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This article presents a new composite body method for numerically forming the inertia 
matrix and the bias vector of manipulators, which is more efficient than the other two 
existing types of composite body methods. The main discrepancy of this one from the 
existing ones is that all points in a manipulator are observed from the origin of the base 
frame and the distances are all measured from this origin. The required computations of 
the present method for the inertia matrix and the bias vector of a manipulator with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn 
rotational joints are (10.5n2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 38.5n - 85)M + (6n2 + 39n - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA70)A and (12.5n2 + 5.5n + 
3)M + (9n2 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn)A, respectively, where “M” denotes multiplications, “A” does addi- 
tions. In numerically forming the inertia matrix, the present method is more efficient 
than other methods in the literature for a manipulator with five or more joints; whereas 
this method is also superior to the recursive Newton-Euler formulation in computing 
the bias vector for a manipulator with six or less joints. 

INTRODUCTION 

It is well known that the dynamic model of a manipulator can be described 

(1) 

with 

H(q)ii + b(q,il) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH is the positive definite symmetric inertia matrix, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb is often called the 
bias vector, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT is the column of actuator forces, and q is the column of general- 
ized coordinates, i.e., the displacement of joints. 

The dynamics of manipulators can be categorized in two parts: the inverse 
dynamics and the forward dynamics. Many modern control schemes for manip- 
ulators require the inverse dynamics that determine the actuator forces for the 
prescribed joint displacements, velocities and accelerations. Due to the de- 
mand of real time control, several efficient algorithms for the inverse dynamics 
are developed. The recursive Newton-Euler formulation’ is found the most 
efficient in the literature.* Recently, researchers have been struggling to im- 
prove the efficiency of this formulation. Two of the most efficient algorithms 
based on the recursive Newton-Euler formulation were proposed by Khalil 
and Kleinfinger3 and Balafoutis et al.4 

The forward dynamics are required while the motion simulation of manipula- 
tors is performed. The object is to solve the joint accelerations from (1) when 
the actuator forces are given as input values. The joint velocities and displace- 
ments can be obtained by integrating the joint accelerations, and are then used 
to calculate the bias vector. The research of the forward dynamics focuses on 
the formulation of the inertia matrix and the bias vector, which is the central 
topic of this article. 

An industrial manipulator is different from a general multibody system in that 
it mostly has only six links or less. This fact should be taken into account while 
we investigate the formulation of manipulator dynamics. Our goal is to look for 
an efficient formulation for a manipulator with six links or less, although this 
formulation may be less efficient for a manipulator having more than six links. 

In the literature, there have been two types of composite body (or general- 
ized body) methods for forming the dynamic model of a manipulator, which are 
more efficient than the other methods. Walker and Orins developed a compos- 
ite body method only for numerically forming the inertia matrix H. The bias 
vector b was computed using the recursive Newton-Euler formulation’ by 
setting q = 0. Another composite body method for forming the inertia matrix 
was derived from Lagrange’s equations by Rena~d .~ , ’  He also combined the 
resulting formulation with the reduced Christoffel symbols symbolically to 
form the bias vector. Based on this method, Burdickg established a LISP-based 
program, EMDEG, to automatically generate the symbolic dynamic model of 
manipulators. Vukobratovic et al. extended the Renaud’s formulation to the 
bias vector, and established an algorithm for numerically forming the inertia 
matrix and the bias vector of a manipulator with rotational joints. An alterna- 
tive algorithm of the Renaud’s formulation is recently proposed by Fijany and 
Bejczy.”.’* They derived a recursive formulation for the inertia matrix which is 
similar to that of Walker and Orins in structure, but is equivalent to Renaud’s 
formulation in substance. Nevertheless, it is not more efficient than the original 
Renaud’s formulation (see Appendix). 

An important discovery by Renaud is that some combinations of the inertia 
parameters of the links in a composite body are invariant to the manipulator 
motion (cf. (AS) and (A6) in Appendix). These invariant terms can be inter- 
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preted with the concept of the augmented bodyI4 as the first moment and the 
inertia tensor of an augmented b ~ d y . ~ , ~  Renaud8 and Balafoutis et al.4 adopted 
this recognition to reformulate the recursive Newton-Euler formulation in 
terms of these invariant terms, independently, which is found computationally 
superior to the original one.' 

