasi-steady state is reached (the con-

centration S at t + dtS converged). During this step, the

matrices of biomass density, C, and occupation state, c,

are unchanged. We can do this because the growth of

biomass is very slow in comparison with substrate diffu-

sion and consumption. The time step used for relaxation

of S is dtS << dtC (usually dtS < 1 s and dtC 4 1000 s).

● Step 2. Solve the biomass balance. With the obtained

S(t+dtC), the biomass growth rate is used in each grid el-

ement of C(t) to calculate C(t+dtC). The biomass state of t

+ dtC can be found either by an analytical expression or

by a numerical integration step.

● Step 3. Redistribute the biomass according to the au-

tomaton rules. Check each element that contains biomass

to determine if the maximum density has been obtained

(C(t+dtC)
x,y,z ù 1). If yes, then biomass will be split in two

equal parts and will be placed somewhere in space ac-

cording to the discrete algorithm just presented. The oc-

cupation state matrix, c, will also be updated.

Then the algorithm goes back to step 1 to find the substrate

distribution for the new state of biomass matrix, C(t+dtC).

The evolution of this algorithm is presented in Figure 1.

MODEL EVALUATION

Immobilized Cells in Gels

Growth of immobilized cells has been studied extensively in

recent years (Willaert and Baron, 1996). As growth pro-

ceeds in the gel, microcolonies expand until the surface of

the beads is reached. At high initial biomass concentrations,

many small microcolonies will be formed. After some time,

colonies situated near the gel surface will become larger.
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Finally, a compact biofilm layer will result at the surface of

beads. If the initial biomass concentration is low, fewer but

larger colonies will be formed (Wijffels et al., 1991a, b).

The case modeled here aims to validate the proposed

combined differential–cellular automaton model, by show-

ing a satisfying interpretation of recent experiments on ni-

trification with immobilized cells done by Wijffels et al.

(1991a, b). Two kinds of data will be compared: nitrifica-

tion with ammonia oxidizers (Nitrosomonas europaea) at

different inoculum concentrations and nitrification with ni-

trite oxidizers (Nitrobacter agilis) at different dissolved

oxygen concentrations. In both cases, oxygen is the limiting

substrate.

It is important to establish what predicted quantities will

be compared with the experimental results:

1. The evolution of global oxygen consumption rate will be

the main quantitative validation point. The change in the

consumption rate in time was determined for different

dissolved oxygen concentrations and also at different

biomass inoculum concentrations.

2. The biomass distribution in beads was measured and the

results are compared with predictions of our model.

3. The substrate concentration profile in the bead was not

measured by Wijffels et al. (1991a, b). Only in another

experiment with biomass immobilized in agar layers was

oxygen concentration measured with microelectrodes.

Therefore, only a qualitative agreement between simu-

lated profiles and measured ones is provided.

Parameters

We use the same parameters for microbial growth and dif-

fusive O2 transport as Wijffels et al. (1991a) did in the

dynamic modeling of immobilized Nitrosomonas europaea

(Table I, column a) and for Nitrobacter agilis (Table I,

column b).

The rate of substrate (dissolved oxygen) consumption is

(Beeftink et al., 1990; Wijffels et al., 1991a):

Figure 1. An example of computational steps used in one cycle by the

algorithm of diffusion–reaction–growth. On substrate maps (S), the darker

the gray nuance in a grid element, the lower the substrate concentration. On

occupation maps (c), white means liquid, gray is the carrier, and black are

spaces occupied by bacterial colonies. On biomass maps (C) the density in

colonies varies from 0 to 1 and, accordingly, the color from white to black.

The four substrate maps show the relaxation steps to a steady state (algo-

rithm step 1). The substrate concentration in this steady state is then used

to calculate the new biomass density in each grid element (step 2). In those

elements where the critical biomass density has been reached, the biomass

will be split and redistributed in space (step 3).

Table I. Parameters used in simulations: (a) variation of inoculum concentration (b) variation of dissolved oxygen in bulk liquid.

