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ties with the classical Mahalanobis depth for multivariate data, we call it the
angular Mahalanobis depth. Our unique concept combines the advantages
of both the depth and quantile settings: appealing depth-based geomet-
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and typical quantile-asymptotics, namely we establish a Bahadur-type rep-
resentation and asymptotic normality (these results are corroborated by a
Monte Carlo simulation study). We introduce new user-friendly statistical
tools such as directional DD- and QQ-plots and a quantile-based goodness-
of-fit test. We illustrate the power of our new procedures by analyzing a
cosmic rays data set.
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1. Introduction

The notion of quantile of a probability distribution is extremely popular in the
statistical world, be it for descriptive statistics, exploratory data analysis, infer-
ential procedures or probabilistic aspects. In order to describe the main features
of a univariate data set (location, dispersion, skewness, kurtosis), concepts such
as the median, interquartile range, Bowley coefficient of skewness or Moor co-
efficient of kurtosis (see [4] and [26]), to cite but these, are very useful due to
their simplicity and their robustness compared to moment-based measures. The
famous QQ-plot constitutes a widely used graphical method allowing to assess
the accuracy of a theoretical model for a given data set or to determine whether
two samples are drawn from a same population. Further, less exploratory, uses
of quantiles include the celebrated quantile regression (see [11] and [10]) as well
as quantile-based goodness-of-fit tests (see [15] and references therein). Typi-
cal quantile-probabilistic results are a Bahadur representation and asymptotic
normality.

The success of univariate quantiles has stimulated several researchers to try
to extend this fundamental one-dimensional concept to higher dimensions and
to circumvent the inherent difficulty of a lack of a natural order in higher di-
mensions. The complexity of the task can already be perceived through the
various definitions of a multivariate/spatial median; see [31] for a survey. Early
proposals of multivariate quantiles usually are either descriptive statistics that
generalize univariate quantiles or order statistics to higher dimensions, either
an extension of a given concept of spatial median, or defined through the coor-
dinate variables. We refer to [5] for a discussion on those attempts (and for a
more geometric notion of multivariate quantiles), and to the survey paper of [30]
for a review of the distinct existing proposals. In recent years, one proposal has
received particular attention, namely the discussion paper [8]. Their concept,
based on a directional version of the [11] regression quantiles, enjoys several
advantages: easy computation, typical quantile-asymptotics (Bahadur represen-
tation and asymptotic normality) and, quite notably, their quantile contours
coincide with the classical half space (or Tukey) depth contours.

Depth functions associated with a probability distribution also enjoy a strong
popularity among statisticians. They address precisely the above-mentioned lack
of natural order in the multivariate setting from a slightly different angle: they
provide a center-outward ordering for any multivariate data set by affecting
each point x ∈ R

k with a value, the depth of x, determining its centrality
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within the data cloud. [30] explains how depth functions provide multivariate
notions of order statistics. Numerous distinct notions of data depth have been
successfully introduced and studied in the literature, such as the half space
depth [33], the simplicial depth [20], the Mahalanobis depth [21] or the zonoid
depth [13], to cite but these. A systematic theoretical treatment of statisti-
cal depth functions is given in [35], who state four desirable properties that
depth functions should satisfy, namely (1) affine-invariance (the depth of any
x should not depend on the underlying coordinate system), (2) maximality at
center (for symmetric distributions, the center of symmetry should possess the
highest depth), (3) monotonicity relative to the deepest point (the depth of
any point x should be decreasing as x moves away from the unique deepest
point along any ray from that point), and (4) vanishing at infinity (the depth
of x should converge to zero as ||x|| tends to infinity). Depth-based procedures
are applied to several problems, including location estimation, regression (espe-
cially the regression depth of [29]), classification (e.g., via DD-plots, see [19]),
trimming, testing procedures (e.g., testing for distinct notions of symmetry)
and functional data analysis. For recent reviews on data depth, we refer to [23]
and [27].

Deriving depth asymptotics is usually a highly complicated task in view of
the difficult structures inherent to the distinct depth functions. This further
underlines the merits of the [8] approach, which combines the geometric struc-
ture of depth contours with the asymptotic results from multivariate quantiles.
This combination of the best properties of both worlds is also our aim in the
present paper, where we develop a new concept of quantiles and data depth for
directional statistics.

To the best of the authors’ knowledge, so far there does not exist a proper
concept of quantiles for directional (that is, circular and spherical) data, con-
trarily to the situation regarding depth. Indeed, three concepts of data depth
for directional distributions are nicely presented in [24]: the angular simplicial,
angular Tukey and arc distance depths. Those concepts of depth enjoy many
attractive properties as it is summarized in [1]. The latter paper illustrates the
fact that they are quite appealing for directional data since they provide nat-
ural nonparametric orderings. However, these notions of depth suffer from two
major drawbacks: (i) they are computationally heavy and (ii) it is extremely
difficult to base inference on empirical versions of those depth contours, since
results such as asymptotic normality or asymptotic representations do not exist.
Thus, the field of directional statistics can so far neither enjoy the above-cited
advantages of a good notion of quantile nor does it possess a computationally
simple notion of depth such as the Mahalanobis depth in the classical multi-
variate context. This is why we propose in the present paper a single novel
concept serving both as quantile and depth for directional data and which (i) is
simple to deal with and computationally light, (ii) provides new descriptive
means for directional data, (iii) is canonical in the rotationally symmetric case
(see the rest of the Introduction for more details on rotationally symmetric
distributions), (iv) enjoys the geometric advantages of depth contours (convex-
ity, nestedness, rotation-equivariance), (v) has an empirical version for which



798 C. Ley et al.

the classical quantile-asymptotics can be proved (Bahadur representation and
asymptotic normality), hence (vi) lends itself pretty well for inferential purposes.
In view of these properties, we call our new depth angular Mahalanobis depth,
see Section 2.2.

