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For measurement of existing thread parameters using profile scanning, system error increases as pitch diameter, difference 

between the calibrating thread and measuring thread increases with the single gauge calibration method. There are several 

alignment deviations affecting the measurement of pitch diameter. To reduce the system error, a compensation method using two 

standard thread gauges to calculate the alignment deviations is proposed here. Finally, the theoretical and experimental 

comparisons between the single gauge calibration method and the proposed method are presented. The results demonstrate that 

the two gauges calibration method can effectively reduce the system error.  
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1.  INTRODUCTION 

MONG VARIOUS thread parameters, the pitch 

diameter is the most commonly used criterion for 

thread measurement. Almost all the methods are 

committed to improving the measurement accuracy of the 

pitch diameter. Classical methods and procedures for 

calibrating the pitch diameter of a thread ring, such as the 

two balls method, are executed by means of universal 

measuring machines or using coordinate measuring 

machines [1]. Modern methods, which deal with scanning 

the profile and mathematical processing of the received data, 

achieve improvement in the detection efficiency by 

calculating the multiple parameters of the thread ring 

simultaneously [2].  

Kosarevsky [3] utilized the general Hough transformation 

to deal with the thread profile data and obtained the 

intersections of each adjacent segment pair, which can 

identify the circles tangent with the profile segments. Then, 

the pitch diameter can be calculated based on the Berndt 

formula [4]. This approach is an extension of the two balls 

method actually. The accuracy of the pitch diameter result 

depends on the measurement accuracy of other parameters 

such as pitch, flank angle, and diameter of the balls. Hong [5] 

studied two mainly non-contact methods: one uses a CCD 

camera with an attached sight pipe illumination unit and the 

other uses a laser sensor and a motorized periscope. Huang 

[6] and Tong [7] achieved good accuracy for the pitch 

diameter results with the laser triangulation scanning 

method. However, the influence on the pitch diameter 

caused by the alignment deviations has not been 

comprehensively analyzed. Shchurov [8] and Kosarevsky [9] 

provided the calculation approach of the pitch diameter from 

the 3D datasets, which are obtained by the CMM and the CT 

scanner, respectively. The MasterScanner series thread 

measurement instruments, developed by the IAC 

Corporation, can present the pitch diameter result with high 

traceability. According to the published patents and articles 

[10, 11], the calculation procedure of the pitch diameter is 

based on the combination of the top diameter and the 

distance between the pitch diameter line and the top 

diameter line. The single gauge calibration method is 

adopted to compensate the error caused by the alignment 

deviations. A simplified compensation model is used in this 

case and high precision of alignment is required to guarantee 

measurement accuracy of the pitch diameter.  

The purpose of this work is to analyze the effect of 

alignment deviations on pitch diameter and propose a 

compensation method to calibrate these alignment 

deviations. The present work has been organized as follows. 

In section 1, the measurement principle is introduced. 

Section 2 analyzes the effect of alignment deviations on 

pitch diameter caused by both the probe and work piece. 

Then, the compensation method using a two gauges 

calibration is discussed in section 3. Sections 4 and 5 present 

the test results and conclusion, respectively. 

 

2.  MEASUREMENT PRINCIPLE 

The structure of the 2D thread measurement instrument 

with tactile scanning developed in our laboratory is shown 

in Fig.1.  

 

 
 

Fig.1.  Structure of the 2D thread measuring instrument. 

 

Based on the aerostatic slideway, the motion platform is 

made of a guide strip slide structure, which is driven by the 

linear motor. The position feedback is implemented by a 

grating ruler. During the measurement, the X axis platform 

moves at a constant velocity, whereas the Z axis platform 
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follows the contour curve with constant contact force 

controlled by the micro-force sensor feedback. The contour 

data are collected and processed after the scanning. Thread 

parameters such as pitch diameter, flank angle and pitch can 

be calculated from these contour data.  

 

3.  THE INFLUENCE OF THE ALIGNMENT DEVIATIONS 

The homogeneous transformation method is usually used 

to build the volumetric error model [12]. In order to express 

an arbitrary point in the whole workspace of the measuring 

instrument, we construct a coordinate system OXYZ, the 

origin of which is fixed at the initial point of the instrument. 

