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Abstract: Semi-crystalline polymeric composites are increasingly used as bearing material in the 
biomedical sector, mainly because of their specific mechanical properties and the new advances 
in 3D printing technologies that allows for customised devices. Among these applications, total 
or partial prostheses for surgical purposes must consider the influence of temperature and loading 
rate. This paper proposes a new constitutive model for semi-crystalline polymers, commonly used 
as matrix material in a wide variety of biomedical composites, that enables reliable predictions 
under a wide range of loading conditions. The most recent models present limitations to predict 
the non-linear behaviour of the polymer when it is exposed to large deformations at high strain 
rates. The proposed model takes into account characteristic behaviours of injected and 3D printed 
thermoplastic polymers such as material hardening due to strain rate sensitivity, thermal 
softening, thermal expansion and combines viscoelastic and viscoplastic responses. These 
viscous-behaviours are relevant for biomedical applications where temperature evolution is 
expected during the deformation process due to heat generation induced by inelastic dissipation, 
being essential the thermo-mechanical coupling consideration. The constitutive model is 
formulated for finite deformations within a thermodynamically consistent framework. 
Additionally, the model is implemented in a finite element code and its parameters are identified 
for two biomedical polymers: ultra-high-molecular-weight-polyethylene (UHMWPE) and high 
density polyethylene (HDPE). Finally, the influence of viscous behaviours on dynamic 
deformation of semi-crystalline polymeric matrices is analysed. This constitutive model predicts 
the mechanical behaviour of semi-crystalline polymeric matrices for a wide range of strain rate 
and temperature conditions, allowing for the optimisation of new composite materials potentially 
used as effective joint replacement prostheses. 

Keywords: Biomedical materials; Polymer–matrix composites (PMCs); Constitutive model; 
UHMWPE composites. 

 

1. Introduction 

Semi-crystalline polymers and their composites are currently used in a wide range of applications 
that are subjected to dynamic loading [1-4]. In several applications, the dynamic deformation of 
these polymers is an essential consideration, such as in the biomedical, the aeronautical and the 
automotive industries [5]. Among the materials employed as matrix in a wide variety of 
composites, these polymers stand out due to their wear resistance, biocompatibility and good 
mechanical properties [6-8]. In the biomedical sector, injection moulded and 3D printed polymers 
are used as bearing material for prostheses [9-12], highlighting their use in hip and knee joints 
[13]. In such applications, the pure polymeric material still presents mechanical limitations in 
terms of severe material degradation, Fig.1, and damage arising from its low hardness, its 
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relatively low stiffness, as well as high creep rate under load [14,15]. In order to enhance its 
mechanical properties, a wide range of fillers are used: carbon fibres, hard particles, 
hydroxyapatite, boron carbide and graphene oxide nanoparticles [2,16,17]. The advance in the 3D 
printed polymeric composites field requires, then, the proper understanding of the mechanical 
behaviour of matrix materials. In this regard, semi-crystalline polymers behave in a complex 
manner that presents a strong non-linearity and depends on many factors such as strain rate [18], 
temperature [19], stress state [20], large deformations and plastic flow [21]. Therefore, the proper 
understanding of the polymeric matrix is essential for the study of the mechanical response of the 
composite. To this end, constitutive models for reliable predictions of the mechanical behaviour 
of such materials must account for strain rate, temperature and stress state dependences combining 
both viscoelastic and viscoplastic behaviours.  

 
Fig. 1. (a) Real polyethylene-metal hip prosthetic. (b)-(c) Polyethylene acetabular cup removed 
from patients due to excessive material erosion. Materials provided by Dra. I. Gómez Arrayás 
(Hospital Ruber Internacional of Madrid). 

Moreover, fibre reinforced semi-crystalline composites are also used in structural components for 
applications that require excellent impact performance [22]. In this regard, when semi-crystalline 
polymers are used in aeronautical -for example, as bulk space filters- and automotive applications 
-for example, as vehicle crashworthiness structural components-, other effects must be also 
accounted for faithfully describing its mechanical behaviour. The exposure of this polymer to 
high strain rates leads to variations in its response [23]. In this sense, there is a positive 
dependence of elastic modulus and yield stress on strain rate [18,24]. In addition, there is a strong 
coupling between the mechanical and thermal behaviours of the polymer which becomes more 
relevant at high strain rates [12,19,25]. When the polymer exhibits large deformations, there is a 
heat generation due to inelastic-viscous dissipation that induces an increase in material 
temperature leading to thermal softening. These thermal effects have a strong influence on the 
mechanical behaviour of semi-crystalline polymers at high strain rates and should be considered 
by constitutive models for providing reliable predictions of their behaviour. Under dynamic 
conditions, the understanding of the composite matrix becomes essential when strain rate and 
temperature play an important role in its behaviour, resulting in variations of the composite 
mechanical response [25-29]. 