Parameter Symbol

Value

Units(a) (b)

Microorganism Nitrosomonas

europaea

Nitrobacter agilis

Total number of volume elements N3 106 106 —

Initial concentration of biomass X0 2 z 10−3 and

2 z 10−5

4.5 z 10−3 kgX m−3

Initial concentration of substrate cS,in cS0 cS0 kgS m−3

Substrate in liquid volume cS0 3.84 z 10−3 0.384 z 10−3,

1.216 z 10−3,

and 2.56 z 10−3

kgS m−3

Initial number of volume elements containing biomass

[in 3D simulations, cf. Eq. (9)]

n0 210 and 21,000 47,100 —

Fraction from the maximum biomass initially placed

in inoculated elements [cf. Eq. (7) for N 4 100]

f 5.56 z 10−4 10.8 z 10−4 —

Maximum specific growth rate mm 1.52 z 10−5 1.0 z 10−5 s−1

Growth yield from substrate YXS 0.045 0.0362 kgX kgS
−1

Monod saturation constant KS 3.5 z 10−4 3.75 z 10−4 kgS m−3

Maintenance coefficient mS 3 z 10−5 3.52 z 10−5 kgS kgX
−1 s−1

Maximum biomass concentration cXm 70 46 kgX m−3

Diffusion coefficient DS 2 z 10−9 2 z 10−9 m2 s−1

Bead diameter d 2 z 10−3 2 z 10−3 m

External mass transfer coefficient kS 3.7 z 10−5 3.7 z 10−5 m s−1
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rS(cS,cX) 4 Smm

YXS

+ mSD cX

cS

KS + cS

(10)

The net rate of biomass formation is:

rX~cS,cX! = YXS~rS~cS,cX! − mScX! (11)

The kinetic model used by Wijffels et al. (1991a) is a com-

bination of the models of Pirt (1966) and Herbert (1959).

Real biomass growth is governed by the specific growth

rate, mm, and decay is included by the maintenance coeffi-

cient, mS, and yield, YXS. At low substrate concentration (in

the middle of the gel bead), this model will perform like the

Herbert model, allowing negative net biomass growth. At

high substrate concentrations (near to the bead surface) it

acts like the Pirt model, reaching an observable maximum

growth rate.

Table I also shows that one million volume elements are

used and only a very small number of these are initially

inoculated.

Validation of Numerical Methods

To check if the numerical method used for relaxation of the

substrate field gives results accurate enough to be compared

with experimental data, a series of computational tests was

carried out. All the grid elements containing the spherical

bead were, for this purpose, filled with biomass at different

concentration levels: 0.7, 7, and 70 kg m−3
bead. Then, the

balance of substrate in steady state was solved by three

different methods. Parameters were those from Table Ia,

without external resistance to substrate transfer to the bead.

First, an orthogonal collocation method (Finlayson, 1972;

Villadsen and Stewart, 1967) was used to solve the unidi-

mensional balance of substrate (substrate concentration

variable only along the radius). Because, for high biocata-

lyst densities, the consumption rates of substrate are very

high, a very steep substrate profile would be obtained.

Therefore, 25 collocation points were put in the range be-

tween 0 and 1, with a higher density between dimensionless

radius 0.9 and 1. Results obtained by this method were used

as reference, being very close to the exact solution of the

differential equation. In the second method, for the same

system, a two-dimensional substrate balance was solved to

the steady state by the alternating directions implicit (ADI)

method. The size of the square grid used here was 600 × 600

elements. The third test was done for the 3D model, using

the ADI method above on a 120 × 120 × 120 grid.

For all three methods, the dimensionless substrate con-

centration was plotted against the dimensionless radius of

bead. Concentration profiles for the three methods were

obtained and were almost identical (Fig. 2).

Global oxygen consumption rates were computed from

the obtained O2 concentration profiles and the results pre-

sented in Table II. One can imagine more procedures to

calculate the global rate (see Appendix 2); that is, using the

average O2 gradient at the bead surface and Fick’s law (flux

method), or using the integral of substrate consumption

rates in each volume element (global method). It seems that,

for high biomass densities, the rate cannot be well approxi-

mated by the flux method because of the very steep oxygen

profile (a small change in slope at the surface of bead leads

to big changes in rate values). Therefore, the global method

was used when we compared experimental rates with those

computed by the 3D model.

Two-Dimensional Model

A 2D grid can represent, for instance, a thin slice cut

through the center of the bead. By neglecting colony ex-

Figure 2. Comparison between calculated substrate profiles in the gel

sphere at biomass concentrations of 0.7 (j and h), 7 (d and s), and 70

(m and n) kg m−3, respectively. Filled symbols indicate points calculated

with the 3D model (120 × 120 × 120); empty symbols are points calculated

with the 2D model (600 × 600). Lines indicate interpolation between the

solution of the unidimensional reaction–diffusion model at 25 collocation

points.