Besides, the coordinate system OWXWYWZW is set to 

describe the geometry model of the work piece. The work 

pieces are all axisymmetric bodies, no matter whether they 

are cylindrical or conical shapes. Consequently, the origin of 

the coordinate system OWXWYWZW can be fixed at the 

central point on the end face of the work piece. According to 

the definition of the machine coordinate, the space 

coordinates of the system can be defined as shown in Fig.2. 

 

 
 

Fig.2.  Coordinate system definition. 

 

To facilitate the display of the coordinate system, the 

alignment method shown in Fig.2. is the V-block location 

method, which is used for external threads. Internal threads 

with different location fixtures have a similar formula 

inference. The coordinate system OXYZ in Fig.2. is the 

basic coordinate system of the instrument. OWXWYWZW is 

the coordinate system for the work piece and OPXPYPZP 

represents the probe coordinate system. The coordinate 

system OWXWYWZW can be obtained through the.shifting 

transformation 
O
PW(aW,bW,cW) and rotating transformation 

(α,β,γ) from the coordinate system OXYZ. The 

homogeneous transformation matrix can be expressed as 

follows: 

 
O
W W W W( , , ) ( , ) ( , ) ( , )a b c x y zα β γ=T Trans Rot Rot Rot

   
(1) 

 

The pitch diameter is an ideal cylinder diameter, so the 

work piece can be regarded as an axisymmetric body around 

the X axis. With the definition of coordinate system, rotation 

angle α around the X axis can be equal to 0. Therefore, 
rotation transformation Rot(x,α) turns into the unit matrix, 
formula (1) can be simplified as follows: 
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Similarly, the homogeneous transformation matrix from 

the coordinate system OXYZ to coordinate system 

OPXPYPZP can be obtained as follows: 

 
O
P P P P( , , ) ( , ) ( , ) ( , )a b c x y zψ θ φ=T Trans Rot Rot Rot    (3) 

 
Considering the probe is an axisymmetric body around the 

Z axis, we then let the origin of the probe coordinate system 

OPXPYPZP be in the middle of the central line so that φ=0 
with the definition of coordinate system. Therefore, rotation 

transformation Rot(z,φ) turns into the unit matrix, formula (3) 
can be simplified as follows: 
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(4) 

 
Assume that the probe height is hP, so the coordinates of 

both upper and downward tip points in the OXYZ system 

can be described as follows: 
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where P up
P , P down

P are the coordinate vectors of up and 

down tip points in the probe coordinate system, respectively. 

The motion of the probe is restricted in the XZ plane, the 

shifting coordinates of the X axis aP and the Z axis cP 

change with the movement of the probe. However, the Y 

axis coordinate of the probe tip points will not change. 

Hence, 
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        (7) 

 
On the other hand, the abrasion of thread work piece is not 

uniform. Usually, abrasion is larger near the interface part 

when compared to other parts. Fig.3. is a sectional view of a  

ring gauge. As a result of the non-uniform abrasion, the 

fitted up and down pitch diameter lines turn out to be the 

cone's generators. 

 

 
 

Fig.3.  Sectional view of a ring gauge. 

 

To calculate the average value of the thread pitch diameter, 

we choose the distance between the Q1 and Q2 which are the 

middle points of the upper and downward pitch diameter 

line segments, respectively. Assume the coordinates of the 

points P1 and P2 in the work piece coordinate system are 
W W W W T

1 1 1 1[ , , ]x y zQ Q Q=Q ,W W W W T
2 2 2 2[ , , ]x y zQ Q Q=Q . If the 

valid length of the thread gauge is L, then 
W W

1 2 / 2x xQ Q L= = . The measuring pitch diameter, 

namely the distance between the points P1 and P2 in the XZ 

plane based on the OXYZ coordinate system, can be 

calculated as follows: 
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Q1 and Q2 are on the motion trajectory of the probe upper 

and downward tip points, respectively. Consequently,  
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Suppose that Dr is the real value of the pitch diameter,  

 

 

according to the cylindrical surface equation, the following 

equation can be obtained 

 
W 2 W 2 2

r / 4,    =1,2yi ziQ Q D i+ =         (10) 

 
Combining the (9) and (10), we have 
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Introducing (9) and (11) into (8), the calculation result of 

the pitch diameter Dm can be written as: 
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where λ=hpsψcθ, b=bP-bW which denotes the relative 
deviation along the Y axis between the probe and the work 

piece in the basic coordinate system OXYZ. The system 

error caused by the alignment deviations is defined as 

follows: 

 

r me D D= −               (13) 

 

From equations (12) and (13), the factors of alignment 

deviations that affect the pitch diameter result include: (1) 

the relative deviation b along the Y axis between the probe 

and the work piece; (2) the rotation angle deviation γ of the 
work piece around the Z axis; (3) the rotation angle 

deviation ψ of the probe around the X axis and the rotation 
angle deviation θ of the probe around the Y axis. If b=0 and 
γ=ψ=0, then Dm=Dr. Meanwhile, this illustrates that the 
other alignment deviations do not affect the calculation 

result directly for the calculation method adopted in this 

paper.  