For numerically forming the inertia matrix, there is another method, which 
was developed by the author of this article in his earlier work.13 The basis of 
this method is an explicit formulation which relates the entries of the inertia 
matrix to the partial derivatives of the velocities and angular velocities of links 
with respect to the joint velocities. The algorithm based on this formulation is 
only adequate to manipulators with few joints since its computational complex- 
ity is of order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn3.  

This article presents a new type of composite body method for numerically 
forming the inertia matrix and the bias vector of manipulators. We try to derive 
a closed-form formulation from the composite body theory of Walker and Orin5 
since we believe that a closed-form formulation can improve the efficiency. 
This is achieved by obseving all points in a manipulator from the origin of the 
base frame. The formulations are derived in the second and third sections. An 
algorithm and a comparison of efficiency with other methods are presented in 
the fourth section. It is shown that the present method is more adequate to 
industrial manipulators than other methods. 

FORMULATION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOF THE INERTIA MATRIX 

The basic theory of the new composite body method is similar to that of 
Walker and Orin's. However, the forces and torques and the center of mass of 
a composite body are all observed in an inertia frame, namely the base frame zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Eo. And we want to derive a closed-form formulation for the inertia matrix, 
although some terms in the formulation are still computed in a recursive form. 
Suppose that a manipulator has n low-pair joints, which are labeled as joint zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 to 
n outward from the base. Assign a body-fixed frame on each joint, i.e., frame zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEi 
is fixed on joint i. The distance from the origin of E; to that of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEj is designated as 
$, and the distance from the origin of Ei to the center of mass of linkj as jp (Fig. 
1) .  Define a composite bodyj  as the union of l inkj to link n. The mass of the 
composite bodyj is denoted as mj ,  and the distance from the origin of the base 
flame to the center of mass of the composite body as rj. Hence 

where mi is the mass link zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi. The inertia tensor of the composite body, Jj , results 
by using Huygeno-Steiner formula14 to obtain 
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Figure 1. A composite body. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
where Ii is the inertia tensor of link i, and [ax] denotes a skew-symmetric 
matrix representing the vector multiplication (ax), i.e., [axlb zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= a x b. 

The acceleration (rj) of the center of mass and the angular acceleration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(aj) of 
the composite bodyj  due to the motion of joint j  only (i.e., the other joints are 
assumed stationary) are 

where u, is the unit vector along joint j, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq, is the displacement of joint j ,  and 

(7) 
1, for rotational joint j ,  

0, for translational joint j .  
Kj* = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1 - K . )  = 

J 

The inertia force (fTj) and torque (to) of the composite bodyj can be obtained 
using Newton-Euler equations. According to vectorial mechanics, the inertia 
force and torque can be represented by an equivalent force with an equivalent 
torque acting at the origin of the base frame, i.e., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

tm = tTj + rj x fTi = -Jjaj - mjrj x rj (9) 



Lin: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA New Composite Body Method 201 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Under the situation that only joint j moves and the gravity is neglected, the 

force and torque exerted on joint zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm by link m ,  m I j ,  are also an equivalent 
force and an equivalent torque, but acting on joint m ,  of the inertia force and 
torque of the composite body zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj .  The actuator force applied on joint m is to resist 
the component of the force or torque exerted on joint m by link m along the 
direction of joint m .  Therefore, we get the actuator force of joint m due to qj,  

Recalling (1) while setting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb = 0 and all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqi = 0, i # j ,  we have 

too, where Hmj is the (mj)th-entry of H. Since H is symmetric, we just need to 
consider the upper triangular matrix, i.e., m I j .  Substituting (4)-(9) into (10) 
yields 

This is the formulation of the inertia matrix based on the new composite body 
method. All vectors and the inertia tensors in this formulation are represented 
with respect to the base frame. Since the result of the formulation is a scalar, it 
is independent of the choice of the coordinate frame for the representation. 
Therefore, the transformation from the base frame to another frame for the 
representations of vectors and inertia tensors in the formulation does not 
change the result. It can be shown that the representations of vectors and 
inertia tensors with respect to the local frame zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEj can save quite many computa- 
tions. 

