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ABSTRACT

Compressive Sensing is an emerging field based on the revelation that a small number of linear projections of a compressible
signal contain enough information for reconstruction and processing. It has many promising implications and enables the
design of new kinds ofCompressive Imaging systems and cameras. In this paper, we develop a new camera architecture that
employs a digital micromirror array to perform optical calculations of linear projections of an image onto pseudorandom
binary patterns. Its hallmarks include the ability to obtain an image with a single detection element while sampling the
image fewer times than the number of pixels. Other attractive properties include its universality, robustness, scalability,
progressivity, and computational asymmetry. The most intriguing feature of the system is that, since it relies on a single
photon detector, it can be adapted to image at wavelengths that are currently impossible with conventional CCD and CMOS
imagers.
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1. INTRODUCTION

Imaging sensors, hardware, and algorithms are under increasing pressure to accommodate ever larger and higher-
dimensional data sets; ever faster capture, sampling, and processing rates; ever lower power consumption; communication
over ever more difficult channels; and radically new sensingmodalities. Fortunately, over the past few decades, there
has been an enormous increase in computational power and data storage capacity, which provides a new angle to tackle
these challenges. We could be on the verge of moving from a “digital signal processing” (DSP) paradigm, where analog
signals (including light fields) are sampled periodically to create their digital counterparts for processing, to a “computa-
tional signal processing” (CSP) paradigm, where analog signals are converted directly to any of a number of intermediate,
“condensed” representations for processing using variousnonlinear techniques.

1.1. Compressive sensing

CSP builds upon a core tenet of signal processing and information theory: that signals, images, and other data often
contain some type ofstructure that enables intelligent representation and processing. The notion of structure has been
characterized and exploited in a variety of ways for a variety of purposes. Current state-of-the-art compression algorithms
employ a decorrelating transform to compact a correlated signal’s energy into just a few essential coefficients.1–3 Such
transform coders exploit the fact that many signals have asparse representation in terms of some basis, meaning that
a small numberK of adaptively chosen transform coefficients can be transmitted or stored rather thanN ≫ K signal
samples. For example, smooth images are sparse in the Fourier basis, and piecewise smooth images are sparse in a wavelet
basis;4 the commercial coding standards JPEG5 and JPEG20006 directly exploit this sparsity.

The standard procedure for transform coding of sparse signals is to (i) acquire the fullN -sample signalx; (ii) compute
the complete set of transform coefficients; (iii) locate theK largest, significant coefficients and discard the (many) small
coefficients; and (iv) encode thevalues and locations of the largest coefficients. In cases whereN is large andK is
small, this procedure can be quite inefficient. Much of the output of the analog-to-digital conversion process ends up being
discarded (though it is not known a priori which pieces are needed). Arguably, this “sample first, ask questions later”
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process places unnecessary demands on DSP systems, particularly imaging systems where each digital sample requires its
own imaging sensor (pixel).

This raises a simple question: For a given signal, is it possible to directly estimate the set of large coefficients that
will not be discarded by the transform coder? While this seems improbable, the recent theory ofCompressive Sensing
(also known as Compressed Sensing, or CS) introduced by Candès, Romberg, and Tao7, 8 and Donoho9 demonstrates that
a signal that isK-sparse in one basis (call it thesparsity basis) can be recovered fromcK nonadaptive linear projections
onto a second basis (call it themeasurement basis) that is incoherent with the first, where wherec is a small oversampling
constant. While the measurement process is linear, the reconstruction process is decidedlynonlinear.

1.2. Compressive imaging

A critical aspect of CS measurements ismultiplexing: each measurement is a function of several of the signal samples or
image pixels. From this reduced set of measurements, it can still be possible (using CS techniques) to extract the salient
signal information. This principle of “sample less, compute later” shifts the technological burden from the sensor to the
processing. Thus, CS is an enabling framework for the CSP paradigm.

In this paper, we develop a new system to support what can be called Compressive Imaging (CI). Our system in-
corporates a microcontrolled mirror array driven by pseudorandom and other measurement bases and a single or multiple
photodiode optical sensor. This hardware optically computes incoherent image measurements as dictated by the CS theory;
we then apply CS reconstruction algorithms — described below — to obtain the acquired images.