Many constitutive approaches have been developed for modelling the mechanical behaviour of 
semi-crystalline polymers and, particularly, of several types of polyethylene. The first 
approaches, as the work developed by Hughes [30], described the mechanical response of these 
polymers by classical isotropic, rate-independent plasticity using Mises yield criterion. Following 
this line, several authors have used constitutive models to analyse the mechanical response of 
ultra-high-molecular-weight-polyethylene (UHMWPE) components of hip and knee prosthesis 
under different loading conditions, where a Mises yield surface is associated with a flow rule 
followed by isotropic hardening [31-33]. However, these models cannot provide reliable 
predictions of the non-linear behaviour of the polymer when it is exposed to large deformations. 

(a) (b) (c) 
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In addition, these models present considerable limitations when the structural component deforms 
at high strain rates. In order to develop more robust and reliable constitutive models for semi-
crystalline polymers, some authors have proposed viscoelastic-viscoplastic rheological models 
combining springs and dashpots to capture the inelastic response [34,35]. These models allow for 
taking into account the non-linear response through the constitutive definition of the springs and 
the rate-dependent response through the flow rule definition of the dashpots. In this regard, 
Bergström et al. [36] developed a constitutive model, called hybrid model, for predicting the large 
strain time-dependent behaviour of UHMWPE. More recently, based on previous models [37,38], 
Ayoub et al. [39] presented a constitutive model for polyethylene that includes a visco-
hyperelastic network resistance acting in parallel with a viscoelastic-viscoplastic intermolecular 
resistance, where the amorphous and crystalline phases are taken under consideration. Moreover, 
Garcia-Gonzalez et al. [19] proposed a constitutive model for semi-crystalline polymers 
formulated in finite deformations where temperature dependence is additionally taken into 
account. 

For reliable modelling of a group of semi-crystalline polymeric matrices is necessary to take into 
account not only viscoplasticity but also viscoelasticity. The model developed herein considers 
strain rate and temperature dependences, pressure sensitivity, thermal expansion and thermo-
mechanical coupling considering temperature evolution due to inelastic dissipation from 
viscoelastic and viscoplastic deformation. Regarding temperature dependency, this influence is 
incorporated for both intermolecular and network stretching resistances. The constitutive 
equations are formulated in finite deformations within a thermodynamically consistent 
framework. The constitutive framework is implemented in a VUMAT subroutine for the 
commercial finite element solver Abaqus/Explicit [40]. The model parameters are identified for 
UHMWPE and for high density polyethylene (HDPE), two widely used materials in orthopaedics 
applications, from experimental data reported by Brown et al. [18]. Moreover, the constitutive 
model is suitable for predicting the mechanical behaviour of a wide variety of polymeric matrices. 
The application of the model to the study of stretching tests on polymers has demonstrated the 
importance of taking into account viscous behaviours and thermo-mechanical coupling. This 
study shows how specific deformation mechanisms govern the mechanical response of polymers 
and can lead to global or local deformations. The model developed herein is physically motivated 
on the deformation mechanisms behind the mechanical behaviour of semi-crystalline polymeric 
matrices and is observed to faithfully describe their mechanical response under a wide range of 
loading conditions. The work aims at providing a proper understanding of the mechanical 
behaviour of polymeric matrices, allowing for the development of new composite materials, 
especially when dealing with dynamic applications. 

 

 2. Description of the constitutive model 

Semi-crystalline polymeric matrices often exhibit complex viscous effects where both 
viscoelastic and viscoplastic behaviours are combined. In addition, their stress-strain response 
can be physically interpreted as the combination of overcoming an intermolecular resistance 
which is increased by the development of strain-induced crystallization; and a network resistance 
caused by molecular orientation. The intermolecular resistance may exhibit rate-dependency that 
can be described by viscoplasticity. The network resistance is commonly defined as purely elastic 
but it may also exhibit rate-dependency that can be potentially described by viscoelasticity. In 
addition, viscous contributions to the mechanical behaviour of thermoplastic polymers lead to 
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temperature increments due to inelastic dissipation and, consequently, induce thermal softening 
in the material behaviour. 