For brevity, we denote 
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where superscript "(j)" denotes the representation of a vector or an inertia 
tensor with respect to frame Ej .  Jj is the inertia tensor of the composite body j 
about the origin of the base frame in contrast to that about the center of mass of 
the composite body zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJj. pj is the first moment of the composite body j about the 
origin of the base frame. Note that 

where j+lR is a 3 x 3 matrix representing the coordinate transformation from 
frame Ej to frame E j + l .  The proof of (17) is as follows. Suppose a(j+') = 
A(j+')b(j+l), where a, b are vectors, A is a matrix mapping b to a. Thus, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(18) 

since the coordinate transformation matrix is an orthogonal matrix. This is the 
so-called similarity transformation. 

a( j) = j + l  RA(j+ l)b(j+ 1) = j +  l.RA(J'+ 1) j +  I,RT(j+ !Rb(j+l)) 
j J J J 

Let 

1 
I; = Ii - - 2 tr[Ii]E 

where E is an identity matrix, then 

Ii = I; - tr[Ii]E (20) 

It is easy to show that 

[ax][bx] = baT - tr[baT]E 

According to (20) and (21), we can compute 

and then get J)j) by the relation of 

Such an arrangement can save a few computations (see the fourth section). 

(12) 
Finally, we establish the following recursive algorithm for the variables in 
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which are in a forward recursive form, and 

which are in a backward recursive form. 

FORMULATION OF THE BIAS VECTOR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A formulation for the bias vector based on the same composite body concept 

is derived in this section. First, we should know the properties of the bias 
vector. The mth component of the bias vector is in the form of 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqm contains the gravity, and the first term on the right-hand side is 
composed of Coriolis and centripetral forces and has the following properties: 

Dmjk = Dmkj, 

(34) Jkm mkJ, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmj 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk .  

which can be derived from Christoffel symb01.~~~ Thus, we are only concerned 
with Dmkj, k 5 j and m < j ;  the others can be directly obtained using the above 
relations (32)-(34). We rewrite (31) as follows, 

D .  = -D . 

This equation indicates that the bias vector is influenced by joint velocities in 
pairs. To derive Dmkj, we can just assume that joints zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk and j, k < j, move at 
constant speed (Le., q k  = = 0)  and other joints are kept stationary. Under 
this situation, the angular velocity and acceleration of the composite body j are, 
respectively, 
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In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(37), the differential rule for a vector in a rotating frame is applied. The 
equation for the acceleration of point p fixed in a moving frame is 

ap zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= a. + w X (w x r) + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa x r + 2 0  x vo (38) 

where a. , vo are the acceleration and velocity of the origin of the moving frame; 
w ,  a are the angular velocity and acceleration of the frame, r is the distance 
from the origin of the frame to point p. On the right-hand side of (38), the 
second term is the centripetral acceleration, the third term is the tangential 
acceleration and the last term is Coriolis acceleration. Applying this equation, 
we obtain the acceleration of the origin of joint zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj ,  

and then the acceleration of the center of mass of the composite body j, 

It should be remarked that 

a i = O ,  i < j  

For the present case, the bias vector without the gravity term is 

As was mentioned above, we are only concerned with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADmkj and Dmj. Therefore, 
only the terms with q k q j  and qf in (37) and (40) are necessary to be taken in 



Lin: A New Composite Body Method zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA205 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
account for the derivation of the bias coefficients. One of Newton-Euler’s 
equations for composite body zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj in the present case is the same as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(8), the other 
is 

tu zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- J j c ~ j  - ~ j ( J j ~ j )  

= K f K j * ( - J j ( U k  X U j )  - Uk X (JjUj) - Uj X ( J j U k ) ) q k a  

- K f U k  X (J jUk) ( i kqk  - Kj*Uj x ( J j U j ) a q j  (44) 

Although the inertia forces of links k to j - 1 are not zero in the present case, 
they can be neglected since they have only the terms with qi.  We use (37), (40), 
and (44) instead of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3, (6), and (9) to repeat the procedure in the previous 
section, and finally get 

It follows from (34) that 

In the derivation of (45) and (46), the following relations were first substituted 
into (40) and (44), 

The final form of (46) is obtained by applying the following further equalities, 

(um x rj) x (uj x rj) = -rjrjT[uj X I U ,  (50) 
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Equation (51) follows from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4), (21), (23) and 

It is worth mentioning that all variables in (46) can also be computed with the 
recursive algorithm (24)-(30). That means, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHmj and dmj are related to the same 
variables. However, to compute Dm, is still time-consuming. Combining ( 3 9 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( 4 9 ,  and (47), we can alternatively compute the bias vector without the gravity 
term in a more efficient form of 

where 

i- I 

which can be calculated in a forward recursive form of 

and 

It is apparent that Sy) = 0 for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANfR if the first (N fR  - 1) joints are transla- 
tional. Therefore, we should keep in mind that dmj for j < N ~ R  is unnecessary to 
be calculated in forming the bias vector. 

