
A New Concept for Parallel Neurocomputer
Architectures

Alfred Strey 1 and Narcis Avellana 2

1 Abteilung Neuroinformatik
Universits Ulm, D-89069 Ulm, Germany

2 Departemento de Disefio de CIs
Universidad Autonoma de Barcelona - C.N.M., 08193 BeUaterra, Spain

Abst rac t . This paper presents a new concept for a parallel neurocom-
purer architecture which is based on a configurable neuroprocessor de-
sign. The neuroprocessor adapts its internal parallelism dynamically to
the required data precision for achieving an optimal utilization of the
available hardware resources. This is realized by encoding a variable num-
ber of p different data elements in one very long data word of b bits. All
components of the neuroproccessor (multiplier, accumulator, adder, ...)
support the parallel execution of p operations on all data elements of one
very long data word.

1 I n t r o d u c t i o n

In recent years many neurocomputer architectures have been proposed [3]. Many
of them are based on special-purpose processors (so-called neuroprocessors) which
have been developped for the simulation of neural networks (e.g. [1], [4], [7]). In
principle, all such systems can support many neural network models but due
to several decisions of the processor design they are optimized only for one or
several models. Such decisions may concern

- the precision by which the arithmetical units perform the basic operations,
- the number and arrangement of the arithmetical units placed on one chip,
- the necessity to use pattern parallelism to reduce the number of I /O pins.

The precision is mostly limited to 16 bit fixed point for the weights of a neural
network and to 8 bit fixed point for the neuron outputs. In case of the multi-
layer perceptron and the standard error backpropagation learning algorithm this
precision was shown to be sufficient in most cases [2]. However self-organizing
feature maps can learn very well with only 6 bit weights [6]. For many other
neural network models no analysis about the required precision is available, at
least for recurrent neural networks an arithmetical precision of only 16 bit seems
not to be sufficient.

The inherent parallelism of neural networks allows the parallel processing
of synapses and neurons. However the parallel processing of patterns which is
required by several neurocomputers to achieve a high performance can only be
used for certain neural network models and also decreases the convergence speed
of the learning algorithm.

471

2 A Configurable Neuroprocessor

The design of the new neuroprocessor described in this paper is based on the
following ideas:

1. Instead of reducing the total number of I/O pins by using pattern parallelism
the available I/O pins of the neuroprocessor should be utilized optimally for
different data precisions by coding p data I/O elements compactly in one
I/O word of b bits (see Fig. 1).

2. The maximum precision of all data elements should be 24 bit fixed point.
3. The precision by which the arithmetical operations are performed should be

variable and related to the internal degree of parallelism (see Fig. 1).

pmin

praax b/pma~ bit

parallelism precision
degree p b/p

very long data word:
b

Id, l ,~ l ... IdpI
~/~

Fig. 1. The concept of hardware configurability

A certain number p of data elements with precision b/p are encoded in one
very long data word of b bits. So the degree of parallelismp is increased
when the required data precision b/p is decreased and vice versa. In order to
achieve always a high utilization the hardware resources should be configured
dynamically to allow parallel operations on all p data elements encoded in
one data word.

4. All massively parallel neural operations (related to the simulation of the
synapses of a weight matrix W) should be supported efficiently by the neu-
roprocessor, e.g.:

- product of a vector u with the weight matrix W: xj = ~ ui �9 w~j
- computation of the squared Euclidean distance between a vector u and

the columns of the matrix W: dj = ~ i (u i - wij) 2
- outer vector product: A w i j = ui �9 8j

Fig. 2 illustrates the problem of fixed point arithmetics for variable word lengths.
In the first example k products ui .wij must be accumulated and the result x must
be stored in a data word of width b, < (bn + bw q- ld k). Here an appropriate
result window must be selected from the long accumulator. The problems of
rounding (at the lower end of the window) and saturation (at the upper end of the
window) must be solved and should be realized efficiently by hardware. In case of

472

example 2 the selection of a result window must be performed after multiplying
the two fixed point numbers u and 5 (see Fig. 2). So a special component in the
neuroprocessor design (called n o r m a l i z e r) is required for the selection of result
windows (including support of rounding and saturation).

Example 1:
k

Xj ~ E Ui " W i j
i=1

ui i i d d d d d d d i i i d d d d d d d d wi j

[~::t:i bu + bw - 1 :~]
i i i i i l d d d d d d d d d d d d d d d d d u l . w q

ldk

:...~li~:i~iL:ii~i d a a a d a a a d d a a a dd[~u,.~i~
, f~ + f~ �9 .