Motivated on the evidence introduced above, this work proposes a constitutive model that 
incorporates viscous behaviours in the mechanical response of semi-crystalline thermoplastic 
materials. The model is based on three constitutive branches according to the rheological scheme 
shown in Fig. 2. Here, the intermolecular resistance (I) introduces a rate- and temperature-
dependent part that is defined by a Neo-Hookean hyperelastic spring and a nonlinear viscoplastic 
dashpot. The network resistance (N) introduces a non-linear temperature-dependent hyperelastic 
part that is defined by a modified eight-chain spring. The third viscous constitutive branch 
introduces viscoelasticity through a non-linear hyperelastic response which depends on strain rate. 

 

Fig. 2. Rheological scheme of the proposed constitutive model. 

According to the arrangement of the rheological model elements depicted in Fig. 2, the total 
Cauchy stress 𝛔  is determined by the contribution of the intermolecular 𝛔𝐈 , the network 
backstress 𝛔𝐍 and the viscous 𝛔𝐕 resistances: 𝛔 = 𝛔𝐈 + 𝛔𝐍 + 𝛔𝐕                 (1) 

In order to facilitate the understanding of this section, a summery with the nomenclature used 
along the formulation is presented in Appendix A. 

 

2.1. Kinematics 

The kinematics of the model proposed herein are based on the establishment of five spatial 
configurations, see Fig. 3. This kinematics goes from an initial reference configuration Ωo to a 
final deformed or current configuration Ω. Three more spatial configurations are defined to allow 
the determination of the constitutive equations associated to each constitutive element. The first 
one is referred to as a dilated configuration Ω̅ in which only thermal deformation is accounted for; 
the second one is referred to as a plastic dilated relaxed configuration Ω̿ in which both thermal 
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and plastic deformations are accounted for; and the third one is referred to as a viscous dilated 
relaxed configuration Ω̃ in which both thermal and viscous deformations are accounted for. 

 

Fig. 3. Kinematics of the model showing the reference or initial configuration Ωo, the dilated 
configuration Ω̅ , the plastic dilated relaxed configuration Ω̿ , the viscous dilated relaxed 
configuration Ω̃, and the current or loaded configuration Ω. 

According to the kinematics, the deformation gradient F is broken down into thermal, 𝐅𝛉, and 
mechanical, 𝐅𝐌, parts [41,42]. Thus, the total deformation gradient reads as: 𝐅 = 𝐅𝐌𝐅𝛉                               (2) 

The mechanical part of the deformation gradient, 𝐅𝐌, is equivalent for the three constitutive 
branches according to the rheological model. The mechanical part associated to the network 
resistance is defined as purely elastic, 𝐅𝐍𝐞; the part associated to the intermolecular resistance is 
divided into elastic, 𝐅𝐈𝐞, and plastic, 𝐅𝐈𝐩, components; and the part associated to the viscoelastic 
resistance is divided into elastic,  𝐅𝐕𝐞 , and viscous, 𝐅𝐕𝛎 , components. Therefore, the total 
deformation gradient can be decomposed depending on the constitutive branch as: 𝐅 = 𝐅𝐈𝐞𝐅𝐈𝐩𝐅𝛉 = 𝐅𝐍𝐞𝐅𝛉 = 𝐅𝐕𝐞𝐅𝐕𝛎𝐅𝛉               (3) 

The velocity gradient l, in terms of the kinematics associated with the viscous resistance elements, 
can be written using Eq. (3) as: 

l = �̇�𝐅−1 = 𝐥𝐕𝐞 + 𝐅𝐕𝐞�̃�𝐕𝛎 𝐅𝐕−𝐞 + 𝐅𝐕𝐞𝐅𝐕𝛎�̅�𝚹𝐅𝐕−𝛎𝐅𝐕−𝐞                                 (4) 

where 𝐥𝐕𝐞 = �̇�𝐕𝐞𝐅𝐕−𝐞 is the elastic component of the velocity gradient in the current configuration 
and the viscous component �̃�𝐕𝛎  can be defined in the viscous dilated relaxed configuration Ω̃ as: �̃�𝐕𝛎 = �̇�𝐕𝛎𝐅𝐕−𝛎                                  (5) 

This velocity gradient, as well as the plastic velocity gradient of the intermolecular resistance �̿�𝐈𝐩 = �̿�𝐈𝐩 + �̿�𝐈𝐩, can be decomposed into its symmetric and skew parts by �̃�𝐕𝛎 = �̃�𝐕𝛎 + �̃�𝐕𝛎. In this 
work, Ω̃ and Ω̿ are assumed to be invariant to the rigid body rotations of the current configuration, 
that is �̃�𝐕𝛎=�̿�𝐈𝐩=0, and therefore �̃�𝐕𝛎 =�̃�𝐕𝛎  and �̿�𝐈𝐩=�̿�𝐈𝐩 [43,44]. The thermal contribution is assumed 
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isotropic according to Bouvard et al. [45], so that 𝐅𝛉 is spherical and it is possible to assume �̅�𝚹 = 𝟎. 