It is much easier to derive the gravity term, qm, in the bias vector. Assume 
the manipulator is stationary, i.e., 4; = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqi = 0 for all i. The forces exerted on the 
manipulator are gravitational forces only. The gravitational force of the com- 
posite body j  is m j g  acting at the center of mass, where g is the gravitational 
acceleration. The actuator force applied on joint j  is to resist the component of 
the force or torque exerted on joint j  by l inkj along the direction of jointj, i.e., 

ALGORITHM 

The literature13.15 has shown that the choice of a body-fixed coordinate sys- 
tem plays an essential role in the computation efficiency of kinematic and 
dynamic problems of manipulators. In the the normal driving-axis coor- 
dinate system (also called the modified Denavit-Hartenberg notationt6) was 
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b' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 1 cos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-sine, 0 [ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, - iR ,-;s<'-''] = cos 8. sine, cos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8, cos 8, - sin f18 -d,  sin 8, 
0 0 0  1 sin P, sin 8, sin /3, cus 8,  cos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, d, cus Jc 

, - :A  = 

0 0 0 

cos@,,  -sin@,, 0 0 
sin@>, C O S ~ , ,  0 0 

0 0 0 1  

Figure 2. Illustration of the normal driving-axis coordinate system. 

used to reformulate the recursive Newton-Euler Formulation. The resulting 
formulation is more efficient than the original one based on the Denavit-Harten- 
berg notation, and made the implementation on an INTEL 8086/8087 micropro- 
cessor (5MHz clock) under 17ms for the Stanford manipulator. It is also 
showni3 that the reformulated Walker and Orin's composite body method 
based on the normal driving-axis coordinate system can save 45 multiplications 
and 28 additions for a general open chain in comparison with the one based on 
the Denavit-Hartenberg notation. This experience is adopted again to establish 
an algorithm for the formulations derived above. 

In the normal driving-axis coordinate system (Fig. 2), the z-axis of a body- 
fixed frame is the driving axis of the corresponding link, i.e., uji) = [O 0 l l T .  

sin p i ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdi cos pi ]  T ,  where bi , di , pi and 8; are the parameters of the coordinate 
system and are shown in Figure 2. Note, d; = di + qi, Oi = e l ,  ifjoint i is 
translational; otherwise di = d /  , Oi = 0; + qi; i.e., d ;  and 8 :  are the null-position 
values of di and 8;,  respectively. 

And the distance from the origin of frame Ei-l to frame Ei is ;-:di-l) = [bi, - di 
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Since it is recommended to assign the base frame zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEo coincident with frame El 

in the null-position configurati~n,’~ the distance between the origins of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEo and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
El is then zero. Thus, 

The terms, which are constant and can be calculated in advance, are listed in 
the part “initialization” of the algorithm shown in Figure 3. Examining (12), we 
find that i3:) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= u:) X r s G )  is just required for K:  = 1 in forming Hmj .  If joint N 

is required, and all Jji),  i < N ~ R  are unnecessary since Hmj is related to Jy) only 
in the case of KzKT = 1 ,  m 5 j, nor are all pii), i < N ~ R  . For the case that joint j 
is a rotational joint, but not the first, we also just need the third column of Jy) 
because of ujo” = [0, 0, 13 T .  This implies that it is unnecessary to convert Jy) to 
j y )  in the recursive procedure, so that computing Jy) can save a few of addi- 
tions. All these conclusions apply to the formulation (46) for dmj,  too. 

is the first rotational joint (i.e., KT = 0, i < Nm), only the (3,3)th entry of J.1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAYP 

Let 

where (J) i  denotes the ( i ,  j)th-entry of J. The formulations (12), (46), and (58) 
can be rewritten as 
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INITIALIZATION: 

in, = m, 
DO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi = n to 1 with increment of -1 

