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Abst rac t .  This paper presents a new concept for a parallel neurocom- 
purer architecture which is based on a configurable neuroprocessor de- 
sign. The neuroprocessor adapts its internal parallelism dynamically to 
the required data precision for achieving an optimal utilization of the 
available hardware resources. This is realized by encoding a variable num- 
ber of p different data elements in one very long data word of b bits. All 
components of the neuroproccessor (multiplier, accumulator, adder, ... ) 
support the parallel execution of p operations on all data elements of one 
very long data word. 

1 I n t r o d u c t i o n  

In recent years many neurocomputer architectures have been proposed [3]. Many 
of them are based on special-purpose processors (so-called neuroprocessors) which 
have been developped for the simulation of neural networks (e.g. [1], [4], [7]). In 
principle, all such systems can support many neural network models but due 
to several decisions of the processor design they are optimized only for one or 
several models. Such decisions may concern 

- the precision by which the arithmetical units perform the basic operations, 
- the number and arrangement of the arithmetical units placed on one chip, 
- the necessity to use pattern parallelism to reduce the number of I /O pins. 

The precision is mostly limited to 16 bit fixed point for the weights of a neural 
network and to 8 bit fixed point for the neuron outputs. In case of the multi- 
layer perceptron and the standard error backpropagation learning algorithm this 
precision was shown to be sufficient in most cases [2]. However self-organizing 
feature maps can learn very well with only 6 bit weights [6]. For many other 
neural network models no analysis about the required precision is available, at 
least for recurrent neural networks an arithmetical precision of only 16 bit seems 
not to be sufficient. 

The inherent parallelism of neural networks allows the parallel processing 
of synapses and neurons. However the parallel processing of patterns which is 
required by several neurocomputers to achieve a high performance can only be 
used for certain neural network models and also decreases the convergence speed 
of the learning algorithm. 
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2 A Configurable Neuroprocessor 

The design of the new neuroprocessor described in this paper is based on the 
following ideas: 

1. Instead of reducing the total number of I/O pins by using pattern parallelism 
the available I/O pins of the neuroprocessor should be utilized optimally for 
different data precisions by coding p data I/O elements compactly in one 
I/O word of b bits (see Fig. 1). 

2. The maximum precision of all data elements should be 24 bit fixed point. 
3. The precision by which the arithmetical operations are performed should be 

variable and related to the internal degree of parallelism (see Fig. 1). 

pmin 

praax b/pma~ bit 
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very long data word: 
b 

Id, l ,~ l  ... IdpI 
~/~ 

Fig. 1. The concept of hardware configurability 

A certain number p of data elements with precision b/p are encoded in one 
very long data word of b bits. So the degree of parallelismp is increased 
when the required data precision b/p is decreased and vice versa. In order to 
achieve always a high utilization the hardware resources should be configured 
dynamically to allow parallel operations on all p data elements encoded in 
one data word. 

4. All massively parallel neural operations (related to the simulation of the 
synapses of a weight matrix W) should be supported efficiently by the neu- 
roprocessor, e.g.: 

- product of a vector u with the weight matrix W: xj  = ~ ui �9 w~j 
- computation of the squared Euclidean distance between a vector u and 

the columns of the matrix W: dj = ~ i ( u i  - wij)  2 
- outer vector product: A w i j  = ui �9 8j 

Fig. 2 illustrates the problem of fixed point arithmetics for variable word lengths. 
In the first example k products ui .wij must be accumulated and the result x must 
be stored in a data word of width b, < (bn + bw q- ld k). Here an appropriate 
result window must be selected from the long accumulator. The problems of 
rounding (at the lower end of the window) and saturation (at the upper end of the 
window) must be solved and should be realized efficiently by hardware. In case of 
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example 2 the selection of a result window must be performed after multiplying 
the two fixed point numbers u and 5 (see Fig. 2). So a special component in the 
neuroprocessor design (called n o r m a l i z e r )  is required for the selection of result 
windows (including support of rounding and saturation). 

Example 1: 
k 

Xj  ~ E Ui " W i j  
i=1 
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Example 2: 
bu > ~ b 6 
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". saturation, rounding " .  
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"< fw  > ~ ~ fw  > 

T 8at2 tration 

I ~ i i i l d d d d d d d d d  I w i j + u , . S j  

ui . 6j 

ui - 6j 

Fig. 2. Fixed point realizations of important neural operations 

Besides of the normalizer, also a multiplier, an accumulator and a second adder 
(for calculating Euclidean distances) should be available in the neuroprocessor 
design. Fig 3 shows an arrangement of all components which is suitable for all 
neural operations listed above. To support the required configurability all shaded 
components must operate in parallel on a variable number of p fixed point data 
elements coded in one very long data word. 
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Two data  words - each containing p data elements of b/p bits - enter the 
ari thmetical  unit at the input ports S and W. The adder may  be used to calculate 
in parallel p differences. It  also must  support  saturat ion because each result 
must be encoded again in b/p bits and so an overflow condition may  occur. The 
multiplier performs p parallel multiplications of two data  elements of b/p bits 
and produces p results of 2 �9 b/p bits encoded in a long word of bm,,It -- 2b bits. 

Fig. 3. The arithemeticM unit 

The accumulator must  perform p parallel accumulations. The total  length bacc of 
the accumulator should exceed bm,~tt by Prnax " l d  k bit positions to allow a large 
number  of k additions without overflow. For certain neural network operations 
(see also Sect. 3) some parameters  must be stored in an additional local memory.  
The parameters  are identical for all p parallel computat ions,  so a memory  width 
of 24 bit is sufficient. Two outputs are required: 

- a scalar output  of 24 bits is used e.g. for delivering the result of acccumula- 
tions, and 

- a parallel output  of b bits for storing p results encoded in one very long da ta  
word (here one of the input ports can serve also as an output  port).  

In order to s tudy the cost of configurability a prototype neuroprocessor chip has 
been designed by using VHDL. A width of b = 48 bits was selected for very long 
data  words, the parallelism degree p can be varied from Prnin = 2 to Pma~ -~ 12. 
So two 24 bit data  elements, three 16 bit data  elements, . . . ,  or twelve 4 bit da ta  
elements can be encoded in one very long data word. 
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CSA adder tree for p = 2 
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results A * B 

CSA adder tree for p = 3 

Fig.  4. Concept for the realization of a configurable multiplier 

The configurable multiplier can perform two 24 x 24 bit, three 16 x 16, . . . ,  
twelve 4 • 4 bit parallel multiplications. It is realized by introducing multiplexers 
in the adder tree because the CSA adders must  be arranged in a different way for 
different configurations (see Fig. 4). However the Booth  analysis always remains 
unchanged.  The  configurable adder can be realized by a s tandard  adder operat ing 
on long words of  b + p m ~  bits. The  p e lementary da ta  words encoded in one 
very long da ta  word are separated by zero bits to prevent a carry signal f rom 
being propaga ted  into the neighbour field (see Fig. 5). 

operands A 
b 

iil op I ' "  I~,NI o2 INI o~ 

operands B 

l~i~l ~p § ~p I " "  li~l ~ § b~ [~iil ~ § b~ t~i~l ~ § b~ I 

r 
results A-t-B 

Fig.  5. Concept for the realization of the configurable adder 
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The complete neuroprocessor chip including also address generators, con- 
trol logic and local memory of size 512 x 24 has been synthesized by using 
VHDL and standard cells in 0.7p technology [5]. All cricital components like 
adder, multiplier and accumulator have been implemented by structural de- 
scriptions. The required area (including configurable and standard components) 
is approx. 85 mm 2. Table 1 summarizes in the first column the relative chip area 
used by the arithmetic components, the second column presents the relative 
component area that is only used for implementing the configurability. 

Table 1. The cost of configurability for all arithmetic components (in chip area): 

component chip area component area used for configurabilty 

I/O ports 3.2 % 38 % 
adder 16.9 % 18 % 
multiplier 39.5 % 13 % 
accumulator 20.3 % 18 % 
normalizer 20.1% 40 % 

It can be seen that for the most complex arithmetical units, the multiplier and 
the accumulator, the additional cost of configurability is rather small. 

3 Implementation of Neural Network Operations 

A variable number of n neuroprocessors can operate in parallel to simulate a 
neural network. The input/output W of each neuroprocessor is connected to a 
local weight memory (WM), the input S is connected to a global state memory 
(SM) where the input/output patterns are stored. So in each clock cycle each 
neuroprocesoor can receive and operate on two very long data words. 

SM WM 1 

r ~ ' ~ 7  ~d8 ~Z9 WT,1 /38,1 W9,1 

U4 U5 U6 W4,1 ~V5,1 W6,1 

t t l  ~ 2  u 3  W l , 1  "02,1 W3,1 
] . . . .  

DIP ~ ~ """ -------I =,~ 

b . . . . . . . . . . . . . . . . .  io . . . . . . . . .  �9 . . . . . . . . .  ~ . . . . . . . . . . . . . . . . . . . . . . . . . .  �9 

k 

Fig. 6. Implementation of the neural operation x j  = ~ ui �9 w , j  for p = 3 
i = 1  



476 

All n neuroprocessors are controlled by a DSP which also addresses the 
state memory  and performs all not computation-intensive operations (like the 
computat ion of neural transfer functions). Fig. 6 shows how a vector-matrix- 
multiplication (ul ,  u 2 , . . . ,  uk) �9 Wk• is implemented on a system with n neu- 
roprocessors. The parallelism degree is set to p = 3, so (u i ,u i+l ,u i+2)  and 
(wi,j,  wi+l,j ,  wi+2,j) are stored in very long memory  words of SM and WM j 
and processed in parallel by processor j .  The results xj are read sequentially 
f rom the OUT ports of all processors by the DSP while the n neuroprocessors 
accumulate the next n elements of x. 

In case of gradient-based learning algorithms in multilayer neural networks 
m often the operation xl = ~ j = l  wij �9 5j must be realized which represents a 

multiplication of an error vector 8 with a transposed matr ix  W T. Depending on 
m, p and n this operation can be realized efficiently in two different ways: 

1. for  small  networks (m < p .  n2): store additionally wTj = wj,~ in WM j and 
compute xj  = ~ i  51 �9 w T (see previous operation). In this case neuroproces- '3 
sor j must  compute each weight update  twice (for wi,j and T Wi,j ). 

2. for large networks (m > p �9 n~): store wi,j only in WM j and distribute 
the vector 8 among all internal memorys.  Each of the n neuroprocessors 
computes the products 5j �9 (wi, j ,  W i + l , j , . . . ,  Wi+p-l , j )  for all locally stored 
values 5j and accumulates the p products in p accumulators. Thereafter,  the 
n �9 p partial  sums xl, x i + l , . . . ,  xi+~-~ are read and added by the DSP (see 
Fig. 7) while the n processors start  accumulating the next p elements of x. 

Finally, Fig. 8 illustrates the parallel computat ion of a typical weight update  
operation bases on the outer vector product. 

DSP 

j----1 

~ WMn 
w4,.~ [ws,.. w6,.~ 
W4,m- l lW5,m-1  lo6,m-1 
W l , m  ~u2,m W3,m 
IOl ,m-1 W2,m-1 w3,m-1 

ii ................... ii ij . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

iii~ :.1t 
.................... k ................... t ............................ 

,{1) =(1) ~(1) =(2) z(2) z(2) ~(.) ,(.) ~,} 
4 5 6 4 5 6 4 5 ~(I) ~(1) ~(I) ~(2) ~(~) ~(2) ~(.) ~(.) ~(3. ) 
1 2 3 1 2 3 1 2 

Fig. 7. Implementation of the neural operation xi = 2_2 w,j �9 5j for p = 3 
j - -1  
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Fig. 8. Implementation of the neural operation wij = wij + ui �9 8j for p = 3 

4 C o n c l u s i o n  

In this paper a new concept for neurocomputer architectures has been presented. 
It is based on a configurable neuroprocessor design that  can be adapted dynami- 
cally to different data precisions required for the simulation of different neural 
network models. The design of a prototype has demonstrated that configurabilty 
can be realized with low additional cost. 
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