Table II. Comparison of global oxygen consumption rates calculated by different methods (rs in

mol O2 m−3
bead s−1).

Fraction from

maximum

biomass

density, f

1D model

(orthogonal

collocation

in 25 points)

2D model

600 × 600

3D model

120 × 120 × 120

Flux method Global method Flux method Global method

1 0.0505 0.0426 0.0485 0.0280 0.0400

0.1 0.0153 0.0140 0.0158 0.0113 0.0133

0.01 0.0042 0.0039 0.0043 0.0035 0.0040
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Figure 3. The spatial distribution of biomass and substrate in a 2D system with N 4 500, NS 4 250 at t 4 4, 6, 8, and 10 days (plots a–d, respectively).

Substrate (1a–d) and biomass (2a–d) plots are for low inoculum density, n0 4 20, whereas substrate (3a–d) and biomass (4a–d) maps are for high inoculum

density, n0 4 1000. Also note the striking resemblance of biomass map (4c) with (4e), picture of real colonies immobilized in the gel sphere (thin slice

through the middle of the bead; see Wijffels [1994]). On substrate maps, the darker the gray area of a region, the lower the substrate concentration there.

On biomass maps, white indicates liquid, gray indicates carrier, and black indicates spaces occupied by bacterial colonies.



pansion in a third dimension we would expect the model to

predict larger colony diameters in 2D than observed in ex-

periments. This is because the same amount of newly

formed biomass must be distributed in a disk instead of a

sphere. However, for the 2D case, substrate for growth is

coming from only two directions, thus less substrate is

available than in a 3D model. Therefore, the 2D model will

be used only to obtain qualitative results and to demonstrate

the differences from the 3D approach.

Our purpose was to study the dynamics of the reaction–

diffusion–growth system for different initial biomass con-

centrations in the bead. For the 2D model, two hypothetical

cases with n0 4 20 and n0 4 1000 grid elements initially

inoculated in a 500 × 500 matrix will be presented here. All

the other parameters are those from Table I (Column a), for

nitrification with immobilized Nitrosomonas europaea.

The results of the 2D simulations are shown in Figure 3.

On substrate maps, the darker the gray area of a region, the

lower the substrate concentration there. On biomass maps,

white means liquid, gray is the carrier, and black are spaces

occupied by bacterial colonies. When the number of inocu-

lated elements was low (e.g., 20 in Fig. 3.2a–d), then large

colonies were obtained. Diffusional limitation in the gel did

not play an important role in simulation times of less than 6

days (Fig. 3.1a–b). But, after 6 days, the lack of substrate in

the middle of the bead (Fig. 3.1c–d) prevented colonies in

the middle of the bead from growing further (Fig. 3.2c–d).

Diffusional limitation of substrate into the colonies was sig-

nificant after a certain colony size was reached.

In the case of dense initial distribution of biomass in the

2D grid (Figs. 3.3a–d and 3.4a–d), a differentiation in colo-

nies size occurred from the early stages. Substrate diffu-

sional uptake rate was low compared with its consumption

in many colonies. As a result, colonies situated close to the

surface grew faster and ultimately formed a dense bacterial

layer. This phenomenon was experimentally observed by

Wijffels et al. (1991a, b, 1994). A resemblance between the

computed biomass map (Fig. 3.4c) and image of real colo-

nies immobilized in the gel sphere, observed in a thin slice

through the middle of the bead (Fig. 3.4e), is obvious. The

corresponding average oxygen and biomass concentration

profiles in the biocatalytical sphere, as they evolve in time,

are shown in Figure 4.

Three-Dimensional Model

Why Three-Dimensional Modeling?

Calculations in a 2D system are of course easier; that is, one

can work in a more refined grid and in a shorter computa-

tional time. Also, the same time average substrate and bio-

mass profiles can be easily computed. However, when com-

paring the sizes of real biomass colonies with the 2D-

simulated ones, differences appear. This is merely because

representation of microbial growth in a flat space has a

major drawback; that is, in reality, colonies expand in three

dimensions. Working in a 2D space, the number of pre-

dicted colonies remains equal to the number of initial in-

oculum elements (death being neglected). However, in a 3D

space, any 2D ‘‘observation window’’ will be periodically

penetrated by colonies expanding from the third dimension.