IF ( i  < n), mi = mi+l +mi 
i<i> = r>i> - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA;tr[r>i>]~ 

END DO i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N,R 
IF (no Rotational Joints), N ~ R  = n + 1 

No. of the First Rotational Joint 

;a<'> = 0 
bp<l> = <I> 

i < l >  = 0 

pf I ml bp<'> 

(Jp)a E (I:'>)= + ml((ip<l>)z* + ( ~ p < ' > ) ~ z )  

C1 

IF zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 3 ~  > 1) THEN 
DO j = 1 to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4~  - 1) 

END DO j 

END IF zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( h j ~  > 1) 

RETURN 
END 

START: Number of 
Operations Times 

DO i = 1 t o n  
cce 0, cce Pi sin Bi sin Pi sin Bi 

IF ( i  > l), 
IF ( i  2 N I R ) ,  g<i> = i-!R r g  <i-l> 

= [bi - d, sin pi di cos @,IT Ki: 2M 
8M 4A 

END DO i 

FOR THE CASE OF n = 1 

IF (n = 1) THEN 

H11 = K;(J:)u + Kim1 0 

K ; :  2M 1 A  (a), = -Ki(mlc:'> x g<'>), - Klql 1 for n = 1 

RETURN 

END IF (n = 1) 

$<'> = [b2 cos Bz 

W i = Z t o n  

F~~ $<i>, iP<i> , ai -<i> 

- bz sin 82 dZIT K l :  2M 1 for n 2 2 

0 6  1-1 ) EM 7A n - 2  
bp<i> = i 08 <i> + Ci <i> 3A n-1  

IF zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(i > 23, Sa<i> = i-:R(i-l <i-l> + . ia<i- l> 

i>i> = [-(ii<i>) Y (ia<i> 0 I= OIT 0 

END DO i 
FORM u;~>, i;i> M R  i > j 

D O j = l t o n - 1  

u?+'> =j+iR[O 0 1IT 0 

tThe terms enclosed within a box should be excluded when it is to form the inertia matrix only. 

Figure 3. Algorithm of the new composite body method. 
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71-2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(n - 2)(n - 1)/2 
(n - 3)(n - 2)/2 

1 for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3~ 5 n 
1 for 4~ < n 

1 for & = n 

Figure 3. continued 
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IF (m # zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1) THEN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
HmJ = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH,; -KZK;SL’> .el 

-KAKJ r?1j(i2’>)~ 

END IF (m # 1) 

END DO m 

END DO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj 

W CALCULATE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7; H 
IF (I$R 5 n) THEN 
DO j = N,R to n 

IF zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( j  = 1 1 ,  el = x a:” - m1i:’> 2M 2 A  1 for N~R = 1 

K;: 2M 1A 
[Kj :  1M 

K k R :  3M 1A 
1 for N ~ R  < n 

3M 1 for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4~ < n 

Figure 3. continued 
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3M 

1M 

3M 

EM 4A 

0 

3M 3A 

1M 1A 

3M 3A 

END DO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm 

RETURN 
END 

Figure 3. continued 

where (-), denotes the x-component and etc. 
Using (25)-(30), (54), (56), (57), and (62)-(67), we establish the algorithm for 

numerically forming the dynamic equations of a general manipulator and show 
it in Figure 3. It should be noted that the computations of the matrix product of 
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Table I. Comparison of the efficiency of five algorithms for calculating the inertial 
matrix.a 

Number of Rotational Joints 
Method n r 2  2 3 4 5 6 7 8  

Walker and M: l ln2 + 53n - 74 76 184 314 466 640 836 1054 
Orinllb A: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8n2 + 52n - 62 74 166 274 398 538 694 866 

R e n a ~ d ~ . ~ ’ ~  M: 13.5n2 + 22.5n - 68 31 121 238 382 553 751 976 
A: 9n2 + 26n - 64 24 95 184 291 416 559 720 

Lin13 M: (7n3 + 99n2 - 214n)/6 + 19 23 92 215 399 651 978 1387 
A: n3 + 13.5n2 - 28.5n + 14 19 77 180 334 545 819 1162 

Fijany and M: 4.5n2 + 115.5n - 175 74 212 359 515 680 854 1037 
Bejczyll,d A: 4n2 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA88n - 134 58 166 282 406 538 678 826 

Present M: 10.5n2 + 38.5n - 85 34 125 237 370 524 699 895 
A: 6n2 + 39n - 70 32 101 182 275 380 497 626 

The estimate of the required computations is based on the reformulated one in the work;” but 
the estimated computations herein are 2(3M + 3A)(n - 1) less than those in the work13 since baT - 
( a .  b)E = [ax][bx] was not recognized. 

a M: Multiplication, A: AdditionISubtraction. 