The kinematics of the intermolecular and network resistances have been defined in agreement 
with standard approaches from literature [19]. 

2.2. Thermodynamics 

This section provides the modelling assumptions made for the formulation of the Helmholtz free 
energy function from which the constitutive equations derive. In addition, the thermodynamic 
consistency is verified from the development of the Clausius-Duhem inequality expressed in the 
dilated configuration (this is the common configuration for the three constitutive branches). 

The Helmholtz free energy function per unit volume in the dilated configuration Ψ̅, is defined as 
the additive combination of the deformation resistances [46,47] as: Ψ̅(𝐂𝐈𝐞, 𝐂𝐕𝐞 , 𝐂𝐍𝐞 , θ) = Ψ̅I(𝐂𝐈𝐞, θ) + Ψ̅V(𝐂𝐕𝐞) + Ψ̅N(𝐂𝐍𝐞 , θ)              (6) 

where the Helmholtz free energy depends on the elastic right Cauchy-Green deformation tensors 𝐂𝐈𝐞 = 𝐅𝐈𝐞𝐓𝐅𝐈𝐞, 𝐂𝐕𝐞 = 𝐅𝐕𝐞𝐓𝐅𝐕𝐞 and 𝐂𝐍𝐞 = 𝐅𝐍𝐞𝐓𝐅𝐍𝐞, and temperature θ. 

From the definition of the Helmholtz free energy Ψ̅ = e̅ − θη̅, the time derivative of Ψ̅ can be 
calculated as: Ψ̇̅ = ∂Ψ̅∂𝐂𝐈𝐞 : �̇�𝐈𝐞 + ∂Ψ̅∂𝐂𝐕𝐞 : �̇�𝐕𝐞 + ∂Ψ̅∂𝐂𝐍𝐞 : �̇�𝐍𝐞 + ∂Ψ̅∂θ θ̇               (7) 

Using these modelling assumptions for the definition of Ψ̅, the Clausius-Duhem inequality can 
be obtained from the combination of the first and second thermodynamics principles following 
the procedure used by Garcia-Gonzalez et al. [19] as: (𝐅𝐈𝐩�̅�𝐈𝐅𝐈𝐩𝐓 − 2 ∂Ψ̅∂𝐂𝐈𝐞) : 𝐅𝐈𝐞𝐓𝐝𝐈𝐞𝐅𝐈𝐞 + (𝐅𝐕𝛎�̅�𝐕𝐅𝐕𝛎𝐓 − 2 ∂Ψ̅∂𝐂𝐕𝐞) : 𝐅𝐕𝐞𝐓𝐝𝐕𝐞 𝐅𝐕𝐞 + (�̅�𝐍 − 2 ∂Ψ̅∂𝐂𝐍𝐞 ) : 𝐅𝐍𝐞𝐓𝐝𝐍𝐞 𝐅𝐍𝐞 +�̅�𝐈: �̅�𝐩 + �̅�𝐕: �̅�𝛎 + (− ∂Ψ̅∂θ − 3𝑓𝜃Ψ̅ − η̅ + 𝑓𝜃(�̅�𝐈 + �̅�𝐕 + �̅�𝐍): 𝐈) θ̇ − 1θ �̅�∇̅xθ ≥ 0          (8) 

where �̅�𝐈, �̅�𝐍 and �̅�𝐕 are respectively the corresponding second Piola-Kirchhoff stress tensors of 
the intermolecular, network and viscous resistances expressed in the configuration Ω̅ as �̅�𝐢 =JM𝐅𝐢−𝐌𝛔𝐢𝐅𝐢−𝐌𝐓  and �̅�𝐈 , �̅�𝐍  and �̅�𝐕  are respectively the Mandel stress tensors of the 
intermolecular, network and viscous resistances in Ω̅ as �̅�𝐢 = 𝐅𝐢𝐌𝐓𝐅𝐢𝐌�̅�𝐢 with i={I,N,V}. 𝐝𝐈𝐞, 𝐝𝐍𝐞  
and 𝐝𝐕𝐞  are the symmetric part of the velocity gradient tensors in Ω of the intermolecular, the 
network and the viscous resistances; 𝑓𝜃  is a temperature-dependent function; η̅ is the specific 
entropy per unit volume in Ω̅; and �̅� is the heat flux per unit volume in Ω̅. 

