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Abstract Software transactional memory (STM) is one of the techniques used towards

achieving non-blocking process synchronization in multi-threaded computing envi-

ronment. In spite of its high potential, one of the major limitations of transactional

memory (TM) is that in order to ensure data consistency as well as progress condition,

TM often forces transactions to abort. This paper proposes a new concurrency control

mechanism. It starts with the existing TM implementations for obstruction freedom

and eventually builds a new STM methodology. The primary objective is to reduce

aborting of transactions in some typical scenarios. A programming model is described

for a chain of update transactions that share the same data object among themselves.

Using the proposed approach, any new update transaction appended in this chain need

not wait for the earlier transactions to finish. The proposed STM allows wait-free,

non-blocking implementation of a mix of read and multiple update transactions on the

same shared data object with higher throughput.
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1 Introduction

Software transactional memory (STM) [20] is a promising technique to facilitate con-

current programming in modern multi-processor environment. A transaction in an

STM executes series of reads and writes on shared data and then either commits or

aborts. When two threads concurrently access the transactional data and at least one

of these accesses is a write, conflict occurs.

The progress property of an STM demands that every transaction should even-

tually commit. The three different levels of progress guarantee for non-blocking

process synchronization are wait freedom, lock freedom and obstruction freedom.

The obstruction freedom [11] guarantees progress by ensuring that one thread makes

progress if it executes in isolation. In presence of contention a transaction is allowed

to abort the conflicting transaction or back off for arbitrary time interval to ensure

progress [11,12]. Thus, one of the major challenges for STM-based solutions is con-

current abort-free execution of transactions maintaining progress condition, and data

consistency.

One of the notable STM implementations is DSTM (Software Transactional Mem-

ory for Dynamic-sized Data Structures) [12]. It offers an abort-free non-blocking

synchronization approach that guarantees progress when a thread executes in isola-

tion. When a transaction faces contention with another, it consults with contention

manager to decide which transaction to delay or abort and when to restart an aborting

transaction.

There exist a few STMs [2,4–6,17] that have aimed to avoid spurious aborts. The

propositions either use time stamp from a global clock [6], or maintain multiple ver-

sions [5,17], or use conflict serializability scheduling as in [2,4]. All these approaches

are able to achieve abort-free execution for read-only transactions to some extent.

However, none of them consider reducing abort for write transactions.

In very recent time, an obstruction-free non-blocking synchronization is proposed

[8] that claims abort-free execution. However, the work in [8] is tailored for two

concurrent transactions only. Moreover, the first transaction may be aborted by the

second transaction under certain conditions. In this paper, we have proposed a new

non-blocking, concurrency control approach for multi-threaded environment. The

designing goal of the proposed algorithm is to allow multiple read and write trans-

actions on the same data object. The proposed STM does not require aborting a

transaction except towards handling a typical exception as detailed in procedure

tryCommit (Step 50–58) of the algorithm proposed in Sect. 3. Thus, in this method

every transaction with in a group is able to commit in a finite number of steps. The key

idea of the algorithm is to create a chain of update transactions while accessing same

data object concurrently. Every transaction in the chain shares the data value among

them and always commits after satisfying certain conditions.

Although DSTM [12] is unable to provide desired progress guarantee, its imple-

mentation simplicity motivates us to build our solution using a data structure that is
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very similar to what is used for DSTM. Unlike DSTM, the proposed algorithm in

Sect. 3 of this paper does not require any contention manager as the transactions are

capable to resolve contention on their own.

The rest of the paper is organized as follows. Section 2 reviews the state of the art

scenario for non-blocking process synchronization and explains some of its important

terminologies and conceptions. In Sect. 3, the formal model of the proposed system is

described. Section 4 presents the critical analysis of the proposed model. In Sect. 5, a

comparative study of the proposed model is presented. The paper ends with concluding

remarks in Sect. 6.

2 Review

The non-blocking synchronization technique in STM implementation ensures that

at least some threads must commit while running concurrently. This property is

known as progress condition. STM provides two levels of progress [10] i.e., transac-

tional memory level (TM-level) progress and transaction level progress. At TM-level,

progress means completion of the individual TM operation, whereas at transaction

level, progress implies execution of a thread through a successful commit. At either

of these two levels, non-blocking synchronization technique ensures that a thread

pre-empted during its execution cannot prevent other transaction to make progress.