The computational complexity is reestimated in Appendix. 
The other onelZ is somewhat less efficient. 

i-i’R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwith a general vector can be reduced to 8M 4A instead of 8M 5A because 
the (1,2)th, (1,3)th, (2,2)th, and (2,3)th entries of i-i’R can be factorized, where 
“M” denotes multiplications, “A” does additions. The required computations 
for a manipulator with n rotationaljoints are (23n2 + 44n - 82)M + (15n2 + 40n 
- 70)A. If we delete the terms enclosed with a rectangle in Figure 3, it turns out 
to be an algorithm only for the inertia matrix while the coordinate transforma- 
tion matrices are assumed to be calculated in some other method for the bias 
vector. The operations for the inertia matrix are then (10.5n2 + 38.5n - 85)M + 
(6n2 + 39n - 70)A. This implies that the algorithm takes (12.5n2 + 5.5n + 3)M 
+ (9n2 + n)A more operations if, in addition to the inertia matrix, the bias 
vector is also computed with the new composite body formulation. The algo- 
rithm is verified by a FORTRAN program, whose numerical results are found 
the same as those of other methods. 

cally forming the inertia matrix is shown in Table I. It is apparent that the 
present method is the most efficient for computing the inertia matrix of a 
manipulator with five or more joints, whereas the algorithm described in the 
workt3 is preferable for a manipulator with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 or less joints. The present method 
is also superior to the most efficient algorithms of the recursive Newton-Euler 
formulation3y4 in numerically forming the bias vector for a manipulator with six 
or less joints, which can be seen from Table 11. 

A comparison of the efficiency of this algorithm with the others in numeri- . 

CONCLUSION 

A new efficient composite body method has been derived. It is found that the 
algorithm of this method to numerically form the inertia matrix is more efficient 
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Table 11. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAComparison of the efficiency of three algorithms for calculating the bias 
vector.a 

Number of Rotational 
Method Joints, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn 2 2 2 3 4 5 6 7 8  

Khalil and Kleinfinger3 M: lOln - 129 73 174 275 376 477 578 679 
A: 90n - 118 62 152 242 332 422 512 602 

Balafoutis et al.4 M: 93n - 69 117 210 303 396 489 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA582 675 
A: 81n - 66 96 177 258 339 420 501 582 

Present M: 12.5n2 + 5.5n + 3 64 132 225 343 486 654 847 
A: 9n2 + n 38 84 148 230 330 448 584 

a M: Multiplication, A: AdditionISubtraction. 

than the earlier works for a manipulator with five or more joints. For a manipu- 
lator with six or less joints, it is also recommended to use the present method to 
compute the bias vector. The secret of the present method lies in that all points 
are referred to the base frame. Since the distances are all measured from the 
same point (the origin of the base frame), the coefficients in second-order part 
(n2) of the required computations are reduced in comparison with the other 
types of composite body methods. 

We have also tried to reformulate the new composite body formulations by 
changing the reference point from the origin of the base frame to that of any 
body-fixed frame. However, the required computations increase. Someone 
would suggest to apply the concept of the identical reference point to Renaud’s 
formulation. Unfortunately, the invariant property of the inertia parameters in 
Renaud’s formulation will be destroyed. 

To accomplish the dynamic simulation, we still need a linear equation solver 
and an integration technique. According to the numerical experiment,I3 it is 
preferable to use the LDLT decomposition to solve the linear equations and to 
apply the fourth order Adams-Bashforth integration method for the dynamic 
simulation of manipulators. 

have applied the parallel computation process to Walker 
and Orin’s r n e t h ~ d . ~  The parallel computation process can also apply to the 
present method. 

This article was supported in part by the National Science Council, Taiwan under grant 

Kasahara et al. 

NO. NSC79-0422-E009-02. 