This effect is clearly shown in Figure 5. After 5 days, four

colonies appeared in a section made through the middle of

the sphere (Fig. 5.1a). Corresponding, dark spots on the

substrate distribution map could be seen (Fig. 5.2a). How-

ever, there were also other spots, indicating consumption of

substrate by colonies in slices closer to or further from our

observation slice. Indeed, after a certain time period, some

of these neighboring colonies grew and appeared in the

reference slice. In this way, the number of colonies counted

continuously increased, an effect that cannot be represented

in two dimensions.

Variation of Inoculum Concentration in Relation
to Bead Performance

One of the most interesting experimental results obtained by

Wijffels (1994) is that the initial biomass concentration in a

gel carrier greatly affects the performance of the reactor.

Starting with different inoculum concentrations we have

seen that a gradient in colony sizes is obtained in 2D as well

as 3D simulations (a continuous change from bigger colo-

nies at the surface to smaller colony sizes at the middle of

the gel bead).

Similar trends produced by the two-dimensional model

were also observed in the 3D results. Colonies grown from

a low initial concentration of microorganisms in gel (Fig. 5)

were bigger than those grown starting with dense inocula-

Figure 4. Average oxygen (1 and 3) and biomass (2 and 4) concentration

profiles for low (1 and 2) and high (3 and 4) inoculation density. Graphs

correspond to the 2D distributions presented in Figure 3, at t 4 4, 6, 8, and

10 days.
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tion (Fig. 6), which is because substrate is depleted faster in

the latter case (Fig. 7a). Figures 5.1c and 5.3c show that, for

low initial inoculum density, after a few days, larger colony

sizes developed closer to the substrate source (the spherical

boundary). For high inoculum density only the colonies

situated near to the surface obtained substrate and they

grew, forming a continuous bacterial layer (Fig. 6c).

The substrate concentration profiles in the gel agree

qualitatively with those measured with an oxygen micro-

sensor by Wijffels (1994) in agar slabs. Due to external

mass transfer resistance, the substrate concentration at the

surface decreased in time and the concentration gradient

became steeper (biomass accumulation leads to higher con-

sumption rates). In the case of low inoculation density, sub-

Figure 5. (1a–c) Maps of space occupation with biomass in a slice at the middle of the bead, over time. (2a–c) Maps of substrate distribution in a slice

at the middle of the bead, over time. (3a–c) 3D plot of space occupation with biomass. The section is a median slice with a thickness of 40% of the bead

diameter. This simulation was carried out with the 3D model using low inoculum concentration. Time: (a) 5 days; (b) 10 days; (c) 20 days. Significance

of gray areas same as in Figure 3.
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strate was still available in the center of the bead after 10

days (Fig. 7b), whereas, for high initial biomass concentra-

tion, it was completely depleted after only 5 days (Fig. 7a).

This was also the moment when the global rate stopped its

exponential growth (inflection point) and tended to be lim-

ited by the rate of diffusion (Fig. 9).

Although not as pronounced as for high inoculum con-

centration, the tendency to form more biomass near to the

surface existed also for low inoculum at prolonged time

periods (Fig. 5.3c and Fig. 8b). The ‘‘sawtooth’’ shape of

the biomass profile toward the center of the bead was due to

the higher uncertainty for averaging over a small number of

volume elements.

Finally, we also compared the measured rates of substrate

consumption (mol O2 m−3
bead s−1) with the output of our

model. In all 3D simulations, external mass transfer resis-

tance was taken into account. All parameters (physical and

biological) used in this simulation (Table I, column a) were

those measured or selected from Wijffels (1994). The agree-

ment between computer-simulated and measured consump-

tion rates was good for high inoculation and poor for low

inoculum concentration (Fig. 9). This is because, in the

present model, we did not consider whole colony expulsion

when the colony reached the surface of the bead (cf.

Wijffels, 1994). If only single cells that expand out of the

sphere are released into the liquid, a dense biomass layer

would develop at the surface. This would lead to a much

higher oxygen consumption rate than that observed in prac-

tice and would therefore explain the discrepancy in Fig-

ure 9.

Variation of Dissolved Oxygen Concentration in
Relation to Oxygen Uptake Rate

One additional check was done comparing the macroscopic

oxygen consumption rates of the immobilized nitrite-

Figure 6. Maps of space occupation with biomass in the middle of the bead (3D model, high inoculum concentration). Time: (a) 5 days; (b) 10 days;

(c) 20 days.