 

4.  THE COMPENSATION METHOD OF ALIGNMENT 

CALIBRATION 

A.  The simplification of the model. 

There are three probe styles for various thread gauges 

ranging from M4 to M60 used in our measuring instrument. 

It is difficult and costly to measure all the alignment 

deviations when the probe or the fixture is fixed. These 

alignment deviations are typically calculated through 

measurement of the standard gauges and the system error 

can be compensated based on the alignment deviation 

parameters. However, during the calibration process, 

according to the measured value and real value of the 

standard gauges, it is not easy to solve the four alignment 

deviation parameters directly using equation (12). Some 

rational simplifications of equation (12) should be taken into 

account.  

The Sobol algorithm [13, 14] of the global sensitivity 

analysis method is adopted to find the degree of influence of 

the alignment deviation parameters on the system error. 

According to the Sobol theory, function f(x) can be 

decomposed as follows: 
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and so on. The total variance is defined as, 
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are called the global sensitivity indices. After squaring and 

integrating both sides of equation (14), the following 

equation can be obtained 
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Introducing the total sensitivity indices in regard to 

parameter xi 
 

T ( )( )i iS x S=∑
 

 

where S(i) denotes all the sensitivity indices including 

parameter i. 

In the equation (12) model, the parameters b, γ,ψ and θ are 
treated as independent random variables uniformly 

distributed in scope (-2 mm, 2 mm), (-5°,5°), (-5°,5°) and 

(-5°,5°). And the total sensitivity indices of each parameter 

are calculated: ST(b)=0.9798, ST(γ)=0.3554, ST(ψ)=0.0017, 
ST(θ)=1.460e-5. The sensitivity indices of the parameters ψ 
and θ are much smaller compared to the parameters b and γ.  
According to [15], the rotation angle deviation ψ of the 
probe around the X axis can be confined in scope (-1°,1°) 

with the vision detection method. If the parameter ψ is 
approximated to 0, the equation (12) can be simplified as 

follows: 
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Similarly, we have  

 
'

r' me D D= −
 

 

Then, the error between the simplified model (16) and the 

integral model (13) is 

 
'' ( , , , , , )m m rE e e D D g b L Dγ ψ θ= − = − =     (17) 

 

With the Monte Carlo method [16], the maximum model 

error Emax can be simulated with the change of thread size, 

which is shown in Fig.4. Since the parameters of b, γ,ψ and 
θ are uniformly distributed in their scope, the random 
number ξ from [0,1] is used to generate the values. For 
example, b = -2+ξ (2-(-2)) = -2+4ξ. And the number of 
Monte Carlo trials M is set to be 106 according to [17]. For a 

settled couple of L and Dr, the Emax = max(Ei), i=1,...,M. 

 

 

 
(a) hP=9mm 

 

 
(b) hP=5mm 

 

 
(c) hP=3mm 

 
Fig.4.  The max model errors for three type probes. 

 
For each probe type shown in Fig.4., the maximum model 

errors are less than 1 µm. Consequently, the simplification 

of substituting equation (12) with equation (16) is probable. 

  

 

B.  Rationale for the compensation of alignment calibration. 

First, two standard gauges with different pitch diameter 

sizes are selected for measurement. Suppose that the valid 

scanning lengths of the two gauges are L1, L2 and the 

measuring results of the pitch diameter are Dm1, Dm2, 

respectively. Based on equation (16), the following 

equations can be constructed 
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Solving the equations, we have 
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     (19) 

 

Then, the thread gauge for test is detected. If the valid 

scanning length of the testing thread gauge is LT, the 

compensation formula of the real pitch diameter T rD  is as 

follows: 

 

2

T T 2 T
r m

2 sin

cos

b L
D D

γ
γ

− 
= +  

 
         (20) 

 

where T
mD  denotes the measuring result of the pitch 

diameter for the testing thread gauge before compensation.  