Directional data naturally arise from multivariate data for which the mag-
nitude of the observed vector is irrelevant. Their domains of application are
numerous and diverse: earth sciences, meteorology, neurosciences, astronomy,
studies of animal behavior or the protein structure prediction problem (see [25],
and [3] for a description of the latter problem). In general, there exist two differ-
ent types of directional data: (i) the traditional circular/spherical data for which
the observations are vectors on the unit sphere Sk−1 := {v ∈ R

k : v′v = 1} and
(ii) the axial data which are observed axes, that is, observed unit vectors up to
a sign. Obviously, a natural assumption on the distribution of an axial data is
the so-called antipodal symmetry under which the underlying density f is such
that f(−x) = f(x) for any x ∈ Sk−1. As shown in [24], antipodally symmetric
distributions have constant angular Tukey depth and, consequently, providing
any notion of order within this class sounds unrealistic. On the contrary, circu-
lar/spherical data lend themselves very well for this purpose, especially under
one of the most classical assumptions on the underlying distribution: rotational
symmetry (reflective symmetry in the circular case). Rotationally symmetric
distributions are characterized by densities of the form

x 7→ fθθθ(x) = ck,f1 f1(x
′θθθ), x ∈ Sk−1, (1.1)

where θθθ ∈ Sk−1 is a location parameter (the modal direction), f1 : [−1, 1] → R
+
0

an absolutely continuous and (strictly) monotone increasing function and ck,f1
a normalizing constant. This class contains the most popular directional distri-
butions, including the cardioid distribution, the wrapped-normal, the wrapped-
Cauchy and, most importantly, the Fisher-vonMises-Langevin (hereafter FvML)
distribution obtained by taking f1(u) = exp(κu) for some strictly positive con-
centration parameter κ. The latter, also known as von Mises distribution on the
circle S1 and as Fisher distribution on the sphere S2, is the most studied and
most used directional distribution and is therefore considered as the directional
analogue of the classical Gaussian distribution. As announced previously, the
concept of quantile/depth we propose can be seen as canonical in the rotation-
ally symmetric case.

The paper is organized as follows. In Section 2, we first introduce both the
population and the sample version of our new concept in the quantile setting,
and then translate each notion to the depth setting. Then, in Section 3, we es-
tablish the typical quantile-asymptotics, namely a Bahadur-type representation
and asymptotic normality, with particular emphasis on the case of rotational
symmetry. Applications of our quantiles and depth in exploratory data analy-
sis and statistical inference are described in Section 4. The new concept and
the related new statistical tools are illustrated in the analysis of cosmic rays
data, see Section 5. Monte Carlo simulation studies confirming our asymptotic
results are conducted in Section 6. Finally, an appendix collects the technical
proofs.
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2. The new concept of quantiles and depth for directional data

In this section, we first define our novel concepts (both at population and em-
pirical level) from a quantile point of view (Section 2.1), and then show how all
these concepts translate to a depth-based terminology allowing us to define the
angular Mahalanobis depth (Section 2.2).

2.1. The new concept of quantiles

We propose in this section our new concept of quantiles for circular and spherical
data. The population version of the τ -quantile we provide can be seen as a
vector of the form cτθθθm, where cτ is a real number taking values in [−1, 1] and
θθθm ∈ Sk−1 is the median direction. Our quantiles shall be valid for all random
vectors X ∈ Sk−1 satisfying the following Assumption:

Assumption A. The distribution of X belongs to the class F of probability
laws on Sk−1 with bounded density and which admit a unique median direc-
tion θθθm.

There exist distinct concepts of median on the unit sphere based on different
concepts of depth (see [24]). We here choose the celebrated [7] spherical median
for θθθm, which is related to the arc distance depth as stated in [24], but of course
any other choice of directional median is possible. Note that Assumption A
rules out antipodally symmetric distributions, for which quantiles, as explained
in the Introduction, would anyway have no meaning. Most of the distributions
generally used to fit non-axial directional data, and in particular the entire class
R of rotationally symmetric distributions defined in (1.1), satisfy Assumption A,
hence fall within the class F . By construction, in the rotationally symmetric
case, the Fisher (1985) median, the Tukey median and the angular simplicial
median (see [24]) do coincide with the unique mode θθθ (see (1.1)). Now, letting
ρτ (u) := u(τ−I[u ≤ 0]), u ∈ R, stand for the well-known quantile check function
(see, e.g. [10]), we define

cτ := arg min
c∈[−1,1]

E [ρτ (X
′θθθm − c)] . (2.2)

In other words, the quantity cτ is the univariate quantile obtained by projecting
the vector X onto the median θθθm; we therefore call cτ projection quantile. Each
projection quantile cτ leads to the subsets

C+
τ := {x ∈ Sk−1 |x′θθθm ≥ cτ} and C−

τ := {x ∈ Sk−1 |x′θθθm < cτ}

defining respectively an upper quantile cap and a lower quantile cap for X. We
denote by Hcτθθθm

the hyperplane orthogonal to θθθm that cuts Sk−1 into the re-
gions C+

τ and C−
τ and by Ccτθθθm the corresponding quantile contour, obtained

as the intersection between Hcτθθθm and the sphere. This contour thus is formed
by a (k − 2)-dimensional sphere (a circle inside the sphere S2, two points on
the circle S1) centered at cτθθθm. Summing up, for a given τ ∈ [0, 1], the corre-
sponding τ -quantile is thus constructed in two steps: first choose the median θθθm,
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then determine the univariate projection quantile cτ of the projected population
X′θθθm: the result is the τ -quantile cτθθθm.

Our concept of quantiles clearly is of a directional nature, as we fix from the
beginning the median direction θθθm along which we order the data. Thus, the
median quantile c1/2θθθm here is not associated with the most central point, but
rather with that point on the diameter cθθθm, c ∈ [−1, 1], whose corresponding
hyperplane Hc1/2θθθm

leaves half of the probability mass above and below it.
A value of τ = 1 (c1 = 1) is of course reached by θθθm whereas τ = 0 (c0 = −1)
characterizes its opposite −θθθm, provided that the neighborhood of −θθθm has not
probability mass zero. Would this be the case, then an entire cap centered at
−θθθm would be associated with τ = 0.