Figure 7. Calculated dimensionless substrate concentration profiles

along the sphere radius, over time, from day 1 to day 10 (3D model). (a)

High inoculum concentration; (b) low inoculum concentration. Symbols

correspond to those in Figure 8.
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oxidizing bacterium, Nitrobacter agilis, at three different

oxygen concentrations in the liquid. The parameters used in

the model are given in Table Ib (exactly the same as Wi-

jffels et al. [1991a, b] used in their model evaluation).

As can be seen in Figure 10, there was a good agreement

between experimentally measured rates and predicted ones

for all three dissolved oxygen concentrations. This suggests

once again that our approach was quantitatively correct and

can adequately represent at least diffusion–reaction–growth

systems.

DISCUSSION AND CONCLUSIONS

A new diffusion–reaction–growth model for immobilized

microbial growth was developed. Although the spatial sub-

strate distribution was assumed to be continuous and was

found by solving conventional differential equations, the

biomass spreading was modeled by a discrete cellular au-

tomaton algorithm. Newly formed biomass finds a place in

space by ‘‘pushing’’ its neighbors to adjacent, unoccupied

space. This is a new and more realistic feature, with other

colony models having considered only growth of cells sur-

rounded by free space (Hawboldt et al., 1994; Wimpenny

and Colasanti, 1997; Zygourakis et al., 1991) or growth of

motile bacteria that perform a random walk in neighboring

space (Ben-Jacob et al., 1994; Schindler and Rataj, 1992).

Moreover, these models are not quantitative.

Validation of the model was done for an immobilized

cells system. Only diffusion-controlled growth and spread

of colonies was considered. For the 3D model, a highly

simplified mechanism for detachment of biomass spreading

outside the gel carrier was also taken into account. Global

oxygen uptake rates, concentration profiles for oxygen, and

Figure 8. Calculated dimensionless biomass concentration profiles along

the sphere radius, over time, from day 1 to day 10 (3D model). (a) High

inoculum concentration; (b) low inoculum concentration. Symbols corre-

spond to those in Figure 7. Note: the ordinate scale in (b) is 10 times

smaller than in plot (a).

Figure 9. Evolution in time of the global oxygen consumption rate. Ini-

tial biomass concentration in the gel is X0 4 2 z 10−3 and 2 z 10−5 kg m−3

(markers d and j for experimental data and lines for model results). The

parameters used in this 3D simulation for growth of Nitrosomonas euro-

paea immobilized in gel beads inoculated with different biomass concen-

trations are presented in Table I (column a).

Figure 10. Evolution in time of the global oxygen consumption rate.

Dissolved oxygen concentrations in bulk liquid are 0.4, 1.2, and 2.5 kg m−3

(markers j, m, and d for experimental data and lines for model results).

The parameters used in this 3D simulation for growth of Nitrobacter agilis

immobilized in gel beads are presented in Table I (column b).
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biomass and colonies size were compared with those mea-

sured by Wijffels et al. (1991a, b) and Wijffels (1994).

Results of calculations were both qualitatively and quanti-

tatively in agreement with experimental data. Therefore,

prediction of biomass and substrate distribution in two and

three dimensions is now possible.

Two-dimensional representations use much less compu-

tational resources and can be easily implemented on ordi-

nary personal computers. Therefore, the grid can be refined

up to the bacterial level (∼ 1 mm). However, 3D models give

results comparable to experimental values. When properties

such as porosity, density, or biofilm shape are the output of

the model, only 3D models provide good results (forthcom-

ing study). Thus, 3D models must be preferentially used for

heterogeneous biofilm systems.

The proposed combined differential–discrete cellular au-

tomation approach is expected to be an excellent tool for

study of biofilm development, because, using this approach,

the geometrical shape and distribution of the biomass colo-

nies, the porosity, and other structural parameters are pre-

dicted. In this respect, the approach is totally different from

presently available models that need the biofilm geometry

and porosity as input. One limitation of the model presented

here is that it does not account for other processes that affect

the biofilm morphology, such as attachment of solid par-

ticles, detachment of small or large biofilm patches, EPS

production, or death of aged or starving colonies. Math-

ematical descriptions of these processes as a function of

location in the biofilm still await experimentation.