 

C.  Uncertainty analysis.  

In metrology, the measurement uncertainty is defined as a 

“parameter, associated with the result of a measurement, that 

characterizes the dispersion of the values that could 

reasonably be attributed to the measurand” [18]. Using 

equation (20), the compensation result of the pitch diameter 

is calculated by parameters including the alignment 

deviations. Therefore, the uncertainty of the measurement 

result is a combined standard uncertainty. 

In order to simplify the expression, a variable substitution 

is taken. Let 

 
T

1 2 8

T T
m m1 m2 r1 r2 1 2 T

[ , ,..., ]

   [ , , , , , , , ]

x x x

D D D D D L L L

=

=
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and use the following equation mark to represent the 

combination of the (16) and (18) 
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T

r ( )D = Φ X                 (21) 

 

According to the combined standard uncertainty formula 

[19, Sub Clause 5.2.2], one can get  

( )

T
r

2
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1 1 1
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( ) 2 ,

c

i i j
i i j ii i j

u D

u x u x x
x x x= = = +

=
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+ 

∂ ∂ ∂ 
∑ ∑ ∑    (22) 

where T
r( )cu D  denotes the combined standard uncertainty 

of the pitch diameter result T rD ; u(xi) is the standard 

uncertainty associated with the input estimate xi; u(xi, xj) is 

the estimated covariance associated with xi and xj. However, 

the variables X are independent of each other, consequently 

u(xi, xj)=0.  

 

5.  COMPARISON RESULTS 

A.  Theoretical results. 

The comparison between single gauge and two gauges 

calibration is considered to be the limiting situation for 

alignment deviation scope, which assumes b=-2 mm, γ=5°, 
ψ=5° and θ=5°, based upon the hypothesis that the diameter 
of the thread gauges to be measured ranges from 15 mm to 

50 mm corresponding to the fixture support range. Assume 

the valid length LT of the gauges to be measured varies from 

8 mm to 30 mm.  

Fig.5.(a) shows the result of system errors for the single 

gauge calibration method. Each curve represents a 

calibrating thread gauge type. Fig.5.(b) shows the result 

errors for the two gauges calibration method. For the 

limiting situation of the alignment deviations, two gauges 

calibration method can reduce the system error much more 

than the single calibration method.  

To keep the measurement accuracy, many different 

calibrating gauges have to be prepared for the single gauge 

calibration method. However, the two gauges calibration 

method only needs two thread gauges for calibration despite 

the large alignment deviations. From Fig.5.(b), the minimum 

value of the system errors occurs when the diameter of the 

measured gauge is near the diameter of the two calibrated 

gauges. When the diameter of the measured gauge exceeds 

the diameter range of the two calibrated gauges then the 

error increases rapidly.  

In addition, the uncertainty of each test gauge can be 

calculated according to the equation (22). The Dri(i=1,2) is 

the real pitch diameter of the calibrated threads. In our 

experiment, high grade gauges are selected as the calibrated 

screw threads, the values and the measurement uncertainty 

of which are known. The uncertainty u(Dri) is 1 µm. The 

parameters Dmi(i=1,2) and 
T
Dm are obtained by the 

measurement instrument. Thus, the uncertainties u(Dmi), 

u(
T
Dm), which are related to the repeatability of the 

instrument, can be calculated according to the Bessel 

formula in type A uncertainty evaluation [18]. Based on the 

measurement data, we have u(Dmi)= u(
T
Dm)=1 µm. The 

parameters L1 and L2 are the valid length of the threads in 

the X axis, and their uncertainty depends on the positioning 

repeatability in the X axis. The linear motor and grating 

ruler are adopted in the control system. After the calculation 

by using the Bessel formula, we have u(LT)=u(L1)= 

u(L2)=0.2 µm. 

 

 
 

(a) Single gauge calibration method. 

 

 
 

(b) Two gauges calibration method. 

 

Fig.5.  The system errors for the two calibration method in a limit 

situation of the alignment deviations. 
 

The uncertainty results for the two compensation methods 

are shown in Fig.6. Although the uncertainty of the two 

gauges calibration method is a little larger than the single 

gauge calibration method, compared to the amount of the 

system error reduced by the proposed compensation method, 

the increasing amount of the uncertainty is much smaller.  

 

 
 

Fig.6.  The uncertainty of the diameter result for both 

compensation methods. 
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B.  Experimental results. 