While the population version of the projection quantile cτ coincides with the
proposal of [12] for multivariate data in the specific direction θθθm (contrarily to
their set-up, we here of course do not consider other directions), the empirical
counterpart of cτ we propose however strongly differs from theirs because, as
explained above, we first have to consistently estimate θθθm by an estimator θ̂θθm.
More precisely, the empirical version of our quantiles cτθθθm and of the upper and
lower quantile caps C+

τ and C−
τ can be constructed by following a simple scheme:

(1) estimate the median θθθm by an estimator θ̂θθm, (2) project all observations onto

θ̂θθm and (3) use a traditional definition of univariate quantiles for determining
the ĉτ . Now, let X1, . . . ,Xn stand for an i.i.d. sequence of random vectors on
Sk−1 following a common distribution F ∈ F (see Assumption A). In view

of what precedes, the natural choice of estimator θ̂θθm is obviously to take the
empirical spherical median introduced in [7]. Using this θ̂θθm, we define

ĉτ := arg min
c∈[−1,1]

n−1
n
∑

i=1

ρτ (X
′
iθ̂θθm − c)

as the empirical version of (2.2). The resulting τ -quantile is then ĉτ θ̂m and the
empirical upper and lower quantile caps are respectively given by the subsets

Ĉ+
τ := {x ∈ Sk−1 |x′θ̂θθm ≥ ĉτ} and Ĉ−

τ := {x ∈ Sk−1 |x′θ̂θθm < ĉτ}.

In Section 3, we study the asymptotic properties of our quantiles, more precisely,
of ĉτ . The latter issue is not trivial since ĉτ is the quantile of the sequence
X′

1θ̂θθm, . . . ,X
′
nθ̂θθm which is not an i.i.d. sequence.

We conclude this section by noting that the quantities cτ and ĉτ are rotation-
invariant which, combined to the rotation-equivariance of the theoretical and
empirical median, entails that the quantiles as well as the quantile caps (but
not their size which remains invariant!) are rotation-equivariant.

2.2. The (related) new concept of depth: The angular Mahalanobis
depth

We now show how the quantities defined in the previous section translate into a
depth setting and that our concept provides us with a new depth for directional
data, namely the angular Mahalanobis depth.
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Let F ∈ F with unique mode θθθm denote the distribution associated with X.
Then, for every x ∈ Sk−1, DF (x) := argminτ∈[0,1]{cτ ≥ x′θθθm}, the “quantile
value” received by x, measures the centrality of x w.r.t. F . More generally,
the function DF provides a center-outward ordering, with center given by the
median direction; hence it actually defines a depth on the sphere. As described
in the Introduction, a depth function on R

k should fulfill four requirements put
forward by [35]. We shall now show that DF does satisfy the Sk−1-adapted
versions of these conditions.

First, affine-invariance in the spherical case corresponds to rotation-invariance,
which trivially follows from the observation at the end of the previous section.
Second, DF attains its maximal value at the center θθθm. Third, DF decreases
along each semi-great-circle from θθθm to −θθθm, implying monotonicity relative to
any deepest point. Four, DF vanishes at −θθθm, which is the spherical equivalent
of infinity in R

k. The four conditions being fulfilled, DF defines a correct no-
tion of data depth on the sphere Sk−1. Now, DF varies between 0 and 1; the
maximum value of the angular Tukey depth is 1/2 irrespective of the dimension,
whereas the angular simplicial depth is bounded by 1/2 on the unit circle and
by 1/4 on S2 (see [24]). This naturally brings as to a normalization of our depth
DF into DF (x)/(1+DF (x)), whose upper bound equals 1/2. A simple rewriting
of this normalized depth yields

x 7→ AMHDF (x) :=
1

1 + 1
DF (x)

, x ∈ Sk−1, (2.3)

and one readily sees that AMHDF satisfies the four conditions, too. The no-
tation AMHD stands for angular Mahalanobis depth, because of numerous
similarities between the spherical depth defined in (2.3) and the classical Ma-
halanobis depth on R

k given by

x 7→ MHDF (x) =
1

1 + (x −µµµ(F ))′(ΣΣΣ(F ))−1(x−µµµ(F ))
, x ∈ R

k,

where µµµ(F ) and ΣΣΣ(F ) are location and scatter functionals under F . Clearly,
the spherical center θθθm plays the role of the center µµµ(F ). Denoting by OF (x)
a measure of outlyingness of x w.r.t. the deepest point, both AMHDF and
MHDF are of the form 1

1+OF (x) , hence are Type C depth functions (following

the terminology of [35]. Moreover, whileMHDF is particularly suited for ellipti-
cally symmetric distributions on R

k, AMHDF is a canonical notion of depth for
rotationally symmetric distributions on Sk−1 (see Proposition 3.2). These sim-
ilarities justify, in our opinion, the terminology of angular Mahalanobis depth.

The quantile contours Ccτθθθm
of course are at the same time depth contours.

They therefore inherit nice geometric properties: they are convex, nested and
rotation-equivariant. In case of rotationally symmetric distributions, our depth
quantiles coincide with angular Tukey depth contours on the hemisphere cen-
tered at θθθm, but our contours clearly improve on their competitor by the fact
that they are not constant on the opposite hemisphere (all points lying on the
hemisphere centered at −θθθm possess the same angular Tukey depth).



802 C. Ley et al.

Finally, letting X1, . . . ,Xn stand for an i.i.d. sequence of random vectors
on Sk−1 with common distribution F ∈ F , the corresponding empirical an-
gular Mahalanobis depth is defined as AMHD(x) = 1

1+ 1
D̂(x)

where D̂(x) :=

argminτ∈[0,1]{ĉτ ≥ x′θ̂θθm} is the empirical version of the depth DF .

3. Asymptotic properties

In this section, we study the asymptotics of the empirical version of our quantiles
and depth. Since these asymptotic results are typical quantile results, we will
throughout restrict to the quantile language, whilst keeping in mind the equiv-
alence quantiles-depth shown in the previous section. Let X1, . . . ,Xn stand
for an i.i.d. sequence of random vectors on Sk−1 with common distribution
F ∈ F (see Assumption A). The derivation of the asymptotic properties re-

quires the use of a locally and asymptotically discrete version–θ̂θθ
∗

m say–of the

empirical Fisher median θ̂θθm. This means that θ̂θθ
∗

m is such that, for all c > 0,

there exists M = M(c) > 0 such that the number of possible values of θ̂θθ
∗

m in
balls of the form {t ∈ R

k : n1/2‖t−θθθm‖ ≤ c} is bounded by M , uniformly in n.