APPENDIX 1: CALCULATION OF AVERAGE
SUBSTRATE CONCENTRATION

Averaging of the substrate concentration, as well as the

biomass density, was carried out on concentric rings (in 2D)

and on concentric shells (in 3D) as follows:

S~r! =
(

i

N~r!

Si~r!

N~r!
,

;r = =x
2 + y

2
for 2D or

;r = =x
2 + y

2 + z
2

for 3D (12)

where N(r) is the number of grid elements in the ring with

radius r.

APPENDIX 2: CALCULATION OF GLOBAL
OXYGEN CONSUMPTION RATE

Flux Method

If the flux of substrate entering the bead is given by Fick’s

law, then the rate of substrate comsumption in one bead can

be expressed as:

QS,bead = 4pR
2

· DS

dcS

dr
U

r=R

(13)

The number of beads in the reactor can be calculated from

the solids fraction,

nbeads =
V«S

4

3
pR

3

,

so that the substrate consumption rate per reactor, QS (g

O2/s), will be:

QS = QS,bead nbeads =
3

R
V«SDS

dcS

dr
U

r=R

(14)

And, finally, the global volumetric oxygen consumption

rate, rS (mol O2 m−3
gel s−1), as a function of dimensionless

concentrations and length (S = cS /cS0 and X = r/d), is:

rS =
3

R

DS

MS

cS0

2R

dS

dX
U

X=1

(15)

The concentration gradient at the surface of the bead can be

approximated, knowing the average substrate concentration

in concentric shells, Si (with i 4 1 . . . NS /2):

dS

dX
U

X=1

≈
SNS/2 − SNS/2−1

DX
(16)

where DX 4 1/NS (NS is the substrate grid dimension).

Thus, knowing the average substrate profile at a certain

moment, we can calculate the macroscopic substrate con-

sumption rate as:

rS =
3NS

2

DScS0

R
2
MS

~SNS/2 − SNS/2−1! (17)

Global Average Method

The idea is to sum the rate contributions from all volume

elements occupied with biomass. The rate of oxygen con-

sumption in one element is rS(x,y,z) (kg O2 m−3
bead s−1). Thus,

the flow of oxygen consumed in one bead is:

QS,bead = (
e eVbead

rS ~x,y,z! · Ve ~x,y,z! (18)

where e represents all elements with volume Ve situated at

coordinates (x,y,z) in the bead.

Because all volume elements are identical and the num-

ber of beads in the reactor can be approximated, the sub-

strate consumption rate per reactor, QS (kg O2/s), is:

QS =
V«S

4

3
pR

3

Ve (
e eVbead

rS ~x,y,z! (19)

The rate of oxygen consumption per reactor volume will be

(on molar basis):
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rS =
1

MS

3

4pR
3

Ve (
e eVbead

rS ~x,y,z! (20)

in which the volume of a grid element is Ve = (d/N)3, and the

reaction rate in the element as a function of dimensionless

concentrations is:

rS~x,y,z! = Smm

YXS

+ mSD cXm · Cx,y,z

Sx,y,z

KS/cS0 + Sx,y,z

(21)

APPENDIX 3: NUMERICAL METHOD USED TO
SOLVE SUBSTRATE CONCENTRATION FIELD

To solve the substrate field by a numerical method, Eq. (2)

will be discretized according to a finite difference scheme.

For simplicity, only the 2D case is discussed:

dtS

dt
=

DS

d
2

dx
2
S

~dX!
2

+
DS

d
2

dy
2
S

~dY!
2

− Smm

YXS

+ mSD cXm

cS0

C
S

KS

cS0

+ S

(22)

By grouping the terms, we rewrite the equation:

dtS = ~D1 dx
2
S + D2 dy

2
S − rS~C,S!!dt (23)

where dtS = S(t+dt) − S(t), d2
xS = Sx+1,y − 2Sx,y + Sx−1,y, d2

yS

= Sx,y+1 − 2Sx,y + Sx,y−1, D1 4 DS/(ddX)2, D2 4 DS/(ddY)2,

and rS(C,S) is the substrate consumption term.

Several iterative schemes are described in the literature.