APPENDIX: ALGORITHM OF RENAUD’S FORMULATION 

Renaud’s formulation for generating the inertia matrix of a manipulator with 
only rotational joints is presented in references 6 and 7. The extension to a 
general manipulator is derived by B ~ r d i c k . ~  Vukobratovic et a1.I0 extended 
Renaud’s formulation to the bias vector for a manipulator with only rotational 
joints, and proposed an algorithm of Renaud’s formulation based on the modi- 
fied Denavit-Hartenberg notation for numerically forming the inertia matrix 
and the bias vector. However, the distance between the origins of two adjacent 
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frames was mistaken to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi - {s( i - l )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[bi, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, diIT (cf. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5.2) in the worklo and the 
fourth section of this article). The required computations were, thereafter, 
underestimated. For the purpose of comparing the efficiency of several meth- 
ods for numerically forming the inertia matrix, we re-establish an algorithm of 
Renaud's formulation in a natural programming language in Figure A1 . 

END DO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 No. of the First Rotational Joint 

IF (no Rotational Joints), 4~ = n + 1 

RETURN 

END 

START: 
FOR THE CASE OF n = 1 

Number of 
Operations Times 

0 

0 

K;:  4 M 2 A  n - 1  

8M 4A (n - 2)(n - 1)/2 

Kj': 14M 10A (n - 2) (n  - 1)/2 

8M ?A n- 1 

[z:: ii 6A n -  1 

37M 25A 

9M 15A n - N ~ R  - 1 

Ki t i :  9M 3A 

Figure A1. Algorithm of Renaud's formulation for the inertia matrix. 
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KkK; :  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5M 4A 
KmK;: 2M 1A 
K k K j :  3M 2A 
K,Kj: 1M 

n(n - 1)/2 

Figure Al.  continued 

The general form of Renaud's formulation is9 

where the notation is identical to that in the above text except that 

4 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj j  are the first moment and the inertia tensor of the composite bodyj 
about the origin of frame Ei,  respectively. 
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then we get 

from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(A2)-(A4). It should be remarked that most of works4J2 dealing with 
Renaud's invariant terms made a mistake that (A5) and (A6) with "1" replacing 
K7+l were still seen as invariant to the manipulator motion for translational joint zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
j + 1 .  In fact, j+)sG) for translational joint j + 1 varies with dj+l ,  the joint 
displacement of translational joint j + 1.  The required computations of (Al) for 
a manipulator with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn rotational joints are (13.5n2 + 22.5n - 68)M + (9nZ + 26n 

The algorithm proposed by Fijany and Bejczy11J2 uses the recursive forms 
(A7) and (A8) to calculate the equivalent force (fEij) and couple ( tE j j ) ,  at the 
origin of frame j, of the inertia force and torque of the composite-body j due to 

- 64)A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 j  

-fi' = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA+'." zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E j J  J J 

= KjAju,(j)$ + K*u")'' J J a  x eq)  J 

= K.e(-" J J  x uy)qj + K*i?)uy)& J J  (A1 1) 

(A10) 

- tG) = J:).?) + h.(,.v) -4s") x fy) 
E j J  J J  

The first terms on the right-hand sides of (A10) and (Al l )  were erroneously 
ignored in the worklZ (cf. (54) and (55)  in reference 12). 

The actuator force applied on joint m is to resist the component of the force 
or torque exerted on joint zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArn by link m along the direction of joint m. The fact 
that the ( m ,  j)th entry of the inertia matrix is the part of the actuator force of 
joint rn due to & results in that 

H. .  .ll = K.m. J J  + K*u(-". J J  (Jj")up)) 

H mJ . = K ~ U : ) .  f:: + K;U:). t::, 

(A 12) 

(A131 m < j 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJournal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Robotic Systems-1991 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t(U. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm j  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA== zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt ( k )  m t l j  + m+l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAms ( k )  x f‘;ilj (A151 

Note that tj,;) = t&. 

Fijany and Bejczy found that the selection of frame k = 2” or the frame of the 
end-effector12 to represent 6;;. and t:; can make the algorithm more efficient 
than the selection of other frame. However, H j  and Hmj, m < j  can be expanded 
explicitly to be (Al), which is more efficient than Fijang and Bejczy’s algorithm 
(Table I). 
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