Depending on the level of progress, three types of non-blocking progress guaran-

tees are found [15]. Among these, the obstruction freedom guarantees that a thread

makes progress if it executes in isolation. In obstruction free transactional memory

(OFTM) [11], a transaction T of a process P may be forcefully aborted, if it concur-

rently executes with some process other than P [9]. Thus, in presence of contention,

choosing which transaction to abort and when to restart an aborting transaction is

a crucial task. In order to cope up with the situation, OFTM takes help form con-

tention manager. The contention management comprises of notification method for

various events along with request methods that ask contention manager to make a deci-

sion. The notifications include beginning of a transaction, successful/unsuccessful

commit, acquire of an object etc. The request method asks contention manager

to decide whether to back off the transaction or to abort competing transactions

[19].

The first OFTM that is implemented by Herlihy et al. [12], to manage dynamic set

of data is known as DSTM (Software Transactional Memory for Dynamic-sized Data

Structures). Since the inception of DSTM, several OFTM systems are implemented

[7,14,16,21] that work upon the limitations of OFTM and propose a better solu-

tion. All of them include contention management policies to avoid conflicts among

transactions. However, any contention management policy for obstruction freedom

always eventually aborts a competing transaction to avoid deadlock [18]. There are

different types of contention management policies those are evolved to work with

a specific OFTM and to achieve better throughput. Thus, selecting a specific con-

tention manager for a particular OFTM is a challenging task. In [19], the experimental

evaluation shows that improper selection of contention manager deteriorates the

throughput.
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There are few works [2,5,6,17] on the conflict avoidance between transactions to

reduce abort. These implementations either use time stamp from a global clock or

maintain multiple versions or employ conflict serializability scheduling. In lazy Snap-

shot algorithm [6], every shared object gets a timestamp from a discrete logical global

clock. The implementation retains multiple versions for each object and if sufficient

versions available, then read-only transactions can commit without any back-off or

abort. Multi-Version Permissive System (MV-Permissive) [17] also maintains mul-

tiple versions to avoid spurious aborts for read-only transactions. The SwissTM [5]

combines global clock with hybrid conflict detection technique i.e., eager conflict

detection for a write/write transactions and lazy conflict detection for read/write trans-

actions. The approach gets best result when read transactions commit before writes.

The garbage collection i.e., cleaning up of the older object versions is a challenging

task for these algorithms. Moreover, they have focused on avoiding aborts for read-

only transactions; how to reduce the number of aborts for write transaction has not

been considered.

In [2], the conflict serializability model of database management system (DBMS)

is introduced to reduce the rate of aborts. The system maintains a serializability

order number for every transaction. In presence of contention, the transactions exe-

cute as per their order number without causing any abort. Construction of unique

serializability order number is a crucial task as without this number the transaction

cannot be serialized. Although this implementation is able to achieve a better through-

put but cannot ensure that every transaction will commit in presence data accessing

conflict.

In [4], a wait-free non-blocking synchronization is designed to exploit parallelism

between read and write transactions without involving contention manager. The algo-

rithm maintains a list of instructions for each sharable data object. A scheduler places

the transactions’ instruction in the appropriate list. The list is chosen in such a way

so that contention between transactions can be avoided. The major drawback of this

implementation is that every transaction must know list of instructions in advance,

which is a quite challenging task.

Attiya and Milani presented a BIMODAL transactional scheduler [1] in the context

of read-dominated workload. The algorithm specially tailored for abort-free execution

of read-only transactions without causing any delay to the early-write transaction most

of the cases. The throughput of the algorithm is significantly deteriorated for late-write

transactions, where updates are made at commit time.

The proposed work designs a new non-blocking algorithm to achieve concurrency

control for multi-threaded environment. This non-blocking thread synchronization

algorithm is an improvisation of OFTM that focuses on lowering transaction aborts

for update-executions in presence of contention. The proposed method doesn’t require

to include any existing contention management policies [19] as the update trans-

actions are able to resolve conflicts themselves while accessing the sharable data

concurrently.

In case of read–write contention, there are several comprehensive works and tested

approaches towards lowering the abort for read executions in STM [2,4,5,17]. This

paper focuses on write–write contention and maintaining the read executions is beyond

the scope of this paper.
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3 Proposed method

3.1 Basic concept

Two transactions running concurrently may face contention with each other, if both

try to acquire the same data object simultaneously and at least one of these is involved

in a write operation. In typical OFTM implementation [12], the transaction has two

options in such situation. Either abort one of the conflicting transactions, or back off

for some arbitrary time interval. In the proposed method both the transactions are

allowed to access the data object without causing any abort or delay.