] rounding ',
saturation ,

i i i i i i i d d d d d d d d d d d d d d ~j

Example 2:
bu > ~ b 6

ui ~ i i] d d d d d d d d d ~ q - i i i l d d d dd

i i"i i i d d d d d d d d d d d l d d d d d i L
. �9 f u - F f ~ ~ >~

". saturation, rounding " .

i i i d d d d d d d d + i i i d d d d d d d d d
"< fw > ~ ~ fw >

T 8at2 tration

I ~ i i i l d d d d d d d d d I w i j + u , . S j

ui . 6j

ui - 6j

Fig. 2. Fixed point realizations of important neural operations

Besides of the normalizer, also a multiplier, an accumulator and a second adder
(for calculating Euclidean distances) should be available in the neuroprocessor
design. Fig 3 shows an arrangement of all components which is suitable for all
neural operations listed above. To support the required configurability all shaded
components must operate in parallel on a variable number of p fixed point data
elements coded in one very long data word.

473

Two data words - each containing p data elements of b/p bits - enter the
ari thmetical unit at the input ports S and W. The adder may be used to calculate
in parallel p differences. It also must support saturat ion because each result
must be encoded again in b/p bits and so an overflow condition may occur. The
multiplier performs p parallel multiplications of two data elements of b/p bits
and produces p results of 2 �9 b/p bits encoded in a long word of bm,,It -- 2b bits.

Fig. 3. The arithemeticM unit

The accumulator must perform p parallel accumulations. The total length bacc of
the accumulator should exceed bm,~tt by Prnax " l d k bit positions to allow a large
number of k additions without overflow. For certain neural network operations
(see also Sect. 3) some parameters must be stored in an additional local memory.
The parameters are identical for all p parallel computat ions, so a memory width
of 24 bit is sufficient. Two outputs are required:

- a scalar output of 24 bits is used e.g. for delivering the result of acccumula-
tions, and

- a parallel output of b bits for storing p results encoded in one very long da ta
word (here one of the input ports can serve also as an output port).

In order to s tudy the cost of configurability a prototype neuroprocessor chip has
been designed by using VHDL. A width of b = 48 bits was selected for very long
data words, the parallelism degree p can be varied from Prnin = 2 to Pma~ -~ 12.
So two 24 bit data elements, three 16 bit data elements, . . . , or twelve 4 bit da ta
elements can be encoded in one very long data word.

474

multiplicands A multipliers B

t

1

rd~Rl P ~',O PA(~.An oH I

res A* B

CSA adder tree for p = 2

multiplicands A multipliers B

 LIi '

CARRY PROJPAC_,,ATION

results A * B

CSA adder tree for p = 3

Fig. 4. Concept for the realization of a configurable multiplier

The configurable multiplier can perform two 24 x 24 bit, three 16 x 16, . . . ,
twelve 4 • 4 bit parallel multiplications. It is realized by introducing multiplexers
in the adder tree because the CSA adders must be arranged in a different way for
different configurations (see Fig. 4). However the Booth analysis always remains
unchanged. The configurable adder can be realized by a s tandard adder operat ing
on long words of b + p m ~ bits. The p e lementary da ta words encoded in one
very long da ta word are separated by zero bits to prevent a carry signal f rom
being propaga ted into the neighbour field (see Fig. 5).

operands A
b

iil op I ' " I~,NI o2 INI o~

operands B

l~i~l ~p § ~p I " " li~l ~ § b~ [~iil ~ § b~ t~i~l ~ § b~ I

r
results A-t-B

Fig. 5. Concept for the realization of the configurable adder

475

The complete neuroprocessor chip including also address generators, con-
trol logic and local memory of size 512 x 24 has been synthesized by using
VHDL and standard cells in 0.7p technology [5]. All cricital components like
adder, multiplier and accumulator have been implemented by structural de-
scriptions. The required area (including configurable and standard components)
is approx. 85 mm 2. Table 1 summarizes in the first column the relative chip area
used by the arithmetic components, the second column presents the relative
component area that is only used for implementing the configurability.

Table 1. The cost of configurability for all arithmetic components (in chip area):

component chip area component area used for configurabilty

I/O ports 3.2 % 38 %
adder 16.9 % 18 %
multiplier 39.5 % 13 %
accumulator 20.3 % 18 %
normalizer 20.1% 40 %

It can be seen that for the most complex arithmetical units, the multiplier and
the accumulator, the additional cost of configurability is rather small.

3 Implementation of Neural Network Operations

A variable number of n neuroprocessors can operate in parallel to simulate a
neural network. The input/output W of each neuroprocessor is connected to a
local weight memory (WM), the input S is connected to a global state memory
(SM) where the input/output patterns are stored. So in each clock cycle each
neuroprocesoor can receive and operate on two very long data words.