In block iterative methods (Ames, 1977; Richtmyer and

Morton, 1994), groups of components of S(t+dt) are modified

simultaneously in such a way that we must solve a linear

system for the whole subset of modified components at

once. Therefore, individual components are defined implic-

itly in terms of other components of the same group. The

blocks may be single rows (or columns) of the matrix, so

that an algorithm is:

While *Sx,y
~t+dt! − Sx,y

~t! * . admitted_tolerance

for each column y e @0, M#

solve the tridiagonal system with x e [0, N]:

a1 Sx+1,y
~t+dt! + a2 Sx,y

~t+dt! + a3 Sx−1,y
~t+dt! =

f ~Sx,y
~t! ; Sx+1,y

~t! ; Sx−1,y
~t! ; Sx,y+1

~t! ; Sx,y−1
~t! !

The alternating direction implicit method (ADI) for multi-

dimensional heat flow and diffusion problems (Peaceman

and Rachford, 1955), combines unconditional stability with

calculational simplicity (Ames, 1977). For the 2D diffu-

sion–reaction equation, two difference approximations on a

square net are used alternatively on successive time steps of

dt/2 each:

S
~t+dt/2! − S

~t! = D1

dt

2
d x

2
S

~t+dt/2! + D2

dt

2
dy

2
S

~t!

− rS~C
~t!, S~t!!

dt

2
(24a)

S~t+dt! − S~t+dt/2! = D1

dt

2
dx

2
S~t+dt/2! + D2

dt

2
dy

2
S~t+dt!

− rS~C
~t!, S~t+dt/2!!

dt

2
(24b)

where S stands for Sx,y. We use an iteration procedure. First,

the initial set S(0)
x,y is selected. Having determined S(t)

x,y we

then calculate Sx,y
(t+dt/2) by a single row (line) iteration and

then Sx,y
(t+dt) by a single column iteration. Thus, to determine

Sx,y
(t+dt/2) from the first of these equations we must solve, for

each value of y, a set of M simultaneous linear equations:

a1 Sx+1,y
~t+dt/2! + a2 Sx,y

~t+dt/2! + a1 Sx−1,y
~t+dt/2! = b1, x = 0...N−1

(25)

where the coefficients and free term are:

a1 = − 1, a2 4 2 +
2

D1dt
,

b1 =
D2

D1

Sx,y+1
~t! + S 2

D1dt
− 2

D2

D1
D Sx,y

~t! +
D2

D1

Sx,y−1
~t!

−
1

D1

rS~C
~t!, S~t!!

The resulting matrix is tridiagonal, thereby allowing the

application of a faster algorithm to solve the system of

algebraic linear equations (the number of operations is pro-

portional with N instead of N3 as for straightforward Gaus-

sian methods). Then, similar statements apply to the single

column implicit part, and the system to be solved for each

x is:

a1 Sx,y+1
~t+dt! + a2 Sx,y

~t+dt! + a1 Sx,y−1
~t+dt! = b2, y= 0 . . . M − 1

(26)

We thank Dr. René Wijffels for permission to use his experi-

mental data and images.

NOMENCLATURE

Bi Biot number (−)

cS0 substrate concentration in bulk liquid (kg oxygen m−3)

cXm biomass maximum density in colonies (kg biomass m−3)

cS, cX substrate and biomass concentrations in volume elements (kg

m−3)

C dimensionless biomass density (−)

d bead diameter (m)

DS diffusion coefficient of substrate (m2 s−1)

f fraction of biomass from maximum biomass density in the

colony (−)

KS Monod saturation constant for substrate (kg oxygen m−3)

kS external mass transfer coefficient (m s−1)

mcell dry mass of a bacterial cell (kg biomass)

mS maintenance coefficient (kg substrate kg−1 biomass s−1)

MS molecular weight of substrate (oxygen) (kg oxygen mol−1)

n0 number of volume elements initially inoculated (−)

N, M, L sizes of biomass and occupation state matrices (−)

NS, MS, LS sizes of substrate matrix (−)

rS, rX substrate consumption and biomass formation rates (kg m−3

s−1)

R gel bead radius (m)

S dimensionless substrate concentration (−)
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t time (s)

X, Y, Z dimensionless coordinates (−)

YXS biomass yield from substrate (kg biomass/kg substrate)

X0 initial biomass concentration in the gel (kg biomass m−3 gel)

x, y, z spatial coordinates (m)

Greek symbols

dtS time step for substrate relaxation (s)

dtC time step for integration of biomass growth equation (s)

rS, rX normalized rates of substrate consumption and biomass pro-

duction (s−1)

mm maximum specific growth rate (s−1)

Matrices

S substrate matrix

C biomass matrix

c occupation state matrix
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