Using standard arguments of the Coleman and Noll method [48,49], the second Piola-Kirchhoff 
stress tensor associated with each constitutive branch and the specific internal entropy per unit 
volume that satisfy the second law of thermodynamics along arbitrary thermodynamic processes 
must read as:  �̅�𝐈 = 𝐅𝐈−𝐩2 ∂Ψ̅∂𝐂𝐈𝐞 𝐅𝐈−𝐩𝐓               (9.1) �̅�𝐍 = 2 ∂Ψ̅∂𝐂𝐍𝐞                 (9.2) 



7 

 

�̅�𝐕 = 𝐅𝐕−𝛎2 ∂Ψ̅∂𝐂𝐕𝐞 𝐅𝐕−𝛎𝐓               (9.3) η̅ = − ∂Ψ̅∂θ − 3𝑓𝜃Ψ̅ + 𝑓𝜃(�̅�𝐈 + �̅�𝐕 + �̅�𝐍): 𝐈             (9.4) 

 

2.3. Thermal expansion 

The thermal expansion is assumed to be isotropic, being the contribution of the thermal part to 
the deformation gradient defined in the form: �̇�𝛉 = 𝑓𝜃𝐅𝛉θ̇                        (10) 

where θ̇  is the time derivative of current temperature and 𝑓𝜃 = αθ  is the thermal expansion 
coefficient. The temperature evolution equation can be deduced following the methodology used 
by Garcia-Gonzalez et al. [19] as: (C̅ + 3𝑓𝜃e̅ − 𝑓𝜃(𝐅𝐈𝐩𝐓𝐂𝐈𝐞𝐅𝐈𝐩: �̅�𝐈 + 𝐂𝐍𝐞 : �̅�𝐍 + 𝐅𝐕𝛎𝐓𝐂𝐕𝐞𝐅𝐕𝛎: �̅�𝐕)) θ̇ = �̅�𝐈: �̅�𝐩 + +�̅�𝐕: �̅�𝛎  θ [32 𝑓𝜃𝐅𝐈𝐩�̅�𝐈𝐅𝐈𝐩𝐓 − 𝑓𝜃 ∂(𝐅𝐈𝐩𝐓𝐂𝐈𝐞𝐅𝐈𝐩:�̅�𝐈)∂𝐂𝐈𝐞 + 12 ∂(𝐅𝐈𝐩�̅�𝐈𝐅𝐈𝐩𝐓)∂θ ] : �̇�𝐈𝐞 + θ [32 𝑓𝜃�̅�𝐍 − 𝑓𝜃 ∂(𝐂𝐍𝐞 :�̅�𝐍)∂𝐂𝐍𝐞 + 12 ∂(�̅�𝐍)∂θ ] : �̇�𝐍𝐞 +θ [32 𝑓𝜃𝐅𝐕𝛎�̅�𝐕𝐅𝐕𝛎𝐓 − 𝑓𝜃 ∂(𝐅𝐕𝛎𝐓𝐂𝐕𝐞𝐅𝐕𝛎:�̅�𝐯)∂𝐂𝐕𝐞 + 12 ∂(𝐅𝐕𝛎�̅�𝐕𝐅𝐕𝛎𝐓)∂θ ] : �̇�𝐕𝐞 − ∇̅x�̅� + R̅                 (11) 

where C̅ is the heat capacity per unit volume. 

 

2.4. Intermolecular and network resistances: thermo-viscoplasticty 

Intermolecular resistance 

The intermolecular contribution to the Cauchy stress is defined by a temperature-dependent Neo-
Hookean model as: 𝛔𝐈 =  λ0(θ) ln(JIe)𝐈JI +  μ0(θ)JI (𝐅𝐈𝐞𝐅𝐈𝐞𝐓 − 𝐈)              (12) 

where λ0 and μ0 are the classical Lamé constants linearly depending on temperature through the 
Young’s modulus E(θ) = Eref + E1(θ − θref) [45,50].  