To verify the effectiveness of the proposed compensation 

method, measurement experiments were carried out using 

thread measuring instrument, which has been developed in 

our laboratory. The thread measuring instrument is shown in 

Fig.7. The linear motor of IL12-100-A2-TR-C1 type, 

produced by the Kollmorgen Corporation, was chosen for 

the precise control. The servo driver was the 

SERVOSTAR-CD-5 from Panasonic Corporation. The 

PCI-8136 motion control card of ADLINK was adopted for 

the interface of the computer. The position data was 

monitored by the RGS20-S grating (50 nm) of the Renishaw 

Corporation. The aerostatic guideway was designed to 

reduce the transmission error.  

 

 
 

Fig.7.  The thread measurement system. 

 
First, the compensation method with single gauge 

calibration was tested. The thread gauge M20_6g(go) was 

selected as the calibrating gauge. Other thread gauges, the 

parameters of which are known, were measured. 

Measurement results for the single gauge calibration method 

are shown in Table 1.  

 
Table 1.  Measurement results for single gauge calibration. 

 

Order Type Error [µm] 

Calibration 

Gauge 
M20×2.5(go) — 

1 M20×2.5(no-go) -4.2 

2 M42×4.5(go) +8.8 

3 M24×2(go) +0.2 

4 M24×2(no-go) -3.4 

5 M16×2(go) -1.7 

6 M16×2(no-go) -8.0 

 
If the difference of pitch diameter and the thread length 

between the calibration gauge and the test gauge are smaller, 

the measurement results are more accurate. Otherwise, the 

errors become larger. Such as the test gauge 2, the 

measurement error reaches to +8.8 µm.  

Then, the same thread gauges were measured with the 

compensation method proposed in this paper. The thread 

ring gauges M20×2.5(go) and M42×4.5(no-go) were 

selected as the two calibrating gauges. The results are shown 

in Table 2.  

Table 2.  The measurement results for the two gauges calibration. 

 

Order Type Error [µm] 

Calibration 

Gauge 1 
M20×2.5(go) — 

Calibration  

Gauge 2 
M42×4.5(no-go) — 

1 M20×2.5(no-go) +0.9 

2 M42×4.5(go) +1.2 

3 M24×2(go) +0.5 

4 M24×2(no-go) -1.5 

5 M16×2(go) +1.9 

6 M16×2(no-go) +0.9 

 

The errors for both compensation methods are compared 

in the histogram shown in Fig.8. From the results it can be 

seen that the errors obtained by the two gauges calibration 

method are smaller in magnitude compared to the errors due 

to the single gauge calibration method. This suggests that 

the two gauges calibration method can compensate the 

system error caused by alignment deviations more precisely 

than the single gauge calibration method.  
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Fig.8.  The measurement error of the pitch diameter. 

 

 
 

Fig.9.  The uncertainty of the pitch diameter. 

 
Fig.9. compares the uncertainty between the two 

compensation methods. Based on the uncertainty results of 

the six gauges, it can be concluded that the uncertainties for 

the two gauges calibration method are slightly larger than 

the uncertainties for the single gauge calibration method, but 

the system error obtained by the two gauges calibration 

method is much smaller, which is in accordance with the 

theoretical results discussed previously. The results indicate 

that, although the two gauges calibration method result in 

larger uncertainty, it makes it possible to decrease the 

number of the calibration gauges used and saves the 

calibration frequency for the continuing measurement. 
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All the discussion about the result uncertainty in this paper 

is the combined standard uncertainty. When the expanded 

uncertainty is needed to express the measurement result, the 

coverage factor k can be chosen as 2 for an interval having a 

level of confidence of approximately 95 %.  

 

6.  CONCLUSION 

In this paper, the effect of the alignment deviations on 

pitch diameter of thread using the homogeneous 

transformation method is presented. The global sensitivity 

analysis is adopted to simplify the compensation equations. 

A compensation method with two gauges calibration is 

proposed. Compared to the single gauge calibration method, 

the advantage of the proposed method is that the system 

error of pitch diameter caused by the alignment deviations 

can be significantly reduced for the thread gauges which are 

supported by the corresponding fixture and probe. 

Measurement uncertainty analysis for the compensation 

formula indicates that although the two gauges calibration 

method results in larger uncertainty, it makes it possible to 

decrease the amount of the calibration gauges and save the 

calibration frequency for the continuing measurement. 
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