SM WM 1

r ~ ' ~ 7 ~d8 ~Z9 WT,1 /38,1 W9,1

U4 U5 U6 W4,1 ~V5,1 W6,1

t t l ~ 2 u 3 W l , 1 "02,1 W3,1
]

DIP ~ ~ """ -------I =,~

b io �9 ~ . �9

k

Fig. 6. Implementation of the neural operation x j = ~ ui �9 w , j for p = 3
i = 1

476

All n neuroprocessors are controlled by a DSP which also addresses the
state memory and performs all not computation-intensive operations (like the
computat ion of neural transfer functions). Fig. 6 shows how a vector-matrix-
multiplication (ul , u 2 , . . . , uk) �9 Wk• is implemented on a system with n neu-
roprocessors. The parallelism degree is set to p = 3, so (u i ,u i+l ,u i+2) and
(wi,j, wi+l,j , wi+2,j) are stored in very long memory words of SM and WM j
and processed in parallel by processor j . The results xj are read sequentially
f rom the OUT ports of all processors by the DSP while the n neuroprocessors
accumulate the next n elements of x.

In case of gradient-based learning algorithms in multilayer neural networks
m often the operation xl = ~ j = l wij �9 5j must be realized which represents a

multiplication of an error vector 8 with a transposed matr ix W T. Depending on
m, p and n this operation can be realized efficiently in two different ways:

1. for small networks (m < p . n2): store additionally wTj = wj,~ in WM j and
compute xj = ~ i 51 �9 w T (see previous operation). In this case neuroproces- '3
sor j must compute each weight update twice (for wi,j and T Wi,j).

2. for large networks (m > p �9 n~): store wi,j only in WM j and distribute
the vector 8 among all internal memorys. Each of the n neuroprocessors
computes the products 5j �9 (wi, j , W i + l , j , . . . , Wi+p-l , j) for all locally stored
values 5j and accumulates the p products in p accumulators. Thereafter, the
n �9 p partial sums xl, x i + l , . . . , xi+~-~ are read and added by the DSP (see
Fig. 7) while the n processors start accumulating the next p elements of x.

Finally, Fig. 8 illustrates the parallel computat ion of a typical weight update
operation bases on the outer vector product.

DSP

j----1

~ WMn
w4,.~ [ws,.. w6,.~
W4,m- l lW5,m-1 lo6,m-1
W l , m ~u2,m W3,m
IOl ,m-1 W2,m-1 w3,m-1

ii ii ij .

iii~ :.1t
.................... k t

,{1) =(1) ~(1) =(2) z(2) z(2) ~(.) ,(.) ~,}
4 5 6 4 5 6 4 5 ~(I) ~(1) ~(I) ~(2) ~(~) ~(2) ~(.) ~(.) ~(3.)
1 2 3 1 2 3 1 2

Fig. 7. Implementation of the neural operation xi = 2_2 w,j �9 5j for p = 3
j - -1

477

j SM

u7 u8 u9

u4 u5 u6

u] U2 u3

DSP

Fig. 8. Implementation of the neural operation wij = wij + ui �9 8j for p = 3

4 C o n c l u s i o n

In this paper a new concept for neurocomputer architectures has been presented.
It is based on a configurable neuroprocessor design that can be adapted dynami-
cally to different data precisions required for the simulation of different neural
network models. The design of a prototype has demonstrated that configurabilty
can be realized with low additional cost.

R e f e r e n c e s

1. D. Hammerstrom. A VLSI Architecture for High-Performance, Low-Cost, On-chip
Learning. In Proc. IJCNN, pages 537-543, San Diego, 1990.

2. J. Holt and J. Hwang. Finite precision error analysis of neural networks hardware
implementations. IEEE Trans. on Computers, 42:281-290, 1993.

3. P. Ienne. Architectures for Neurocomputers: Review and Performance Evaluation.
Technical Report 93/21, Swiss Institute of Technology, Lausanne, 1994.

4. U. Ramacher. Synapse - A Neurocomputer that Synthesizes Neural Algorithms on
a Parallel Systolic Engine. Jourr*al of Parallel and Distributed Computing, 14:306-
318, 1992.

5. A. Strey, N. Avellana, R. Holgado,].A. Ferns R. Capillas, and E. Valderrama.
A Massively Parallel Neurocomputer with a Reconfigurable Arithmetical Unit. In
J. Mira and F. Sandoval, editors, From Natural to Artificial Neural Computation,
pages 800-806. Springer, Berlin Heidelberg, 1995.

6. P. Thiran, V. Peiris, P. Heim, and B. Hochet. Quantization effects in digitally be-
having circuit implementations of Kohonen networks. IEEE Trans. on Neural Net-
works, 5(3):450-458, 1994.

7. M.A. Viredaz. MANTRA h An SIMD Processor Array for Neural Computation.
In P.P. Spies, editor, Euro-ARCH '93, pages 99-110. Springer-Verlag, 1993.