Discretization allows to substitute, in oP(1) sequences, θ̂θθ
∗

m by deterministic ex-
pressions of the form θθθm+n−1/2t(n) (with bounded t(n) which can be taken such
that θθθm+n−1/2t(n) remains on Sk−1, see [18]); we refer to Lemma 4.4 in [14] for
details. It is a theoretical assumption that has no impact in fixed-n practice (see
pages 125 or 188 of [16] for a discussion). Therefore, for the sake of simplicity,

we tacitly assume in what follows that θ̂θθm is locally and asymptotically discrete.
Bearing this in mind and recalling that the empirical spherical median is

root-n consistent, we are ready to provide, in the following result, an asymptotic
representation of ĉτ .

Proposition 3.1 (Bahadur-type representation). Let F ∈ F and fproj stand
for the common density of the projections X′

iθθθm, i = 1, . . . , n, and set Γcτ :=
fproj(cτ ). Then there exists a k-vector ΓΓΓθθθm,cτ such that

n1/2(ĉτ − cτ ) =
n−1/2

Γcτ

n
∑

i=1

(τ − I[X′
iθθθm ≤ cτ ])−

ΓΓΓ′
θθθm,cτ

Γcτ

n1/2(θ̂θθm − θθθm) + oP(1)

(3.4)
as n→ ∞ under the joint distribution of X1, . . . ,Xn.

See the appendix for the proof, whose main difficulty of course lies in the fact
that the median θθθm needs to be estimated. The asymptotic representation in
(3.4) directly entails that if the joint normality of

(

n−1/2
n
∑

i=1

(τ − I[X′
iθθθm − cτ ≤ 0]), n1/2(θ̂θθm − θθθm)′

)′

can be established, then the asymptotic normality of n1/2(ĉτ −cτ) follows. Quite
interestingly, the asymptotic Bahadur-type representation of Proposition 3.1 has
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a nice form in the rotationally symmetric case, as summarized in the following
proposition.

Proposition 3.2. Let F ∈ R. Then

n1/2(ĉτ − cτ ) =
n−1/2

Γcτ

n
∑

i=1

(τ − I[X′
iθθθm ≤ cτ ]) + oP(1) (3.5)

as n → ∞ under the joint distribution of X1, . . . ,Xn. Therefore, letting fproj
stand for the density of X′

iθθθm, we have that n1/2(ĉτ − cτ ) is asymptotically
normal with mean zero and variance (1 − τ)τ/f2

proj(cτ ).

See the appendix for the proof. The asymptotic representation (3.5) is exactly
equivalent to the Bahadur-type representation for univariate sample quantiles,
see e.g. [2]. The absence, in the rotationally symmetric case, of the estimator

θ̂θθm in the representation (3.5) is a welcomed feature: it means that the sub-
stitution of θθθm by any root-n consistent estimator (spherical median, spherical
mean

∑n
i=1 Xi/||

∑n
i=1 Xi||, etc.) has no asymptotic effect, irrespective of the

dimension k. In that sense, our quantiles for directional data are canonical in
the rotationally symmetric case.

4. Applications: From exploratory data analysis to statistical

inference

Quantiles as robust measures of concentration. Our easy-to-compute
quantiles convey some interesting information on how distributions are spread
around the median direction θθθm. For the sake of illustration, we provide in
Table 1 the projection deciles ci/10 for i = 1, 2, . . . , 9 of various circular and
spherical distributions: circular cardioid distributions with concentrations ρ =
.1, .2, .5 (fcard(ρ)), circular von Mises distributions with concentrations κ =
1, 5, 10 (fvm(κ)), circular wrapped Cauchy distributions with concentrations
ρ = .1, .5, .9 (fwrcau(ρ)), circular wrapped normal distributions with concen-
trations ρ = .1, .5, .9 (fwrno(ρ)), spherical FvML distributions with concentra-
tions κ = 1, 2, 5, 10 (fFvML(κ)), spherical linear distributions with parameters
a = 2, 5, 10 (flin(a), see [18]) and spherical Purkayastha distributions (see [28])
with concentrations κ = 1, 5 (fPur(κ)). It becomes clear from this table that
our quantiles not only complement well but provide much more insight into the
concentration of the distribution than the single value provided by the mean
resultant length R := (E[X]′E[X])1/2 or by any single concentration parameter.
Moreover, by their nature our quantiles are robust concentration indicators.

QQ-plots. It is clear that our quantiles also allow us to propose QQ-plots for
directional distributions. In Figure 1, we provide a few examples of QQ-plots
(theoretical FvML(1) against a sample of size 1000 from an FvML(1), a theo-
retical FvML(1) against a sample of size 1000 from an FvML(3), a theoretical
Pur(1) against a sample of size 1000 from a Pur(1) and finally a theoretical
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Table 1

The projection deciles ci/10 for i = 1, 2, . . . , 9 of various circular and spherical distributions;
circular cardioid distributions with concentration ρ (fcard(ρ)), circular von Mises

distributions with concentration κ (fvm(κ)), circular wrapped Cauchy distributions with
concentration ρ (fwrcau(ρ)), circular wrapped normal distributions with concentration ρ

(fwrno(ρ)), spherical FvML distributions with concentration κ (fFvML(κ)), spherical linear
distributions with parameter a (flin(a)) and spherical Purkayastha distributions with

concentration κ (fPur(κ)). The circular distributions are associated with θθθm = (1, 0)′, the
spherical distributions with θθθm = (1, 0, 0)′

Density c1/10 c2/10 c3/10 c4/10 c5/10 c6/10 c7/10 c8/10 c9/10
fcard(.1) -.9250 -.7199 -.4333 -.1153 .1946 .4710 .6973 .8639 .9656
fcard(.2) -.8732 -.5780 -.2376 .0843 .3640 .5939 .7721 .8990 .9748
fcard(.5) -.2971 .0559 .3152 .5164 .6736 .7955 .8868 .9502 .9876
fvm(1) -.5952 -.0807 .2744 .5178 .6896 .8123 .8987 .9562 .9892
fvm(5) .7120 .8256 .8860 .9249 .9518 .9708 .9842 .9932 .9983
fvm(10) .8609 .9156 .9448 .9636 .9766 .9858 .9923 .9967 .9991
fwrcau(.1) -.9278 -.7276 -.4411 -.1183 .1979 .4776 .7043 .8679 .9669
fwrcau(.5) -.6317 -.0256 .4005 .6525 .7999 .8891 .9439 .9768 .9944
fwrcau(.9) .8010 .9488 .9788 .9895 .9944 .9970 .9985 .9994 .9998
fwrno(.1) -.9250 -.7200 -.4334 -.1153 .1946 .4711 .6973 .8640 .9656
fwrno(.5) -.3566 .0619 .3434 .5479 .7009 .8153 .8988 .9558 .9890
fwrno(.9) .7282 .8318 .8889 .9262 .9524 .9711 .9843 .9932 .9983
fFvML(1) -.5059 -.1767 .0705 .2686 .4338 .5756 .6998 .8102 .9096
fFvML(2) -.0750 .2307 .4190 .5555 .6626 .7507 .8256 .8908 .9484
fFvML(5) .5396 .6782 .7593 .8168 .8614 .8979 .9287 .9554 .9790
fFvML(10) .7698 .8391 .8797 .9084 .9307 .9490 .9644 .9777 .9895
flin(2) -.6583 -.3875 -.1560 .0494 .2361 .4084 .5691 .7203 .8636
flin(5) -.7573 -.5278 -.3095 -.1010 .0991 .2916 .4773 .6569 .8310
flin(10) -.7804 -.5660 -.3563 -.1511 .0499 .2470 .4404 .6302 .8167
fPur(1) -.4373 -.1078 .1386 .3358 .4986 .6356 .7519 .8507 .9337
fPur(5) .7359 .8386 .8911 .9243 .9474 .9644 .9772 .9870 .9946

Pur(1) against a sample of size 1000 from a Pur(3)) . We clearly see from these
plots that one can easily deduce via this graphical tool whether the theoreti-
cal distribution under investigation fits the sample or not. Of course, since our
quantiles only take into account the projections onto the median direction θθθm,
this QQ-plot does not permit us to distinguish probability laws which only vary
on the orthogonal hyperplane to θθθm but whose projections are similar. But re-
call that also the original QQ-plot is only a tool in exploratory data analysis
to give an approximate idea of the underlying distribution; moreover, it defi-
nitely allows us to tell when two distributions are different. Finally note that
our QQ-plots can be seen as a generalization of the colatitude plot introduced
in [17] for FvML distributions. In that paper, the authors show how these plots
can serve as graphical goodness-of-fit tests and so provide estimations for the
concentration parameter of FvML distributions; the same evidently is also true
for our QQ-plots, which are not restricted to the FvML case but can deal with
several circular/spherical distributions.

DD-plots. Both the angular Mahalanobis depth AMHDF and the depth DF

allow us to build DD-plots for directional distributions. The concept of DD-plot
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Fig 1. QQ-plots (theoretical quantiles versus sample quantiles) using theoretical FvML(1)
quantiles in the upper plots and theoretical Pur(1) quantiles in the lower plots. In each case,
we generated a sample of 1000 observations from various distributions: for the upper left QQ-
plot from an FvML(1) distribution, for the upper right QQ-plot from an FvML(3) distribution,
for the lower left QQ-plot from a Pur(1) distribution, and for the lower right QQ-plot from
a Pur(3) distribution.

was first defined by [22] to compare two multivariate distributions. It has been
used in a recent paper by [19] to propose classification methods. Directional
DD-plots can be defined as in [22]: letting X11, . . . ,X1n1 and X21, . . . ,X2n2 be
two directional samples with distributions F and G, respectively, the angular
Mahalanobis DD-plot is defined as

DD(F,G) := {(AMHDF (Xij), AMHDG(Xij)), i = 1, 2, j = 1, . . . , ni}.

A comparison between F and G can then be based on the fact that, if F = G,
the empirical version of DD(F,G) should be concentrated around the 45-degree
line.

In this paper, we illustrate the usefulness of our depth concept with a “one-
sample” version of the DD-plot described above. More precisely, let X1, . . . ,Xn

be a directional sample with cdf F and define

DD(G) := {(AMHD(Xi), AMHDG(Xi)), i = 1, . . . , n}.

The resulting graph DD(F ) should look like a homoskedastic white noise around
the same 45-degree line while the graph DD(G) with G 6= F should show a clear
departure from the homoskedastic white noise situation. This is confirmed in
Figure 2. Similar DD-plots are obtained by replacing the angular Mahalanobis
depth with DF .
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Fig 2. DD-plots (theoretical depth versus empirical depth) using the theoretical FvML(1)
depth in the upper plots and the theoretical Pur(1) depth in the lower plots. In each case, we
generated a sample of 100 observations from various distributions: for the upper left DD-plot
from an FvML(1) distribution, for the upper right DD-plot from an FvML(3) distribution,
for the lower left DD-plot from a Pur(1) distribution, and for the lower right DD-plot from
a Pur(3) distribution.

Classification. The spherical classification problem, as considered in [24],
consists in determining whether a new data point Z belongs to either the sample
X11, . . . ,X1n1 or to the sample X21, . . . ,X2n2 , with n1, n2 ∈ N. This question
can be answered by first computing, within each sample, the depth of Z and
then attributing Z to the sample where it has highest depth (which coincides
with the DD-classification method of Li et al. 2012).

Goodness-of-fit tests. Consider the testing problem H0 : F = F0 for some
specific F0 ∈ R against H1 : F 6= F0. Let τττ := (τ1, . . . , τm) ∈ (0, 1)m and

T
(n)
τττ := n1/2((ĉτ1 − c0τ1), . . . , (ĉτm − c0τm))′, where c0τi is the projection quantile

of order τi (i = 1, . . . ,m) of F0. It directly follows from Proposition 3.2 that,

underH0, T
(n)
τττ is asymptotically normal with mean zero and (m×m) covariance

matrix ΣΣΣ = (ΣΣΣij), with

ΣΣΣij =
min(τi, τj)− τiτj

f0;proj(c0τi)f0;proj(c
0
τj )
,

where f0;proj(c
0
τi) stands for the density of the projections under F0 evaluated

at c0τi (i = 1, . . . ,m). Note that the covariance matrix ΣΣΣ does not need to be esti-
mated under the null hypothesis. Based on this joint asymptotic normality result
which directly follows from the multivariate central limit theorem, a goodness-of-
fit test φF0 is obtained by rejecting the null (at the nominal asymptotic level α)
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when Q
(n)
τττ := (T

(n)
τττ )′ΣΣΣ−1

T
(n)
τττ exceeds the α-upper quantile of the chi-square

distribution with m degrees of freedom.
Compared to other goodness-of-fit tests proposed in the literature on direc-

tional statistics, see [25] (Section 12.3), our (extremely simple) quantile-based
goodness-of-fit tests φF0 constitute an interesting alternative as they are neither
tailored only for a specific null distribution nor only powerful against a specific
alternative. A detailed power investigation of these tests is beyond the scope of
the present paper and left for future work.

Trimming. It is obvious that our angular Mahalanobis depth lends itselve
pretty well for trimming purposes. Indeed, as it provides a center-outward or-
dering from the median direction, trimming by cutting off the points below the
τ -depth contour Ccτθθθm

for τ ∈ (0, 1/2) will allow to deal only with the 1 − τ
deepest points. Such a trimming is certainly more adapted than trimming via
the angular Tukey depth which is constant on the hemisphere opposite to the
deepest point. Note that this simple trimming procedure can as well be useful
for constructing a bootstrap confidence region via the percentile method of [6].

5. Empirical illustration: Cosmic rays data

In this section, we make use of our new notions in order to analyze a data set
which consists in 148 measurements of arrival directions of cosmic rays. [32] used
these observations to study primary cosmic rays in certain energy regions. When
starting the analysis of such data, a natural question arises: which model or
which distribution should one use to fit the data? The first reaction of a scientist
or a practitioner is to make some visual inspection of the data. In Figure 3, we
constructed the median upper and lower caps and the third quartile upper and
lower caps. Inspection of Figure 3 reveals a relatively low concentration of the
data as the median quantile caps almost have the same volume.

Next, we performed goodness-of-fit tests based on the joint asymptotic nor-
mality of the projection quartiles (ĉ.25, ĉ.5, ĉ.75)

′ for various FvML and Pur-
kayastha spherical distributions. Of course, our previous visual inspection has
led us to consider only small values for the FvML concentration parameter. Ta-
ble 2 provides the asymptotic p-values associated with the tests, which reveal
that, among the distributions considered, the FvML distribution with concen-
tration .7 provides the best fit to the data. Note that we also performed the
goodness-of-fit test for various linear distributions; it turns out that the null
hypothesis is always rejected at the nominal asymptotic level α = 5%. The re-
sults of Table 2 are further corroborated by the QQ-plots in Figure 4 (we omit
showing the DD-plots as they convey the same message).

6. Monte Carlo simulation studies

In the present section, our main objective is to confirm the theoretical results
obtained in Section 3 and to study the moderate-to-small sample behavior of our
quantiles and depth. First, we generated N = 1, 500 independent replications
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Table 2

p-values, for the cosmic rays data, of the goodness-of-fit tests based on the quartiles
(ĉ.25, ĉ.5, ĉ.75)′

Density p-value Density p-value
fFvML(.3) .00135 fPur(.3) .00261
fFvML(.4) .00839 fPur(.4) .01316
fFvML(.5) .02780 fPur(.5) .02897
fFvML(.6) .05274 fPur(.6) .02905
fFvML(.7) .06001 fPur(.7) .01295
fFvML(.8) .04163 fPur(.8) .00236
fFvML(.9) .01737 fPur(.9) .00015
fFvML(1) .00422 fPur(1) .00001

Fig 3. The zones in grey are the τ (equal to .5 or .75) empirical lower quantile caps while
the zones in green are the τ (still equal to .5 or .75) empirical upper quantile caps. The red
point is the Fisher (1985) empirical median.

of four independent samples (with sample size n = 200) of (k =)3-dimensional
(spherical) random vectors

Xℓ;i, ℓ = 1, 2, 3, 4, i = 1, . . . , n,

with location θθθ = (1, 0, 0)′ and FvML densities with concentration 1 (X1;i),

2 (X2;i), 5 (X3;i) and 10 (X4;i), respectively. Letting ĉ
(jℓ)
.5 stand for the projec-

tion median obtained from the jth replication in the design ℓ, we constructed
(for all the designs ℓ = 1, 2, 3, 4) the series

δjℓ := n1/2(ĉ
(jℓ)
.5 − c

(ℓ)
.5 ), j = 1, . . . , N, ℓ = 1, . . . , 4,

where c
(ℓ)
.5 stands for the true underlying median under the ℓth design. His-

tograms (with the corresponding theoretical asymptotic distribution) of the se-
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Fig 4. QQ-plots of the quantiles of various spherical distributions (FvML(.7), FvML(2),

Pur(.6) and Pur(2)) with location parameter θ̂θθm = (−.4009289,−.0865076,−.9120156) versus
the sample quantiles of the cosmic rays data set.

Fig 5. Histograms of the series δjℓ under FvML densities with concentrations 1, 2, 5 and 10.
The solid line is the (theoretical) asymptotic distribution obtained in Proposition 3.2.

ries δjℓ are provided in Figure 5 and clearly underline the correctness of our
theoretical results.

In a second simulation study, we considered circular von Mises, wrapped
Cauchy and wrapped normal probability laws. More precisely, we generated
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Fig 6. Boxplots of the ĉ
(jℓ)
.5 ’s.

N = 2, 500 independent replications of twelve independent samples (with sample
size n = 100) of circular (k = 2) random vectors

Yℓ;i, ℓ = 1, . . . , 12, i = 1, . . . , n,

with location θθθ = (1, 0)′ and von Mises densities with concentration 1 (Y1;i),
2 (Y2;i), 5 (Y3;i) and 8 (Y4;i), wrapped Cauchy densities with concentration
(ρ parameter) .1 (Y5;i), .2 (Y6;i), .5 (Y7;i) and .8 (Y8;i) and finally wrapped
normal densities with concentration (ρ parameter) .1 (Y9;i), .2 (Y10;i), .5 (Y11;i)

and .8 (Y12;i). As in the previous simulation, writing ĉ
(jℓ)
.5 the median obtained

from the jth replication in the design ℓ, Figure 6 provides boxplots for the

ĉ
(jℓ)
.5 ’s. Inspection of the boxplots reveals that they clearly look like boxplots of
Gaussian distributions. As expected, ĉ.5 increases with the concentration.

7. Final comments

In this paper, we have introduced a new concept of quantiles and depth for direc-
tional (circular and spherical) data. In view of the similarities with the classical
Mahalanobis depth, we have called our depth function angular Mahalanobis
depth. The intimate link between our quantiles and depth entails that our con-
cept enjoys the advantages of both worlds, namely the typical depth-geometric
properties (convexity, nestedness) as well as the typical quantile-asymptotics
(Bahadur-type representation, asymptotic normality). Our angular Mahalanobis
depth constitutes an interesting alternative to existing spherical depth functions
since it is easy to compute, we have been able to establish its asymptotic prop-
erties thanks to the link with quantiles, and it is not constant on an entire hemi-
sphere (contrarily to the angular Tukey depth). We have also discussed diverse
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applications of our quantiles and depth in descriptive statistics, exploratory data
analysis and statistical inference. We believe that the concepts defined in this
paper shall be useful both for theoreticians and practitioners dealing with direc-
tional data, and we are planning to make our procedures available via an R code.
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Appendix: Proofs

Proof of Proposition 3.1. In this proof, all oP(·) quantities are taken under
the joint distribution of X1, . . . ,Xn. We shall use the notations qτ (θθθ; r) :=
E[ρτ (X

′
iθθθ − r)] and ψτ (u) := τ − I[u ≤ 0], and consider perturbations of the

spherical median of the form θθθm+n−1/2t(n) for any bounded sequence t(n) ∈ R
k.

Note that we do not assume that θθθm+n−1/2t(n) remains on Sk−1 so that we can
use any directional derivative evaluated at θθθm in the sequel. In particular, this
eases two-times-differentiability (in the sense of distributions) of qτ (θθθ; r) w.r.t. θθθ
(two-times-differentiability w.r.t. r following by definition of qτ (θθθ; r)) at θθθ = θθθm.

It is easy to check that

L(n)(t(n), s(n)) (A.6)

:=

n
∑

i=1

(

ρτ (X
′
i(θθθm + n−1/2t(n))− (cτ + n−1/2s(n))) − ρτ (X

′
iθθθm − cτ )

)

= n−1/2
n
∑

i=1

(

ψτ (X
′
iθθθm − cτ )Xi

−ψτ (X
′
iθθθm − cτ )

)′
(

t(n)

s(n)

)

+

n
∑

i=1

R(Xi, θθθm, cτ , n
−1/2t(n), n−1/2s(n)),

where

R(Xi, θθθ, c, t, s) := ρτ (X
′
i(θθθ + t)− (c+ s))− ρτ (X

′
iθθθ − c)

− ψτ (X
′
iθθθ − c)X′

it+ ψτ (X
′
iθθθ − c)s

is such that

E[R(Xi, θθθm, cτ , n
−1/2t(n), n−1/2s(n))]

= qτ (θθθm + n−1/2t(n); cτ + n−1/2s(n))− qτ (θθθm; cτ )

− E[ψτ (X
′
iθθθm − cτ )X

′
in

−1/2t(n) − ψτ (X
′
iθθθm − cτ )n

−1/2s(n)].
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Now, using the fact that qτ (θθθ; r) is twice differentiable with respect to both θθθ
(at θθθm) and r, it is easy to verify that, as n→ ∞,

n
∑

i=1

E[R(Xi, θθθm, cτ , n
−1/2t(n), n−1/2s(n))]

=
1

2

(

t(n)

s(n)

)′(
ΓΓΓθθθm

ΓΓΓθθθm,cτ

ΓΓΓ′
θθθm,cτ Γcτ

)(

t(n)

s(n)

)

+ o(1),

where ΓΓΓθθθm = gradθθθE[ψτ (X
′
iθθθ−cτ )X

′
i]|θθθ=θθθm

, ΓΓΓθθθm,cτ = d
dcE[ψτ (X

′
iθθθm−c)Xi]|c=cτ

and Γcτ = fproj(cτ ). Now, following equation (4.3) of [10], we also have that

n
∑

i=1

R(Xi, θθθm, cτ , n
−1/2t(n), n−1/2s(n))

=

n
∑

i=1

∫ 1√
n
(−X

′
it

(n)+s(n))

0

(I[X′
iθθθm − cτ ≤ u]− I[X′

iθθθm − cτ ≤ 0]) du.

Note that, letting D(n) := Var[
∑n

i=1 R(Xi, θθθm, cτ , n
−1/2t(n), n−1/2s(n))], we

readily obtain that

D(n) ≤ nE





(

∫ 1√
n
(−X

′
1t

(n)+s(n))

0

I[X′
1θθθm ≤ u+ cτ ]− I[X′

1θθθm ≤ cτ ] du

)2


 .

Now a simple change of variables, the Cauchy-Schwarz inequality and the fact
that −X′

1t
(n) + s(n) ≤ ‖t(n)‖ + s(n) (and therefore | − X′

1t
(n) + s(n)| ≤ C(n)

for some sequence of bounded constants C(n)) yield (fX′
1θθθm−cτ stands for the

density of X′
1θθθm − cτ )

D
(n) ≤ nE





(

∫ 1√
n
(−X

′
1t

(n)+s(n))

0

(

I[X′

1θθθm ≤ u+ cτ ]− I[X′

1θθθm ≤ cτ ]
)

du

)2




= E





(

∫

−X
′
1t

(n)+s(n)

0

(

I[X′

1θθθm − cτ ≤ u/
√
n]− I[X′

1θθθm − cτ ≤ 0]
)

du

)2




≤ E

[

C(n)

∣

∣

∣

∣

∣

∫

−X
′
1t

(n)+s(n)

0

(

I[X′

1θθθm ≤ u/
√
n+ cτ ]− I[X′

1θθθm ≤ cτ ]
)2

du

∣

∣

∣

∣

∣

]

≤ E

[

C(n)

∣

∣

∣

∣

∣

∫

−X
′
1t

(n)+s(n)

0

(

I[X′

1θθθm − cτ ≤ |u/
√
n|]
)2

du

∣

∣

∣

∣

∣

]

≤ E

[

C(n)

∫ C(n)

−C(n)

I[X′

1θθθm − cτ ≤ |u/
√
n|]du

]

= C(n)

∫ C(n)

−C(n)

E
[

I[X′

1θθθm − cτ ≤ |u/
√
n|]
]

du

= C(n)

∫ C(n)

−C(n)

∫ 1−cτ

−1−cτ

I[v < |u|/
√
n] fX′

1θθθm−cτ (v)dvdu
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≤ C(n)‖fX′
1θθθm−cτ ‖∞

∫ C(n)

−C(n)

∫
|u|√
n

−
|u|√
n

dvdu

=
2√
n
C(n)‖fX′

1θθθm−cτ ‖∞
∫ C(n)

−C(n)

|u|du

which is clearly o(1) as n→ ∞. Wrapping up, we obtain that

L(n)(t(n), s(n))

=

n
∑

i=1

ρτ (X
′
i(θθθm + n−1/2t(n))− (cτ + n−1/2s(n)))− ρτ (X

′
iθθθm − cτ )

= n−1/2
n
∑

i=1

(

ψτ (X
′
iθθθm − cτ )Xi

−ψτ (X
′
iθθθm − cτ )

)′(
t(n)

s(n)

)

+
1

2

(

t(n)

s(n)

)′(
ΓΓΓθθθm

ΓΓΓθθθm,cτ

ΓΓΓ′
θθθm,cτ Γcτ

)(

t(n)

s(n)

)

+ oP(1)

as n→ ∞. Now, denote by ĉτ (t
(n)) the random sequence such that

n1/2(ĉτ (t
(n))− cτ ) = argmin

s(n)

n
∑

i=1

ρτ [X
′
i(θθθm + n−1/2t(n))− (cτ + n−1/2s(n))]

= argmin
s(n)

L(n)(t(n), s(n)).

Evidently

n1/2(ĉτ − cτ ) = n1/2(ĉτ (n
1/2(θ̂θθm − θθθm))− cτ )

= argmin
s(n)

L(n)(n1/2(θ̂θθm − θθθm), s(n)), (A.7)

linking the desired result with our developments in this proof. Now, for any
bounded (t(n), s(n)), we have that the above asymptotic expansion for

L(n)(t(n), s(n)) holds. Thus, in particular, for t(n) = n1/2(θ̂θθm − θθθm) (with θ̂θθm a
discretized estimator as discussed at the beginning of Section 3, see also [14],
we have that

L(n)(n1/2(θ̂θθm − θθθm), s(n)) =

n−1/2
n
∑

i=1

(

(τ − I[X′
iθθθm − cτ ≤ 0])Xi

−(τ − I[X′
iθθθm − cτ ≤ 0])

)′(

n1/2(θ̂θθm − θθθ)

s(n)

)

+
1

2

(

n1/2(θ̂θθm − θθθm)

s(n)

)′(

ΓΓΓθθθm ΓΓΓθθθm,cτ

ΓΓΓ′
θθθm,cτ Γcτ

)

(

n1/2(θ̂θθm − θθθm)

s(n)

)

+ oP(1)

as n→ ∞. Grouping all terms in s(n) together, we can rewrite the latter as

L(n)(n1/2(θ̂θθm − θθθm), s(n)) = Z
(n)
θθθm

+−n−1/2s(n)
n
∑

i=1

(τ − I[X′
iθθθm − cτ ≤ 0])
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+ s(n)ΓΓΓ′
θθθm,cτn

1/2(θ̂θθm − θθθm) +
1

2
(s(n))2Γcτ

+ oP(1),

where Z
(n)
θθθm

is an OP(1) sequence which does not depend on s(n). Applying the

basic corollary of [9] to the sequence

An(s
(n)) := s(n)

[

−1

n1/2

n
∑

i=1

(τ − I[X′
iθθθm − cτ ≤ 0]) +ΓΓΓ′

θθθm,cτn
1/2(θ̂θθm − θθθm)

]

+
1

2
(s(n))2Γcτ + oP(1),

we obtain by (A.7) that

n1/2(ĉτ −cτ ) =
n−1/2

Γcτ

n
∑

i=1

(τ −I[X′
iθθθm−cτ ≤ 0])−

ΓΓΓ′
θθθm,cτ

Γcτ

n1/2(θ̂θθm−θθθm)+oP(1),

which is the desired result.

Proof of Proposition 3.2. It directly follows from Proposition 3.1 that it suf-
fices to show that, for F ∈ R, ΓΓΓ′

θθθm,cτn
1/2(θ̂θθm − θθθm) is oP(1) as n → ∞.

Therefore, let F belong to the class of rotationally symmetric distributions
with location parameter θθθ = θθθm. For all i = 1, . . . , n, letting Sθθθm(Xi) :=
(Xi − (X′

iθθθm)θθθm)/‖Xi − (X′
iθθθm)θθθm‖ yields

Xi = (X′
iθθθm)θθθm +

√

1− (X′
iθθθm)2Sθθθm(Xi),

which is the so-called tangent-normal decomposition ofXi. Since F belongs toR,
it follows from [34] that (i) X′

iθθθm and Sθθθm(Xi) are stochastically independent
and (ii) Sθθθm(Xi) is uniformly distributed on Sk−2

θθθ⊥m
:= {v ∈ Sk−1,v′θθθm = 0}

(in particular, E[Sθθθm(Xi)] = 0). It directly follows from (i) and (ii) that

ΓΓΓθθθm,cτ = −
d

dc
E[I[X′

iθθθm − c ≤ 0]Xi]|c=cτ

= −
d

dc
E[I[X′

iθθθm − c ≤ 0](X′
iθθθm)]|c=cτ

θθθm. (A.8)

Now, the delta method applied to the mapping x 7→ x/‖x‖ combined with the

fact that ‖θ̂θθm‖ = ‖θθθm‖ = 1 entails that

n1/2(θ̂θθm − θθθm) = n1/2

(

θ̂θθm

‖θ̂θθm‖
−

θθθm
‖θθθm‖

)

= (Ik − θθθmθθθ
′
m)n1/2(θ̂θθm − θθθm) + oP(1) (A.9)

as n → ∞ under the joint distribution of X1, . . . ,Xn. The result follows by
combining (A.8) and (A.9).
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