Let’s explain the scenario with an example. Suppose a transaction Tk has opened a

sharable object X for write and it is in active state. Now, another write transaction Tx

wants to access X. In this situation, in contrast to OFTM, the proposed method allows

Tx to access the data object from Tk after forming a chain of transactions.

Figure 1 depicts a situation, where four write transactions simultaneously access the

same data object by forming a chain of transactions. Let, Tk be the first transaction in

the chain, known as header, that owns the sharable object X. Transaction Tx is the next

one that reads X, while Tm and Tz appear next in that order. The header transaction,

Tk in this example, is also referred as owner transaction. A transaction is termed as

immediate-predecessor transaction when it occurs immediately before a transaction.

Thus in the example, Tk is the immediate-predecessor transaction to Tx , which again is

immediate-predecessor to Tm and so on. The header can directly access the data object

and commit without any dependencies. At commit point every transaction, other than

header, ensures that its immediate-predecessor transaction is committed and the data

value that it has read is consistent.

3.2 Data structure

The data Structure for the proposed model is similar but not identical to those used in

[8] and DSTM [12] (Fig. 2). The Transactional Data Structure, Data Object and

Locator are similar to those used in [8,12]. However, to match with the adapta-

tion proposed in our algorithm, a new status called READY is incorporated. These

revised data structures are briefly described here for the sake of completeness. The

Fig. 1 Chain of transactions sharing Data Object
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Fig. 2 Transactional Data

Structure with Data Object and

Locator

transactional memory object (TMObject) in Sect. 3.2.3 is newly introduced in this

paper.

3.2.1 Transactional data structure

The Transactional Data Structure consists of a Status field with four states: ACTIVE,

COMMITTED, READY and ABORTED states. These states are used to determine

the current state of a transaction (Fig. 2a). ACTIVE status means that a transaction has

began and in operation; COMMITTED means successfully completed all its tasks and

READY means the transaction has completed its operations and waiting to commit.

It is important to mention here that the Transactional Data Structure also maintains

the status ABORTED. This is apparently in conflict with the desired goal to achieve

concurrent execution of transactions. Aborting of transactions is used in OFTM [11] to

ensure that a new transaction is not blocked by an older transaction. The same technique

is implemented in other reported citations [7,12,14,16,21]. However, indiscriminate

use of such transaction aborting may seriously affect performance of a system. On the

contrary, STM is used as an alternative of the conventional deadlock handling mea-

sures like mutual exclusion to avoid contention. However, a policy of never aborting

the transactions may lead to a cyclic concurrency conflict situation where processes

holding multiple shared resources may form a closed wait-for cycle. In order to handle

such exceptions, a transaction Tx may be allowed to abort its immediate-predecessor

transaction Tk , which is owner of the data object and Tx has waited for a very long

time. This is expected to increase the throughput of overall system.

3.2.2 Data object and locator object

Figure 2b, c depicts Data Object and Locator object respectively. Data Object

contains the last committed data. The Transaction field of the locator points to the

transaction that creates the locator. In OldData field transaction copies the read data

value and in NewData transaction stores last undated value at the time of execution.

When transaction successfully commits, the stored value of NewData field is being

saved into Data object.

123



A new concurrency control mechanism for multi-threaded… 4101

Fig. 3 TMObject sructure

3.2.3 Transactional memory object (TMObject)

TMObject (Fig. 3) encapsulates a program object that can be accessed by the transac-

tion. TMObject has two fields:

• *WriterTransactions: This field points to an array of pointers. Each element of

this array points to the transaction locator opened in a cascading manner to access

the data object. The first element of the array points to the transaction locator of

the first initiated transaction in the chain that owns the sharable object. In the rest

of the paper the first array element is termed as header. Rest of the transaction

locators in the chain other than header are the pseudo owners of that sharable

object.

• *Data This field points to the Data object to read the recent committed data.

3.2.4 Proposed concurrency control mechanism

This section describes the proposed algorithm that aims to reduce the number of

aborts for write execution while accessing common shared object. Before the new

algorithm is described, let’s state the assumption on how multiple write transactions

forms a cascading chain. We assume that if a write transaction faces contention

with other transaction(s) while accessing a sharable object then it includes itself

as the last element in a chain of active transactions and reads the sharable object’s

value. Thus, in the chain of transactions, the header is the owner of the sharable

object and all other transactions are the pseudo owner of that same sharable object.

When the header transaction wants to commit, as it is the owner, it can commit

directly.

When a transaction, which is the pseudo owner of the data object, wants to

commit, it checks the status of its immediate-predecessor transaction. If the immediate-

predecessor transaction is in committed state then transaction checks the data

consistency with the recently committed data value and re-executes its write operation

if necessary. If the pseudo owner finds that its immediate-predecessor transaction is

Ready/Active state then the transaction checks for the data consistency and re-executes

it write operation if necessary. The pseudo owner transaction cannot commit until its

immediate-predecessor transaction commits successfully.

Let us explain the commit process from the transaction’s point of view. At commit

point a transaction checks the status of its immediate-predecessor transaction. In the

example (Fig. 4) Tm will check the status of its immediate-predecessor transaction

i.e., Tx .

• If Tx ’s status is Committed; then Tm checks for the data consistency with its old

value and Data Object’s value (as Data Object stores the recent committed data
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Fig. 4 Concurrent write for transactions in presence of contention

updated by Tx ). If the data is consistent then Tm commits otherwise Tm re-executes

write operation after reading recent data value and then commits.

• If Tx ’s status is Ready; then Tm checks the data consistency with its OldField

and Tx ’s NewField value. If data value is consistent then Tm backs off for some

arbitrary time and if data is inconsistent then Tm re-executes its write operation

after reading data value from Tx ’s NewField and backs off for a very small interval

and retries to commit.

• If Tx ’s status is Active; then Tm follows the steps same as Tx is in ready state and

backs off for some arbitrary time to give chance to Tx to commit.

The proposed solution is presented in Algorithm 1. The workflow of this algo-

rithm is as follows: a transaction, T , tries to acquire an object X (Line 2). If T finds

that the sharable data object is not currently owned by any other transaction then T

becomes the owner of that data object. Otherwise, T becomes the pseudo owner of

the sharable object. Pseudo owner implies that, although transaction is accessing the

sharable object, it may face inconsistency at commit time. In this process a chain of

transactions is formed (Line 12–28), where the first transaction in the chain is the

owner of the sharable object and rest of the transactions are pseudo owners. Each

transaction in the chain points to their respective transaction locator to point old and

new versions of the sharable object. In the execution process, transaction executes

its update query (Line 3) and tries to commit (Line 4–10). If the transaction, say T ,
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is the owner of the sharable object then it can commit immediately (Line 6, 29–34),

otherwise T executes tryCommit() (Line 8, 35–65) after an arbitrary time of back-off

until it becomes the owner of the data object.

4 New concurrency control mechanism: a critical analysis

The proposed methodology is based on the foundations of OFTM, while it provides

a completely new mechanism for write transactions to execute concurrently while

sharing common data object.

Suppose, T1, T2, T3, . . . , Tk are consecutive write transactions in the chain. These

transactions have formed the chain in the order as these are mentioned. The statements

of Lemmas 1, 2 and 3 are stated for these transactions in the chain.

Lemma 1 Transaction Ti can commit only when Ti−1 is committed for i ∈ [2..k].

Proof Suppose T1 and T2 are consecutive transactions in a chain, appearing in the

order in which these are mentioned. Transaction Tk is executed by a process Pi and

let Tk be the owner of the sharable object X. So, Committed [Tk] is true for k = 1.

For k = 2, T1 ← T2

Thus T2 will commit when Committed[T1] is true and T1[X, New] = T2[X, Old]. Now

it is to be shown that Tm−1 ← Tm i.e., to commit Tm , Tm−1 must be committed.

Committed[Tm−1] is true iff Committed[Tm−2] is true and Tm−1[X, New] = Tm−2[X,

Old].

Hence, Committed[Tm] is true iff Committed[Tm−1] is true and Tm−1[X, New] =

Tm[X, Old].

So we can say, Ti can commit only when Committed[Ti−1] is true for i = 2, 3, . . . , k.

⊓⊔

Algorithm 1 Proposed Algorithm
.

⊲ acq_st:Acquired State; either exclusive owner or pseudo owner.

⊲ t_state: Transaction state; Committed, Active, Ready, Aborted.

⊲ cmt_st: Commit status; true or false. Initial value is false.

1: upon write of sharable object x by Tk do

2: acq_st = Acquire(Tk , x);

3: executeUpdate(Tk , x);

4: repeat

5: if acq_st= ’owner’ then

6: cmt_st = Commit(Tk )

7: else if acq_st= ’pseudo_owner’ then

8: cmt_st = tryCommit()

9: end if

10: until cmt_st = true

11: return ok

12: procedure Acquire (Tk , x)

13: if x is free then

14: acq_st = ’owner’;

15: front = 1;
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Algorithm 1 (continued)

16: *WritetrTransactions[front] = locator(Tk );

17: rear = front;

18: *WritetrTransactions[front].locator.TransactionStatus = ’Active’;

19: return acq_st;

20: else

21: acq_st = ’pseudo_owner’;

22: rear = rear+1;

23: *WriterTransactions[rear]=locator(Tk );

24: *WriterTransactions[rear].locator(Tk ).OldData = WriterTransaction[rear-1].locator(Tk ).NewData;

25: *WriterTransactions[rear].locator.TransactionStatus = ’Active’;

26: return acq_st;

27: end if

28: end procedure ⊲ The header of the transaction-chain is the exclusive owner and it can commit

tryCommit(T) also calls this procedure

29: procedure Commit(Tk )

30: *Data = *WriterTransactions[front].locaotr(Tk ).NewData;

31: *WriterTransactions[front].locaotr(Tk ).TransactionStatus = ’Commited’;

32: front=front+1;

33: return true;

34: end procedure ⊲ When a transaction tries to commit, either it can commit or re-execute or

back off. When a transaction backs-off for several times it may abort its immediate-predecessor, if that

transaction is the header in the chain.

35: procedure tryCommit(Tk )

36: pos = findElementPosition(*WriterTransactions, locator(Tk ))

37: if pos = front then

38: Commit(Tk );

39: return true;

40: else

41: *WriterTransactions(pos).locaotor.TransactionStatus = ’Ready’;

42: t_state = *WriterTransactions(pos-1).locaotor.TransactionStatus;

43: if t_state = ’Ready’ or t_state = ’Active’ then

44: if *WriterTransactions(pos).locator.OldData = *WriterTransactions(pos-1).locator.NewData

then

45: *WriterTransactions(pos).locator.OldData = *WriterTransactions(pos-1).locator.NewData;

46: *WriterTransactions(pos).locaotor.TransactionStatus = ’Active’;

47: Re-executeUpdate();

48: return false;

49: else

50: back-off();

51: if back-off_time >back-off_limit and pos-1=front then

52: WriterTransactions(pos).t_state=’Aborted’;

53: if *WriterTransactions(pos).locator.OldData = *Data then

54: WriterTransactions(pos).locator.OldData = *Data;

55: Re-executeUpdate();

56: end if

57: Commit(Tk )

58: return true;

59: end if

60: return false;

61: end if

62: return false;

63: end if

64: end if

65: end procedure
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Lemma 2 Ti will re-execute its write operation when Committed[Ti−1] is true or

Active[Ti−1] = true and Ti−1[X, New] �= Ti [X, Old] for i ∈ [2..k], where k is the

total number of transactions in the chain.

Proof Suppose a transaction T1 is executed by a process Pi ·T1 is owner of the sharable

object X.

Now, T2 is another transaction where T1 ← T2. T2 will re-execute its write operation

when Committed[T1] is true or Active[T1] = true and T1[X, New] �= T2[X, Old].

Now it is to be shown that Tm−1 ← Tm i.e., Tm will re-execute its write operation

iff Tm−1 writes data value for the sharable object X after Tm read the value of X

from Tm−1. Using Lemma 1 it can be proved that Ti re-executes its write operation

for the sharable object X when Committed[Ti−1] is true or Active[Ti−1] = true and

Ti−1[X, New] �= Ti [X, Old] for i = 2, 3, . . . , n. ⊓⊔

Lemma 3 Proposed algorithm is step contention Free.

Proof A transaction Tk of a process Pi encounters a step contention when some process

other than Pi executes a step between first event of Tk and before commit/abort of Tk

[9]. In presence of step contention, generally, transaction may be forcefully aborted.

In the proposed method, transaction Tk (assumed as firstly initiated transaction) can

only own the sharable object. All other Ti transactions, for i = 2, 3, 4, . . . , n, are

pseudo owners and depend on the values owned by the Ti−1 transaction. Hence trans-

actions are step contention free and thus no transaction is forcefully aborted while

accessing sharable object concurrently.

Although the proposed algorithm claims to be step contention free, in only one

scenario a transaction, say Tx is allowed to forcefully abort its immediate-predecessor

transaction, say Tk , if Tk is the owner of the sharable object and Tx has backed off

more than a certain duration. This abort mechanism facilitates to overcome the infinite

wait problem which otherwise may affect, cumulatively, the average execution time

of other transactions in the chain. ⊓⊔

5 Performance evaluation

We have considered the efficiency of the proposed algorithm on the basis of transac-

tions’ start time, access time of the sharable object and the execution length. The data

sets are considered and grouped to cover all possible classes of scenarios that may

occur between transactions in terms of these parameters As for example, a typical

scenario may consider that the second transaction occurs at a time when the first trans-

action has already accessed the shared resource, but could not commit itself as the first

transaction is yet to commit. In another scenario, the second transaction may occur and

then start accessing the shared resource even before the first transaction could access

the resource although first transaction is initiated before the second transaction. For

each and every scenario, data sets are taken with random values in the range of that

particular group. The throughput of the proposed STM is evaluated and compared

with conventional lock-based concurrency control algorithm [3,13] for each scenario.

The proposed algorithm has a single iterative step and it iterates exactly n times,

where n is the number of transactions in the chain. If average time of execution for
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Fig. 5 Symbols and

abbreviations used in this

section

each transaction is τ , then the worst case performance is O (nτ), which is equivalent to

serial execution of the transactions one after another. However, the actual turn-around

time for a group of n transactions would be much less than nτ , due to the concurrent

execution of transactions.

It is not quite realistic to make a best-case or even an average-case time estimation

for the proposed algorithm as execution time would depend on the relative length

of successive transactions as well as on the actual time of accessing the shared data

object. Thus, in this section, the performance evaluation is done using an abstracted

view. All possible scenarios are grouped into three distinct types of cases in Sects. 5.1,

5.2 and 5.3. At first the different scenarios in terms of the access times of the successive

transactions are considered for two arbitrary transactions T1 and T2, where transaction

T1 is the immediate-predecessor transaction of T2. Subsequently, to make the analysis

true for multiple transactions, the result set of five transactions executing in cascading

manner and sharing same sharable object has been considered. In this section, we

have included various diagrams regarding the commit process of two transactions in

different scenarios for a better understandability. The tables in this section list some

representative cases to study the effectiveness of the proposed algorithm. Figure 5

shows different symbols and abbreviated forms used in the diagrams and tables. In

figures and tables, the legend for the proposed new STM is termed as PSTM for brevity.

Few symbols and abbreviations (e.g. S, A, C etc.) those are self-explanatory are not

described. The other abbreviations used in the tables and figures are as follows:

• SZ is the size of each transaction in terms of clock cycle and hence a large value

indicates more clock cycle to commit.

• ST is the initiation time of a transaction.

• Access Time AC is the number of cycles after which a transaction accesses a

sharable object.

• EL is the write execution length in clock cycles.

• The term CommitPoint implies the commit point of the transaction in absence of

contention.

• R_B states the number of re-execution of write process and/or number of back-

offs. For example, R2B3 implies transaction has re-executed its write operations

for two times and backed off three times before commit.

• T1 and T2 are consecutive transactions in the chain, appearing in the order in which

these are mentioned.

• PSTM: The legend for the Proposed STM.

• LOCK: Lock-based concurrency control algorithm.

• EET: Effective Execution Time of Proposed Method over Lock-based Synchro-

nization.

• T1 and T2: Are two update-transactions, where T1 has initiated before T2.

• Access (T2) > Access(T1): transaction T2 accesses the sharable object after T1.

123



A new concurrency control mechanism for multi-threaded… 4107

• Access (T2) < Access(T1): transaction T2 accesses the sharable object before T1.

• CommitPoint (T2) > Commit Point (T1): transaction T2 reaches its commit

point after T1.

• CommitPoint (T2) < Commit Point (T1): transaction T2 reaches its commit

point before T1.

5.1 Case I: transaction T2 accesses sharable object after transaction T1

In this case transaction T2 accesses the sharable object after T1. So, hopefully, at the

commit point T2 will find T1 in committed state with consistent value of the data

object that T2 has read. In such case, T2 can commit without any back-off. Figure 6

shows this scenario and Table 1 analyzes the result set. In Table 1, in all five cases,

T2 has accessed the object after T1 and the size of T2 and/or update execution length

is greater than T1. Thus T2 is expected to commit after T1. The result set shows that

the proposed algorithms perform better or at par in comparison with conventional

lock-based commit protocol.

In the next scenario, transaction T2 accesses the object after T1, as in earlier case,

but T2 reaches the commit point when T1 is in active state due to T2’s shorter size

and/or update execution length. Thus T2 will back off for certain time to give the

chance to T1 to commit. T2 will retry to commit after back-off time period. In the

proposed algorithm this back-off time is decided to make same as transaction’s write

execution time to avoid the intervention of contention manager and its overheads.

Figure 7 shows that T2 has to back off two times before it can commit. Result set

in Table 2 shows that T2 requires back off one or more time but re-execution is not

necessary until T2 gets an inconsistent data value at commit time.

It is important to mention here that the number of back-offs is dependent on the size

and/or execution length (EL) of the second transaction; lesser size/EL implies higher

Fig. 6 Access(T2) >

Access(T1) and

CommitPoint(T2) >

Commit Point (T1)

Table 1 Efficiency: Access(T2) > Access(T1) and CommitPoint(T2) > Commit Point (T1)

– Transaction 1 (T1) Transaction 2 (T2) Commit time –

SL SZ ST AC EL SZ ST AC EL R_B PSTM LOCK EET (%)

1 60 1 7 53 65 10 10 55 R0B0 74 115 64.30

2 90 1 25 65 85 15 30 55 R0B0 99 145 68.30

3 33 1 15 35 38 15 5 33 R0B0 52 66 78.79

4 27 22 10 17 29 25 12 17 R0B0 53 65 81.50

5 20 6 13 7 20 14 15 5 R0B0 33 33 100.00
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Fig. 7 Access(T2) >

Access(T1) and

CommitPoint(T2) <

Commit Point (T1)

Table 2 Efficency: Access(T2) > Access(T1) and CommitPoint(T2) < CommitPoint(T1)

– Transaction 1 (T1) Transaction 2 (T2) Commit time –

SL SZ ST AC EL SZ ST AC EL R_B PSTM LOCK EET (%)

1 50 5 15 35 30 10 12 18 R0B1 56 72 77.78

2 89 57 51 38 74 61 59 15 R0B1 148 160 92.50

3 99 1 41 58 91 3 58 33 R0B1 125 132 94.70

4 20 1 10 10 12 5 8 4 R0B2 22 24 91.67

5 86 49 33 53 76 59 54 22 R0B1 155 156 99.36

Fig. 8 Access(T2) < Access(T1); CommitPoint(T2) < Commit Point (T1) and EL(T2) < E L(T1)

Fig. 9 Access(T2) < Access(T1); CommitPoint(T2) ≪ Commit Point (T1) and EL(T2) ≪ E L(T1)

number of back-offs. Although second transaction may back off for several times, still

it produces better throughput than lock-based method.

5.2 Case II: transaction T2 accesses sharable object before transaction T1

When T2 accesses the sharable object before T1, it is obvious that at commit time T2

will get an inconsistent data value, and thus, T2 must re-execute its write operation (i.e.,

same as its execution length, EL). At new commit point T2 checks for data consistency

again, if inconsistent then T2 re-executes its write operation, otherwise checks for the

status of T1. If T1 is in active state then T2 backs off, otherwise commit. Figures 8 and

9 depict this scenario. In Fig. 8, EL of T2 is less than EL of T1 and in Fig. 9 EL of T2

is much lesser than EL of T1 [EL(T2) ≪ EL(T1)]. Record of row 4 in Table 3 shows a

special case where second transaction requires to re-execute and back off for several

times (i.e., R5B4) due to its lesser execution length but still proposed method shows

a better efficiency than lock based.
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Table 3 Efficency: Access(T2) > Access(T1) and CommitPoint(T2) < CommitPoint(T1)

– Transaction 1 (T1) Transaction 2 (T2) Commit Time –

SL SZ ST AC EL SZ ST AC EL R_B PSTM LOCK EET (%)

1 20 1 10 10 15 2 7 8 R1B0 23 28 82.14

2 70 1 53 17 40 18 25 15 R1B0 71 85 83.53

3 51 15 10 65 30 10 10 20 R1B1 77 85 90.59

4 20 10 10 10 10 3 8 2 R5B4 30 31 96.80

5 20 1 10 10 10 2 7 3 R1B3 23 23 100.00

Fig. 10 Access(T2) < Access(T1); CommitPoint(T2) > Commit Point (T1) and EL(T2) > E L(T1)

Table 4 Access(T2) < Access(T1); CommitPoint(T2) > Commit Point (T1) and EL(T2) > E L(T1)

– Transaction 1 (T1) Transaction 2 (T2) Commit time –

SL SZ ST AC EL SZ ST AC EL R_B PSTM LOCK EET (%)

1 85 1 60 25 65 22 35 30 R1B0 115 115 100.00

2 71 1 53 18 69 4 49 20 R1B0 91 91 100.00

3 71 1 53 18 71 3 50 21 R1B0 93 92 101.09

4 85 1 60 25 75 15 40 35 R1B0 123 120 102.50

5 71 1 53 18 71 5 45 26 R1B0 100 97 103.09

In the next scenario, the performance of proposed method deteriorates due to higher

EL of second transaction. It means whenever EL(T2) is larger than EL(T1), the update

re-execution process takes long time to complete. Hence, T2 requires long time to

commit. Figure 10 explains this case, where T2 has to re-execute its write operation

as it finds a data inconsistency at the commit time. As the execution length of T2 is

larger, it takes long time to re-execute and hence requires longer time to commit. The

result set (Table 4) shows that proposed algorithm has same or worse performance

than Lock-based approach.

5.3 Case III: transaction T2 accesses sharable object after commit of

transaction T1

In this case, transaction T2 accesses the sharable object after commit of transaction T1

(Fig. 11). Thus, at commit time, T2 does not face any contention with T1 and commits

without any re-execution or back-off. Results in Table 5 show that this condition

has the same performance result for the proposed algorithm and lock-based commit

algorithm.
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Fig. 11 Access(T2) > Commit (T1)

Table 5 Access(T2) > Commit (T1)

– Transaction 1 (T1) Transaction 2 (T2) Commit time –

SL SZ ST AC EL SZ ST AC EL R_B PSTM LOCK EET (%)

1 70 1 60 10 65 40 35 30 R0B0 104 104 100.00

2 40 5 20 20 35 30 25 10 R0B0 64 64 100.00

3 35 1 12 23 30 28 9 21 R0B0 57 57 100.00

4 25 1 10 15 23 20 17 6 R0B0 42 42 100.00

5 20 1 5 15 20 10 12 8 R0B0 29 29 100.00

5.4 Performance of PSTM over Loack based for a chain of transactions

The Figs. 12 and 13 along with Table 6 show the throughput comparison between

the proposed algorithm and the conventional lock-based commit protocol. In this

comparison, throughput is tested where five write transactions are accessing the same

sharable object in a cascading manner by forming a chain (Table 6). Figure 12 shows

the result set from row 1 to 5 and row 6 to 10 of Table 6. Result set shows that

PSTM is able to achieve a better throughput than the Lock-based algorithm. Figure 13

shows same or a deteriorated performance of the proposed STM in some cases. This is

due to larger execution length (and/or size) of the transactions in comparison to their

immediate-predecessor transaction (Table 6, Row 11–20). It is worthwhile to mention

here that the deteriorated commit time affects other transactions in the chain i.e., the

delay in commit time for transaction T1, in the above example, will affect commit time

for transaction T2, T3 and so on. The abbreviations used in the Table 6 have already

been described in Sect. 5. Due to the scarcity of space in Table 6, the commit time of

PSTM and LOCK are written as P and L respectively. The column P1 and L1 shows

the commit time for the first write transaction, whereas P2 and L2 show the commit

time for the second write transactions in case of proposed STM and lock based and

so on.

6 Concluding remarks

In this paper, a new non-blocking concurrency control mechanism for multi-threaded

environment is proposed. The proposed STM aims to avoid aborting transactions

excepting typical scenarios that may otherwise lead to a long denial of access to

shared object. In this algorithm, when a write transaction faces contention with other

write transactions, it neither aborts the conflicting transaction nor backs off. Instead,

the transaction adds itself as an element in the chain of write transactions and reads

the data object. Thus, multiple write transactions are allowed to execute concurrently

123



A new concurrency control mechanism for multi-threaded… 4111

Fig. 12 Performance Analysis of PSTM vs. lock-based protocol (Table 6, Row 1–5 and Row 6–10)
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Fig. 13 Performance analysis of PSTM vs. lock-based commit protocol (Table 6, Row 11–15 and Row

16–20)
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by forming a cascading chain of transactions without causing any immediate abort

or back-off to any transactions. Moreover, the proposed method doesn’t include any

additional contention manager as the transactions are able to resolve conflicts on their

won. The uniqueness of the proposed implementation in this paper is in achieving

reduced number of aborts for write transaction on top of obstruction-free non-blocking

architecture. No such similar approach is found in the existing literature.
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