Our imaging system enjoys a number of desirable features:

• Single detector:By time multiplexing a single detector, we can use a less expensive and yet more sensitive photon
detector. This is particularly important when the detectoris expensive, making anN -pixel array prohibitive. A single
detector camera can also be adapted to image at wavelengths that are currently impossible with conventional CCD
and CMOS imagers.

• Universality: Random and pseudorandom measurement bases areuniversal in the sense that they can be paired
with any sparse basis. This allows exactly the same encodingstrategy to be applied in a variety of different sensing
environments; knowledge of the nuances of the environment are needed only at the decoder. Random measurements
are alsofuture-proof: if future research in image processing yields a better sparsity-inducing basis, then the same set
of random measurements can be used to reconstruct an even better quality image.

• Encryption: A pseudorandom basis can be generated using a simple algorithm according to a random seed. Such
encoding effectively implements a form ofencryption: the randomized measurements will themselves resemble
noise and be meaningless to an observer who does not know the associated seed.

• Robustness and progressivity:Random coding is robust in that the randomized measurementshave equal prior-
ity, unlike the Fourier or wavelet coefficients in current transform coders. Thus they allow aprogressively better
reconstruction of the data as more measurements are obtained; one or more measurements can also be lost without
corrupting the entire reconstruction.

• Scalability: We can adaptively select how many measurements to compute inorder to trade off the amount of
compression of the acquired image versus acquisition time;in contrast, conventional cameras trade off resolution
versus the number of pixel sensors.

• Computational asymmetry: Finally, CI places most of its computational complexity in the decoder, which will
often have more substantial computational resources than the encoder/imager. The encoder is very simple; it merely
computes incoherent projections and makes no decisions.

This paper is organized as follows. Section 2 provides a brief overview of the CS theory. Section 3 outlines our
proposed CI system. Section 4 presents preliminary experimental results, and Section 5 concludes.



2. COMPRESSIVE SENSING BACKGROUND

2.1. Sparse representations

Consider a length-N , real-valued signalx of any dimension indexed asx(n), n ∈ {1, 2, . . . , N}. For two-dimensional
(2D) images we simply choose a 1D ordering of theN pixels. We use the terms “signal” and “image” interchangeably
below. Suppose that the basisΨ = [ψ1, . . . , ψN ] provides aK-sparse representation ofx; that is

x =

N∑

n=1

θ(n)ψn =

K∑

ℓ=1

θ(nℓ)ψnℓ
. (1)

Herex is a linear combination ofK vectors chosen fromΨ, {nℓ} are the indices of those vectors, and{θ(n)} are the
coefficients; the concept is extendable to tight frames.9 Alternatively, we can write in matrix notation

x = Ψθ, (2)

wherex is anN × 1 column vector, thesparse basis matrixΨ isN ×N with the basis vectorsψn as columns, andθ is an
N × 1 column vector withK nonzero elements. Using‖ · ‖p to denote theℓp norm,∗ we can write that‖θ‖0 = K. Various
expansions, including wavelets,4 Gabor bases,4 and curvelets10 are widely used for representation and compression of
natural images and other data.

For the moment, we will focus on exactlyK-sparse signals and defer discussion of the more general situation where
the coefficients decay rapidly but not to zero. Similar principles hold for “compressible” signals that are well-approximated
usingK terms, and this robustness is critical to the success of our imaging system.

2.2. Incoherent projections

In CS, we do not measure or encode theK significantθ(n) directly. Rather, we measure and encodeM < N projections
y(m) = 〈x, φT

m〉 of the signal onto asecond set of basis functions{φm},m ∈ {1, 2, . . . ,M}, whereφT
m denotes the

transpose ofφm and〈·, ·〉 denotes the inner product. In matrix notation, we measure

y = Φx, (3)

wherey is anM ×1 column vector, and themeasurement basis matrixΦ isM ×N with each row a basis vectorφm. Since
M < N , recovery of the signalx from the measurementsy is ill-posed in general; however the additional assumptionof
signalsparsity makes recovery possible and practical.

The CS theory tells us that when certain conditions hold, namely that the basis{φm} cannot sparsely represent the
elements of the basis{ψn} (a condition known asincoherence of the two bases7–9, 11) and the number of measurements
M is large enough, then it is indeed possible to recover the setof large{θ(n)} (and thus the signalx) from a similarly
sized set of measurements{y(m)}. This incoherence property holds for many pairs of bases, including for example, delta
spikes and the sine waves of the Fourier basis, or the Fourierbasis and wavelets. Significantly, this incoherence also
holds with high probability between an arbitrary fixed basisand a randomly generated one (consisting of i.i.d. Gaussian
or Bernoulli/Rademacher±1 vectors). Signals that are sparsely represented in frames or unions of bases can be recovered
from incoherent measurements in the same fashion.

2.3. Signal recovery viaℓ0 optimization

The recovery of the sparse set of significant coefficients{θ(n)} can be achieved usingoptimization by searching for the
signal with ℓ0-sparsest coefficients{θ(n)} that agrees with theM observed measurements iny (recall thatM < N ).
Reconstruction relies on the key observation that, given some technical conditions onΦ andΨ, the coefficient vectorθ is
the solution to theℓ0 minimization

θ̂ = arg min ‖θ‖0 s.t.y = ΦΨθ (4)

with overwhelming probability. (Thanks to the incoherencebetween the two bases, if the original signal is sparse in theθ
coefficients, then no other set of sparse signal coefficientsθ′ can yield the same projectionsy.)

∗Theℓ0 “norm” ‖θ‖0 merely counts the number of nonzero entries in the vectorθ.



In principle, remarkably few incoherent measurements are required to recover aK-sparse signal viaℓ0 minimiza-
tion. Clearly, more thanK measurements must be taken to avoid ambiguity; it has been established thatK + 1 random
measurements will suffice.12, 13

Unfortunately, solving thisℓ0 optimization problem is prohibitively complex, requiringa combinatorial enumeration of
the

(
N
K

)
possible sparse subspaces. In fact, theℓ0-recovery problem is known to be NP-complete.14 Yet another challenge

is robustness, since the recovery may be very poorly conditioned. In fact,both of these considerations (computational
complexity and robustness) can be addressed, but at the expense of slightly more measurements.

2.4. Signal recovery viaℓ1 optimization

The practical revelation that supports the new CS theory is that it is not necessary to solve theℓ0-minimization problem
to recover the set of significant{θ(n)}. In fact, a much easier problem yields an equivalent solution (thanks again to the
incoherency of the bases); we need only solve for theℓ1-sparsest coefficientsθ that agree with the measurementsy7–9, 15–19

θ̂ = argmin ‖θ‖1 s.t. y = ΦΨθ. (5)

This optimization problem, also known asBasis Pursuit,20 is significantly more approachable and can be solved with
traditional linear programming techniques whose computational complexities are polynomial inN .

There is no free lunch, however; according to the theory, more thanK+1 measurements are required to recover sparse
signals via Basis Pursuit. Instead, one typically requiresM ≥ cK measurements, wherec > 1 is anoversampling factor.
As an example, for Gaussian random matrices, the rule of thumb c ≈ log2(

N
K

+ 1) provides a convenient approximation
to the required oversampling factor.12

2.5. Signal recovery via greedy pursuit

At the expense of slightly more measurements, iterative greedy algorithms have also been developed to recover the signal
x from the measurementsy. Examples include the iterative Orthogonal Matching Pursuit (OMP),11 matching pursuit
(MP),21 and tree matching pursuit (TMP)21, 22 algorithms. OMP, for example, iteratively selects the vectors fromΦΨ that
contain most of the energy of the measurement vectory. The selection at each iteration is made based on inner products
between the columns ofΦΨ and a residual; the residual reflects the component ofy that is orthogonal to the previously
selected columns. OMP is guaranteed to converge within a finite number of iterations. In CS applications, OMP requires
c ≈ 2 ln(N) to succeed with high probability.11

TMP algorithms are especially well suited for reconstructing natural images. This class of algorithms exploits the
structure of images that are sparse in a wavelet (or curvelet) basis; the wavelet basis functions can be grouped by scale
and sorted in each group by offset. Two wavelet functions in consecutive scales are said to be linked by afather-child
relationship when the support of the coarser-scale waveletcompletely contains that of the finer-scale wavelet. For 2D
signals such as images, each parent wavelet is linked to fourchildren wavelets; the graph described by these links is a
quad-tree.

Thanks to the singularity analysis properties of wavelets,wavelet coefficient values tend to propagate through scales.
A large wavelet coefficient (in magnitude) generally indicates the presence of a singularity inside its support; a small
wavelet coefficient generally indicates a smooth region. Thanks to the nesting of child wavelets inside their parents, edges
manifest themselves in the wavelet domain as chains of largecoefficients propagating through the scales of the wavelet
quad-tree. Wavelet coefficients also have decaying magnitudes at finer scales.4 This induces the large wavelet coefficients
of piecewise smooth images to form a connected subtree within the wavelet quad-tree.

Since greedy algorithms select the dictionary vector that explains the most energy from the image, it turns out to be
unnecessary to checkall possible coefficients at each iteration. Rather, the next most significant coefficient at each stage is
likely to be among the children of the currently selected coefficients. By limiting the greedy algorithm to search only among
these elements of the dictionary, the computational complexity of the TMP algorithm is significantly reduced compared to
the original MP algorithm.21 Additionally, by considering the contribution of all the elements of the chain of coefficients
anchored at the root of the quad-tree, the salient edge features of the signal under consideration can reconstructed with
higher priority and accuracy by the TMP algorithm.22

While requiring a similar order of computation to linear programming-based reconstruction algorithms, greedy algo-
rithms are often significantly faster in practice.



Figure 1. Compressive Imaging (CI) camera block diagram. Incident lightfield (corresponding to the desired imagex) is reflected off a
digital micro-mirror device (DMD) array whose mirror orientations are modulated in the pseudorandom pattern suppliedby the random
number generators (RNG). Each different mirror pattern produces a voltage at the single photodiode (PD) that corresponds to one
measurementy(m). FromM measurementsy we can reconstruct a sparse approximation to the desired imagex using CS techniques.

2.6. Other signal recovery algorithms

The introduction of CS has inspired new measurement schemesand fast reconstruction algorithms. For instance, Ref. 23
employs group testing and random subset selection to estimate the locations and values of the nonzero coefficients in strictly
sparse signals. The scheme provides a compact representation of the measurement basis as well as a fastO(NpolylogN)
reconstruction algorithm that succeeds with high probability. Additionally, the complexity of the measurement calculation
(3) is very low for signals that are sparse in the space domain. The algorithm can be extended to signals sparse in other bases
and to compressible signals; however its main drawback is the large oversampling factorc required for high probability of
successful reconstruction. Similar algorithms have been described elsewhere.24

3. A COMPRESSIVE IMAGING TESTBED

CS/CI principles enable the design of flexible new imaging devices and techniques. Our hardware realization of the CI
concept is asingle pixel camera; it combines a micro-controlled mirror array displaying a time sequence ofM pseudo-
random basis functions with a single optical sensor to compute incoherent image measurementsy as in (3) (see Figure 1).
By time multiplexing a single detector,25 we can employ a less expensive and yet more sensitive photon sensor. We can
also adaptively select how many measurements to compute in order to trade off the amount of compression of the acquired
image versus acquisition time; in contrast, conventional cameras trade off resolution versus the number of pixel sensors.

3.1. Camera hardware

Micro-actuated mirrors have proven to be a commercially viable MEMS technology for the video/projector display market
as well as laser systems and telescope optics.26 In our system, we employ a Texas Instruments (TI) digital micromirror
device (DMD). The combination of a TI DMD developer’s kit andaccessory light modulator package (ALP) allows us to
operate in the variety of modes necessary to test various CS approaches.

The DMD consists of an array of electrostatically actuated micro-mirrors where each mirror the array is suspended
above an individual SRAM cell. The DMD micro-mirrors form a pixel array of size1024× 768. Each mirror rotates about
a hinge and can be positioned in one of two states (+12 degrees and−12 degrees from horizontal); thus light falling on
the DMD may be reflected in two directions depending on the orientation of the mirrors. While the DMD was originally
created for displaying images in televisions and digital projectors, other groups have recently begun to use it for enhanced
image acquisition.27–30

In our CI setup (see Figures 1 and 2), the desired image is formed on the DMD plane with the help of a biconvex
lens; this image acts as an object for the second biconvex lens which focuses the image onto the photodiode. The light is
collected from one out of the two directions in which it is reflected (e.g., the light reflected by mirrors in the+12 degree
state). The light from a given configuration of the DMD mirrors is summed at the photodiode to yield an absolute voltage



Figure 2. Compressive Imaging (CI) camera hardware setup.

that yields a coefficienty(m) for that configuration. The output is amplified through an op-amp circuit and then digitized
by a 12-bit analog-to-digital converter.

3.2. Optical multiplexing
The output voltage of the photodiode can be interpreted as the inner product of the desired imagex with a measurement
basis vectorφ(m). In particular, lettingρ(m) denote the mirror positions of them-th measurement pattern, the voltage
reading from the photodiodev can be written as

v(m) ∝ 〈x, φ(m)〉 + DC offset, (6)

where
φ(m) = 1{ρ(m)=+12 degrees} (7)

and1 is the indicator function. (The DC offset can be measured by setting all mirrors to−12 degrees; it can then subtracted
off.)

Equation (6) holds the key for implementing a CI system. For agiven imagex, we takeM measurements
{y(1), y(2), . . . , y(M)} corresponding to mirror configurations{ρ(1)ρ(2) . . . , ρ(M)}.† Since the patternsρ(m) are pro-
grammable, we can select them to be incoherent with the sparsity-inducing basis (e.g., wavelets or curvelets). As men-
tioned previously, random or pseudorandom measurement patterns enjoy a useful universal incoherence property with
any fixed basis, and so we employ pseudorandom±12 degree patterns on the mirrors. These correspond to pseudoran-
dom0/1 Bernoulli measurement vectorsφm = 1{ρ(m)=+12 degrees}. (The measurements may easily be converted to±1
Rademacher patterns by setting all mirrors inρ(1) to +12 degrees and then lettingy(m) ← 2y(m) − y(1) for m > 1.)
Other options for incoherent CI mirror patterns include−1/0/1 group-testing patterns.23, 24 Mirrors can also be duty-
cycled to give the elements ofφ finer precision, for example to approximate Gaussian measurement vectors.8, 9

This system directly acquires a reduced set ofM incoherent projections of anN -pixel imagex without first acquiring
theN pixel values.‡ The key idea is that each measurement multiplexes several pixel values, and CS methodologies can
be used to tease them out.

Since the camera is “progressive,” better quality images (largerK) can be obtained by taking more measurementsM .
Also, since the data measured by the camera is “future-proof,” new reconstruction algorithms based on better sparsifying
image transforms can be applied at a later date to obtain evenbetter quality images.

†We assume that the imagex is stationary during the acquisition process. Currently, this is possible in controlled environments;
ultimately the fast switching rates of the DMD will allow forapplications in practical settings.

‡In our setup, the number of reconstructed pixels (and thus the resolution of the final image) corresponds to the number of micromir-
rors in the DMD arrayN = 1024 × 768.



3.3. Related work

Two notable previous DMD-driven applications involve confocal microscopy31,32 and micro-optoelectromechanical
(MOEM) systems.27–30

The three primary differences between our CI/DMD camera andMOEM systems are the placement of the DMD
between the image and the detector (as opposed to placement between the light source and the image); the replacement
of the CCD detector with a single photodiode; and the large size of MOEM data sets. In a MOEM system, a DMD is
positioned between the image source and the sensing element; its function is to limit the number of image pixel columns
being sensed at a given time by reflecting off light from unwanted pixels and allowing light from the desired pixels to
pass through. A MOEM system obtains the sum of the intensities of sets of columns from the sensed image; the purpose
of multiplexing is to increase the signal-to-noise ratio ofthe measurements, which is lower when each column is sensed
separately due to the low illumination caused by DMD modulation. In Refs. 27–29 the authors propose sets ofN Hadamard
patterns, which allows for simple demultiplexing, and randomized Hadamard patterns, which yield a uniform signal-to-
noise ratio among the measurements. MOEM data sets are very large, requiring a large amount of storage and processing.
In contrast, in our CI/DMD camera, compression in the optical domain greatly reduces the storage and processing of the
image.

Other efforts on CI include Refs. 33, 34, which employ optical elements to perform transform coding of multispectral
images. These designs obtain sampled outputs that correspond to coded information of interest, such as the wavelength of
a given light signal or the transform coefficients in a basis of interest. The elegant hardware designed for these purposes
uses concepts that include optical projections, group testing,23 and signal inference.

4. EXPERIMENTAL RESULTS

4.1. Hardware configuration

In the optical setup depicted in Figure 2, the object is frontilluminated by an LED light source. To minimize noise, the
initial measurements have been performed by lock-in detection with the LED driven at 1kHz.

For simplicity, the initial images are square in shape and therefore use only a768 × 768 array of pixels on the DMD.
This array can be further sub-divided into blocks dependingon the desired resolution for the reconstructed image, e.g.,
for a 64 × 64 pixel image we actuate12 × 12 blocks of micro-mirrors in unison. Additionally, since theDMD array is
programmed on the fly, it can be adaptively sectioned to highlight (zoom in on) part of the image (as opposed to acquiring
the entire image and then digitally zooming through post-processing) or to adaptively modify the projection basis functions
during acquisition for enhanced reconstruction performance.

4.2. Imaging results

For our imaging experiment, we displayed a printout of the letter “R” in front of the camera; Figure 3(a) shows the
printout. We set the camera to acquire a64 × 64 pixel image (hence,N = 4096). This size was chosen to ensure
quick reconstruction during tests so that focusing and other adjustments could be made. The image quality benefits from
the reduced resolution since activating the DMD in blocks ofpixels reflects more light, thus reducing the sensitivity
requirement on the photodetector and thus noise. As we discuss later, better hardware exists for some of the components,
and higher resolution images will result.

Since our test image is piecewise constant (with sharp edges) it can be sparsely represented in the wavelet domain.
Figures 3(b) and 3(c) show the bestK-term Haar wavelet approximation of the idealized image in Figure 3(a) withK =
400 and675, respectively. Figure 3(d) shows the projection of the original test image onto the surface of the DMD; this
image is a still frame from a video taken with a conventional digital camera, and the poor quality is due to the low resolution
of the obtained NTSC signal with the video capture card and the low light level. UsingM = 1600 and2700 pseudorandom
projections (roughly4× theK used in (b) and (c)), we reconstructed the images shown in Figures 3(e) and 3(f) using Basis
Pursuit.

From these results, it is clear that the recognizable features of the “R” can be recovered, even with half as many
measurements as the number of pixels acquired. The reconstruction quality is also progressively better with higherM as
well as more robust to noisy measurements, enhancing the reconstruction of the singularities (sharp edges). The sources of
noise include subtle nonlinearities in the photodiode, nonuniform reflectance of the mirrors through the lens that focuses



(a) ideal image (b) 400 largest wavelets (c) 675 largest wavelets

(d) image on DMD (e) 1600 measurements (f) 2700 measurements

Figure 3. CI/DMD imaging of a64× 64 (N = 4096 pixel) image. Ideal image (a) of full resolution and approximated by its (b) largest
400 wavelet coefficients and (c) largest 675 wavelet coefficients. (d) Conventional320× 240 camera image acquired at the DMD plane.
CS reconstruction from (e) 1600 random measurements and (f)2700 random measurements. In all cases, Haar wavelets were used for
approximation or reconstruction.

onto the photodiode (thus changing the weighting of the pattern blocks), and nonuniform mirror positions; work is ongoing
to remove these sources of noise at the measurement setup. The robustness of the CS reconstruction will tend to suppress
quantization noise from the A/D converter and photodiode circuit noise during detection.

5. DISCUSSION AND CONCLUSIONS

In this paper, we have presented a first prototype imaging system that successfully employs compressive sensing (CS)
principles. The camera has many attractive features, including simplicity, universality, robustness, and scalability, that
should enable it to impact a variety of different applications. Another interesting and potentially useful practical feature
of our system is that it off-loads processing from data collection into data reconstruction. Not only will this lower the
complexity and power consumption of the device, but it will enable adaptive new measurements schemes. The most
intriguing feature of the system is that, since it relies on asingle photon detector, it can be adapted to image at wavelengths
that are currently impossible with conventional CCD and CMOS imagers.

In current research, we are developing sequences of projection functions that reduce the mechanical movement of the
mirrors, designing measurement matrices with lower oversampling factorsc, analyzing and characterizing the noise and
resolution effects on reconstruction, and designing and implementing fast reconstruction algorithms.

There are many possibilities for extensions to our system, including:

• Plenty of measurement bases can be implemented with the DMD beyond Rademacher and Gaussian vectors.

• Reconstruction in a curvelet frame10 or joint wavelet/curvelet frame could provide higher-quality images due to their
pumped-up sparsification cabilities.

• Color, multispectral, and hyperspectral imaging can be achieved using a more complex photon sensing element such
as a dual sandwich photodetector or by combining multiple photodiodes.



• We should be able to greatly reduce the size and complexity ofthe setup by replacing the DMD chip with a MEMS-
based shutter array placed directly over the photodiode.35 This will also enable imaging of wavelengths that poorly
reflect from the aluminum micromirror array.

• We can implement super-resolution where multiple shifted offsets are incorporated to reconstruct images with sub-
pixel resolution.36 In our setup, the DMD can be mounted onto a micro/nano-positioning device to make measure-
ments with different lateral translations.

• Video encoding using CI can be achieved in several ways. Spatiotemporal random patterns can be used to encode a
clip of video that is sparse in a 3D wavelet/curvelet domain.Also, separate frames of video can be encoded indepen-
dently and decoded jointly by exploiting the correlation between the acquired frames.12 Preliminary experiments
with 3D incoherent measurements appear promising.

• CS principles can be extended to multiple imagers acquiringcorrelated images as in a camera network37, 38 or
lightfield/lumigraph capture system.39

ACKNOWLEDGEMENTS

Thanks to Texas Instruments for providing the TI DMD developer’s kit and accessory light modulator package (ALP).
Thanks also to Dave Brady and Dennis Healy for enlightening discussions.

REFERENCES

1. R. A. DeVore, B. Jawerth, and B. J. Lucier, “Image compression through wavelet transform coding,”IEEE Trans.
Inform. Theory, vol. 38, pp. 719–746, Mar. 1992.

2. J. Shapiro, “Embedded image coding using zerotrees of wavelet coefficients,”IEEE Trans. Signal Processing, vol. 41,
pp. 3445–3462, Dec. 1993.

3. Z. Xiong, K. Ramchandran, and M. T. Orchard, “Space-frequency quantization for wavelet image coding,”IEEE
Trans. Image Processing, vol. 6, no. 5, pp. 677–693, 1997.

4. S. Mallat,A Wavelet Tour of Signal Processing. San Diego: Academic Press, 1999.
5. W. Pennebaker and J. Mitchell, “JPEG: Still image data compression standard,”Van Nostrand Reinhold, 1993.
6. D. S. Taubman and M. W. Marcellin,JPEG 2000: Image Compression Fundamentals, Standards and Practice.

Kluwer, 2001.
7. E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incom-

plete frequency information,”IEEE Trans. Inform. Theory, 2004. Submitted.
8. E. Candès and T. Tao, “Near optimal signal recovery from random projections and universal encoding strategies,”

IEEE Trans. Inform. Theory, 2004. Submitted.
9. D. Donoho, “Compressed sensing,” 2004. Preprint.

10. E. Candès and D. Donoho, “Curvelets — A surprisingly effective nonadaptive representation for objects with edges,”
Curves and Surfaces, 1999.

11. J. Tropp and A. C. Gilbert, “Signal recovery from partialinformation via orthogonal matching pursuit,” Apr. 2005.
Preprint.

12. D. Baron, M. B. Wakin, M. F. Duarte, S. Sarvotham, and R. G.Baraniuk, “Distributed compressed sensing,” 2005.
Preprint.

13. R. Venkataramani and Y. Bresler, “Further results on spectrum blind sampling of 2D signals,” inProc. IEEE Int. Conf.
Image Proc. (ICIP), vol. 2, (Chicago), Oct. 1998.

14. E. Candès and T. Tao, “Error correction via linear programming,”Found. of Comp. Math., 2005. Submitted.
15. E. Candès and J. Romberg, “Quantitative robust uncertainty principles and optimally sparse decompositions,”Found.

of Comp. Math., 2004. Submitted.
16. E. Candès, J. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,”Comm.

on Pure and Applied Math., 2005. Submitted.
17. E. Candès and T. Tao, “Decoding by linear programming,”IEEE Trans. Inform. Theory, vol. 51, pp. 4203–4215, Dec.

2005.
18. E. Candès and J. Romberg, “Practical signal recovery from random projections,”IEEE Trans. Signal Processing,

2005. Submitted.



19. D. Donoho and Y. Tsaig, “Extensions of compressed sensing,” 2004. Preprint.
20. S. Chen, D. Donoho, and M. Saunders, “Atomic decomposition by basis pursuit,”SIAM J. on Sci. Comp., vol. 20,

no. 1, pp. 33–61, 1998.
21. M. F. Duarte, M. B. Wakin, and R. G. Baraniuk, “Fast reconstruction of piecewise smooth signals from random

projections,” inProc. SPARS05, (Rennes, France), Nov. 2005.
22. C. La and M. N. Do, “Signal reconstruction using sparse tree representation,” inProc. Wavelets XI at SPIE Optics

and Photonics, (San Diego), Aug. 2005.
23. G. Cormode and S. Muthukrishnan, “Towards an algorithmic theory of compressed sensing,”DIMACS Tech. Report

2005-25, September 2005.
24. A. C. Gilbert, M. J. Strauss, J. Tropp, and R. Vershynin, “Sublinear, small space approximation of compressible

signals and uniform algorithmic embeddings,”Preprint, November 2004.
25. D. Brady, “Multiplex sensors and the constant radiance theorem,”Optics Letters, vol. 27, no. 1, pp. 16–18, 2002.
26. J. Sampsell, “An overview of the digital micromirror device (DMD) and its application to projection displays,” in

1993 SID International Symposium Digest of Technical Papers, vol. 24, p. 1012, 1993.
27. R. A. DeVerse, R. R. Coifman, A. C. Coppi, W. G. Fateley, F.Geshwind, R. M. Hammaker, S. Valenti, and F. J.

Warner, “Application of spatial light modulators for new modalities in spectrometry and imaging,” inProc. SPIE,
vol. 4959, pp. 12–22, 2003. http://www.math.yale.edu/ mmm82/hyperspectral.html.

28. G. L. Davis, M. Maggioni, F. J. Warner, F. B. Geshwind, A. C. Coppi, R. A. DeVerse, and R. Coifman, “Hyper-
spectral analysis of normal and malignant colon tissue microarray sections using a novel DMDsystem,” inNIH
Optical Imaging Workshop (poster), 2004. http://www.math.yale.edu/ mmm82/hyperspectral.html.

29. G. L. Davis, M. Maggioni, F. J. Warner, F. B. Geshwind, A. C. Coppi, R. A. DeVerse, and R. R.Coifman, “Hyper-
spectral analysis of normal and malignant microarray tissue sections using a novel micro-optoelectrical-mechanical
system,”Mod. Pathol., vol. 17 Suppl. 1:358A, 2004.

30. R. Muise and A. Mahalanobis, “Target detection using integrated hyper spectral sensing and processing.” IMA Work-
shop on Integration of Sensing and Processing, December 2005.

31. P. M. Lane, R. P. Elliott, and C. E. MacAulay, “Confocal microendoscopy with chromatic sectioning,” inProc. SPIE,
vol. 4959, pp. 23–26, 2003.

32. V. Bansal, S. Patel, and P. Saggau, “High-speed confocallaser scanning microscopy using acousto-optic deflectors
and a digital micromirror device,” inProc. SPIE, vol. 5324, pp. 47–54, 2004.

33. N. P. Pitsianis, D. J. Brady, and X. Sun, “Sensor-layer image compression based on the quantized cosine transform,”
in Visual Information Processing XIV, vol. 5817, (Orlando, FL, USA), p. 250, SPIE, 2005.

34. D. J. Brady, M. Feldman, N. Pitsianis, J. P. Guo, A. Portnoy, and M. Fiddy, “Compressive optical montage photog-
raphy,” inPhotonic Devices and Algorithms for Computing VII, vol. 5907, (San Diego, CA, USA), p. 590708, SPIE,
2005.

35. M. Pizzi, V. Koniachkine, N. Nieri, S. Sinesi, and P. Perlo, “Electrostatically driven film light modulators for display
applications,”Microsystem Technologies - Micro- and Nanosystems-Information Storage and Processing Systems,
vol. 10, pp. 17–21, 2003.

36. J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida,T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka,
“Thin observation module by bound optics (TOMBO): Concept and experimental verification,”Applied Optics,
vol. 40, no. 11, pp. 1806–1813, 2001.

37. R. Wagner, R. G. Baraniuk, and R. Nowak, “Distributed image compression for sensor networks using correspondence
analysis and super-resolution,”Proceedings of IEEE ICIP, vol. 1, pp. 597–600, 2003.

38. W. E. Mantzel, H. Choi, and R. G. Baraniuk, “Distributed camera network localization,”Proceedings of the 38th
Asilomar Conference on Signals, Systems and Computers, vol. 2, pp. 1381–1386, 2004.

39. S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen, “The lumigraph,” inSIGGRAPH ’96: Proceedings of the
23rd Annual Conference on Computer Graphics and Interactive Techniques, (New York, NY, USA), pp. 43–54, ACM
Press, 1996.