The plastic contribution is activated when a yield criterion fI = σ̿eqI − σT = 0 is satisfied. Here, 

the Rhagava equivalent stress σ̿eqI =  (α−1)I1I+ √(α−1)2I1I2+12αJ2I2α  is used to include the pressure 
dependency in the yield function [51]. Where α is a material parameter describing the pressure 
sensitivity and I1I =  tr �̿�𝐈  and J2I =   12 �̿�𝐈𝐝𝐞𝐯: �̿�𝐈𝐝𝐞𝐯  are stress invariants of the Mandel stress 

tensor �̿�𝐈 = 𝐂𝐈𝐞�̿�𝐈 expressed in the Ω̿. The scalar term σT =  σT0 (1 − ( θ−θminθmelt−θmin)m) is defined 

depending on temperature, where σT0  is the value of σT  at reference temperature in uniaxial 
tension, m is a temperature sensitivity parameter, θmin is the lowest temperature considered and θmelt is the melting temperature. 
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The flow equation that describes the evolution of the plastic deformation is expressed in the plastic 
dilated relaxed configuration Ω̿ as: �̿�𝐈𝐩 =  γ̇̿Ip�̿�𝐈;       �̿�𝐈 = ∂gI∂�̿�𝐈                (13) 

where γ̇̿Ip  is the viscoplastic multiplier, �̿�𝐈  is the gradient of the plastic potential gI =(β−1)I1I+ √(β−1)2I1I2+12βJ2I2β  on Ω̿, with β being a parameter which controls the volumetric plastic 

strain. 

The viscoplastic multiplier γ̇̿Ip is defined depending on the rate-sensitivity parameters ε̇0  and C 
as: 

γ̇̿Ip = {                                     0                                                if   fI ≤ 0 ε̇0 {exp [1C (σ̿eqIσT − 1)] − 1}                                   if   fI > 0           (14) 

 

Network resistance  

This part of the model describes a hyperelastic entropic resistance defined by a modification of 
the originally eight-chain model proposed by Arruda and Boyce [52]. This modification follows 
the formulation introduced by Anand [53] but including temperature sensitivity. The Cauchy 
stress associated to this resistance is defined as: 𝛔𝐍 =  (CR+Cθ(θ−θref))3JN λ̅Lλ̅ 𝔗−1 ( λ̅λ̅L) (𝐁𝐍∗ − λ̅2𝐈)                 (15) 

where 𝔗−1 is the inverse of the Langevin function, CR is the initial elastic modulus of the network 
backstress resistance, Cθ is a material parameter controling the elastic modulus dependence on 

temperature and λ̅L is the locking stretch. λ̅ =  √13 tr(𝐅𝐍𝐞∗(𝐅𝐍𝐞∗)T) is the average total stretch ratio, 

with 𝐅𝐍𝐞∗ = JN−1 3⁄ 𝐅𝐍𝐞 being the distortional part of 𝐅𝐍𝐞 and JN = det (𝐅𝐍𝐞).  

 

2.5. Viscous resistance: viscoelasticity 

This part of the model describes a viscous material response related to the hardening induced by 
rate-dependent effects on network stretching. To define this constitutive branch, an eight-chain 
model is defined for the non-linear spring that depends on the elastic part of the deformation 
gradient associated with the viscous resistance. In addition, a viscous flow rule is introduced to 
define the contribution of the linear dashpot. This idea was originally proposed by Bergström and 
Boyce [54] for elastomers modelling. The Cauchy stress associated with the viscous resistance is 
defined as: 𝛔𝐕 =  Cν3JV λ̅VLλ̅V 𝔗−1 ( λ̅Vλ̅VL) (𝐁𝐕𝐞∗ − λ̅V2 𝐈)                        (16) 
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where Cν and λ̅VL are material parameters and the average viscous stretch ratio λ̅V is calculated 
as: 

λ̅V =  √13 tr(𝐁𝐕𝐞∗)                (17) 

The distortional left Cauchy-Green viscous deformation tensor, 𝐁𝐕𝐞∗ , is determined by the 
distortional part of 𝐅𝐕𝐞 defined by Eq. (19).  𝐁𝐕𝐞∗ =  𝐅𝐕𝐞∗(𝐅𝐕𝐞∗)T                (18) 

𝐅𝐕𝐞∗ = JV−1 3⁄ 𝐅𝐕𝐞                             (19) 

In order to define the viscous velocity gradient in the viscous dilated relaxed configuration Ω̃, a 
viscoelastic flow rule is assumed following the formulation proposed by Bergström [55] as: �̃�𