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Abstract: Most of public-key cryptosystems rely on one-way functions. The cryptosystems can be 
used to encrypt and sign messages. The LUC Cryptosystem is a cryptosystem based on Lucas 
Functions. The encryption process used a public key which was known publicly and the decryption 
used a private key which was known only by sender and receiver of the messages. The performance of 
LUC cryptosystem computation influenced by computation of Ve the public key process and Vd the 
private key process. Very large scales of computations and timing overhead involved for large values 
of e and d. We are presenting the so-called Doubling with Remainder compared to the existing 
technique. It shows better performance in LUC computations by reducing time consumed in its 
computations. The experimental results of existing and new algorithm are included. 
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INTRODUCTION 

 
 Since the concept of public-key cryptosystems was 
first published in[2], there are a lot of possible trapdoor 
functions proposed. Probably, the best known and most 
widely used trapdoor function is the exponentiation 
based cryptosystems. This system is known as RSA 
public key cryptosystems[7].  
 After two decades, the authors in[8] introduced a 
public key based on Lucas Functions instead of 
exponentiation based. This system is believed offers 
good alternative to the RSA.  
 Lucas Functions are special form of second-order 
linear recurrence relations using large public integer as 
modulus. The key distribution concept[2] can be 
constructed using Lucas Functions. Another interested 
point is its cryptographic strength. It is much stronger 
than or at least strong as the exponentiation based 
systems.  
 The performance of cryptographic functions is the 
most critical issues.  The effectiveness determined by 
the performance of its computation. Smith and 
Lennon[8] concluded that, it has big complications in 

terms of storage and timing overheads. With very big 
number e (Ve), the encryption of LUC Cryptosystem 
cost a huge time and space.  
 On the other hand, several researchers on fast 
exponentiation evaluation for RSA have been proposed. 
Knuth in[5] presented a simple square-multiply method 
based on the binary representation of the exponent.  
 Similarly, some researchers worked on fast 
computation technique for Lucas Functions. Yen and 
Laih[11] are among the first to propose an efficient 
algorithms to compute the Lucas Function. They 
showed the way to reduce the number of multiplications 
when evaluating the Lucas Function by shortens the 
length of the LUC Chain. They also proposed two 
algorithms by scanning the binary form of the exponent 
and sequentially evaluate the Lucas sequences. A LUC 
Chain is based on Addition Chain where has been 
discussed in detail in[5].  
 Chiou and Laih in[1] proposed another fast 
algorithm in which their computation techniques that 
was slightly better than works in[11]. In other related 
study[9] also proposed another algorithm. Joye and 
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Quisquater in[4] proposed a technique to compute both 
Un and Vn.  
 In this study, we proposed fast computation 
algorithm that was based on Doubling Step. Doubling 
Steps technique is discussed in[10]. Our algorithm 
concentrates on how to use a remainder sequence in 
order to organize the computations and finally obtain 
the required value of Vn.  
 We proposed a Doubling with Remainder 
technique. Our technique follows these steps:  
 
• Generate a remainder sequence  
• Use this sequence to direct the LUC cryptosystems 

computations 
 
Lucas function and LUC cryptosystems: Lucas 
functions can be seen as generalized linear recurrences. 
A Lucas Function is a sequence of integers Vn defined 
as V0=2, V1=P, Vn=PVn-1-QVn-2 for n�2. This dentition 
referred as nth order linear recurrence as stated by[6].  
 The other sequence in Lucas Function is known as 
Un. It is defined as U0=0, U1=1, Un=PUn-1-Un-2 for n�2. 
We know that for Un, if the parameters are selected as 
P=1 and Q=-1, the sequence is the well known 
Fibonacci sequence.  
 Noted that, the sequence Vn with Q=1 is usually 
used to devise cryptosystems by cryptographers. 
 
Encryption and decryption for LUC cryptosystems: 
It is uses two keys (e,N) and (d,N) which works in pairs 
for encryption and decryption respectively. A 
ciphertext, C is obtained by f(P)=Ve(P,1)(mod N)� 
C(mod N), where Ve is a Lucas Function, or the eth term 
of the Lucas sequence. It is derived from the second 
order recurrence relation: 
 
Vn = PVn-1-QVn-2  (1) 
 
 Initial conditions V0 = 2 and V1 = P. Meanwhile, 
the decryption function is applied to ciphertext C by 
f(C)=Vd(C,1)=Vd(Ve(P,1),1)=Ved(P,1)�P(mod N). This 
function will recover the original message, P. We can 
use Eq. 1 in existing method.  
 There are two factors that give impact to the 
performance and behavior of calculation of LUC 
Cryptosystems:  
 
• Computation of Ve and Vd looks complicated for 

large values of e and d 
• The private key d has to be recomputed for each 

block of message 
 

An existing algorithm: We can use Eq. 1 to design this 
algorithm. We used SL to denote the existing algorithm. 
It is very simple technique. Let calculate V1103. Using 

Eq. 1, we first compute V2 using V1 and V0. This 
computation continues with V3, where we have V2 and 
V1. After we get V3, we need to calculate V4, until 
finally we compute V1103. In general, the computation 
of Vn is done by computation of V2, V3, …, Vn-1 and 
finally Vn. Algorithm 1 shows an existing algorithm 
in[8]. Note that, e is public key and P is message. 
 
Algorithm 1: Existing Algorithm: 
1. Input: e, P, V0 =2 and V1 = P 
2. Output: Vn.  
3. Vf = V0 and Vg = P and Q = 1 
4. While (k! = e) 
  a. Vj = PVf – QVg 
  b. Vg = Vf 
  c. Vx = Vj 
  d. Vf = Vx 
  e. k++ 
5. End While 
 
Properties of Lucas Functions: Williams[10] 
introduced a method of factorization which is known as 
“�+1 factorization” technique. He suggested that Lucas 
Functions can be used to find a prime divisor � of N 
when �+1 have only small prime factors. Smith and 
Lennon[8] then used some Lucas Functions relation in 
their public-key cryptosystems.  
 Some of them are: 
 
V2n = Vn

2-2 (2) 
 
V2n+1 = PVn

2-QVnVn-1-PQn (3) 
 
V2n-1 = VnVn-1-PQn-1 (4) 
 
Vn

2 = DUn
2+Qn (5) 

 
2Vn+m = VnVm+DUnUm (6) 
 
 These properties are not limited. More results on 
another property can be found in[10]. Horster et al.[3] 
have also introduces another relations on Lucas 
Functions.  
 
A proposed algorithm: For the purpose of this study, 
we only focused on Eq. 2-4. We are sure that those 
selected equations are very useful to reduce a number 
of computation steps needed to compute the sequences 
of Vn for LUC Cryptosystems. In this study we are only 
manipulating the Doubling Steps technique.  
 Our algorithm concentrates on how to reduce as 
much as multiplication processes. Because, we are sure 
that the reduction of multiplication processes can 
reduce time consumed for calculating Vn.  
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 We give a name to our algorithm as Doubling with 
Remainder (DwR). Here Vn is either Ve or Vd. We have 
the following strategies to achieve high speed of 
computation technique:  
 
• Generate the remainder sequence. This is 

considered as a part 1 of this proposed algorithm. It 
is relatively easy as we generate a remainder for 
any give value of n.  

• Use the generated remainder sequence to direct the 
LUC Cryptosystems computation and it is 
considered as part 2 of the algorithm 

 
 The Algorithm 2 shows how to use the remainder 
sequence. 
 
Algorithm 2:  Algorithm to Use Remainder Sequence: 
1. Input: Array k, V0=2, V1=P and N 
2. Output: Vn 
3. Calculate V2, V3 and V4 using Eq. 1 
4. If (k[0] = 1) 
  Calculate V2n = V3 and V2n+1 = V4 
5. Else 
  Calculate V2n=V2 and V2n+1 = V3  
6. End If 
7. For j = x to 2 
  If k[x] =1 
   i. Vt =V2n+1 * P - V2n (mod N) 
   ii. V2n = V2n+1 * V2n+1 – 2 (mod N) 
   iii. V2n+1 = V2n+1 * Vt – P (mod N) 
  Else 
   i. V2n+1 = V2n * V2n+1 – P (mod N) 
   ii. V2n = V2n * V2n – 2 (mod N) 
  End If 
    x = x-1 
8. End For 
9. If k[x-1] =1 
  Vn = V2n+1 
10. Else 
  Vn = V2n  
11. End If 
 
The calculation of private key d: The private key d 
can be computed from Eq. 7:  
 
de � 1 (mod R) (7) 
 
R = LCM((p-(D/p),q-(D/q)). Note that, LCM is Least 
Common Multiple, D is discriminant for either prime p 
or prime q. An e is public key which is known publicly.  
 The following steps show the computation of 
private key d: 

• Find discriminant D, such that D = C2-4, where D 
is discriminant and C is ciphertext. 

• Find Legendre Symbols for (D/p) and (D/q). Here 
we could have four possible values of Legendre 
Symbols. We used LS(D/p) to denote Legendre 
Symbols for (D/p). 

• Find LCM for either LCM((p+(D/p),q+(D/q)), 
LCM((p+(D/p),q-(D/q)), LCM((p-(D/p),q+(D/q)),  
or LCM((p-(D/p),q-(D/q)) 

 
 In Algorithm 3, the function with the name of 
ExtendedEuclid() is the Extended Euclid Algorithm. It 
is a classical computational number theory that can be 
found in most numbers theory text books.  
 The LCM is also classical computational number 
theory which was known as Least Common Multiple. 
Algorithm 3 has been tested with the maximum number 
of digit up to 2000 digits.  
 Once we got private key d, we can compute Vd as 
the same way we compute Ve to get back the original 
messages, P. We recorded time consume for both 
encryption and decryption processes. Algorithm 3 
shows how to compute private key d.  
 
Algorithm 3: Algorithm to Compute d: 
1. Input: C, p and q 
2. Output: d 
3. Calculate D = C2 – 4 
4. Calculate LS(p) = (D/p) and LS(q) = (D/q) 
5. If LS(p) = -1 And LS(q) = -1  
  a. X = p+1 
  b. Y = q+1 
6. End If 
7. If LS(p) = 1 And LS(q) = -1 
  a. X = p-1 
  b. Y = q+1 
8. End If 
9. If LS(p) = -1 And LS(q) = 1 
  a. X = p+1 
  b. Y = q-1 
10. End If 
11. If LS(p) = 1 And LS(q) = 1 
  a. X = p-1 
  b. Y = q-1 
12. End If 
13. R = lcm(X,Y) 
14. ExtendedEuclid(d,R,e) 
 
Implementations: Algorithm 1, 2 and 3 are 
implemented in C Language. We used SL to denote 
existing algorithm and DwR to denote new algorithm. 
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The computation time for both algorithms is our main 
results. Last but not least we also discuss a difference 
between two algorithms.  
 We implemented the SL to compute the value of 
Vn. We can only start the computation with V2, because 
we only know V0 and V1. To calculate V3, we need to 
know V1 and V2. It followed by V4 because we know 
the values of V2 and V3. This process continues until 
we achieved the calculation of Vn. The computation 
will be V2, V3, V4, V5, ... Vn. Very simple computation 
steps involved. The algorithm is shown in Algorithm 1.  
 Meanwhile, the remainder sequence is the heart of 
DwR. For example, compute V1103. In this case n = 
1103. Table 1 shows how to generate remainder 
sequence. Use this sequence to direct the doubling 
steps. The illustration on using remainder sequence is  
shown in Table 2.  
 
Table 1: Illustration on generating remainder sequence 
Value n x k[x] = y 
1103 0 k[0] = 1 
551 1 k[1] = 1 
275 2 k[2] = 1 
137 3 k[3] = 1 
68 4 k[4] = 0 
34 5 k[5] = 0 
17 6 k[6] = 1 
8 7 k[7] = 0 
4 8 k[8] = 0 
 
Table 2: Illustration on using the remainder sequence 
k[x] x V2n V2n+1 
k[8] 0 V4 V5 
k[7] 0 V8 V9 
K[6] 1 V16 V17 
k[5] 0 V32 V33 
k[4] 0 V64 V65 
k[3] 1 V128 V129 
k[2] 1 V256 V257 
k[1] 1 V512 V513 
k[0] 1 V1102 V1103 

 
RESULTS 

 
 Table 3-5 show time consumed SL and DwR for 
both encryption (Enc) and decryption (Dec) processes. 
As a result, the algorithm reduces iterations, speedup 
the computation and at the same time reduces the 
computation time.  
 The results in Table 3-5 are based on the running 
time for each algorithm in C language in Windows XP 
Environment, Crusoe Processor TM5800 with 658 
MHz and 240 MB of RAM. All computation times are 
in seconds. 

DISCUSSION 
 
 The most important feature to discuss here is the 
total number of iterations in the computation of Vn. in 

order to compute V1103, SL Algorithm required exactly 
1103 iterations (refer to Algorithm 1) while DwR only 
need 8 iterations (refer to Algorithm 2 and also Tables 1 
and 2). Surely, for the bigger size of public key, we 
suffered huge iterations  in SL algorithm.  
 
Table 3: The computation time in second for each algorithm for 

different key size 
Key Enc Enc Private Dec Dec 
size E SL DwR key d SL DwR 
19 320 9 199 56815 160 
79 1848 37 199 61600 174 
159 3227 65 199 69644 197 
239 4793 97 199 80519 227 
559 16212 329 199 89824 254 
719 34397 711 199 94769 268 

 
Table 4: The computation time in second for each algorithm for 

different primes size 
Primes size Enc Enc Private Dec Dec 
p and q SL DwR key d SL DwR 
50 1743 35 99 15390 43 
100 3194 65 198 21829 161 
110 3500 71 219 68937 195 
160 9278 188 319 260788 738 
180 10481 213 359 330412 935 
220 11912 242 437 445442 1261 
280 15400 313 559 76321 2160 
300 18201 370 599 930909 2635 

 
 
Table 5: The computation time in second for each algorithm for 

different message size 
Message Enc Enc Private Dec Dec 
size P SL DwR key d SL DwR 
20 1238 25 399 368469 1043 
80 1321 26 398 370120 1047 
160 1345 27 398 377754 1041 
190 1375 28 398 373905 1058 
250 1828 37 398 381578 1080 
330 1922 39 399 386299 1093 

 
In the same situation, DwR required small number of 
iterations. The calculation of V1111111111111111103, 
obviously shows SL technique needs exactly 
1111111111111111103 iterations. Meanwhile, for DwR 
the computations were only required 59 iterations. The 
generating of remainder sequence would reduce 
numbers of modular multiplications.  
 Therefore, the computation time is reduced in the 
proposed method. The remainder sequences achieved 
less numbers of modular multiplications.  
 The computation of private key d is possible 
because we know the values of prime p and q. We also 
know the value of ciphertext C and public key e. All 
these values are needed in the computation of private 
key. In real world, it is not easy to compute private key 
d.  
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 In our experiments, the times recorded for 
decryption process also include the time for calculation 
of Legendre Symbols, Lease Common Multiple and 
Extended Euclid Algorithm. These three processes 
required approximately 35% of total decryption 
process. If we can construct or apply any fast 
computations algorithm for these three processes, we 
are sure that we can reduce a computation time.  
 

CONCLUSION 
 
 We can speed up the LUC Cryptosystem 
computation by Doubling with Remainder. The 
comparison as shown in Table 3-5 proved that the 
speed can be increased by reducing the number of steps 
of multiplication. It makes the LUC cryptosystem 
computations more efficient for security 
implementation.  
 Likewise, the reduction of multiplications with the 
DwR algorithm, enabled us to achieve a good reduction 
of computation time. It also leads to high reduction in 
the multiplications required for both the encryption and 
decryption operations without sacrificing the key size 
of LUC cryptosystem security.  
 However, the construction of shorter sequence than 
the remainder sequence could be interesting research 
topics. Another interesting research topic is the 
reduction of some modular multiplications in Lucas 
Functions itself. 
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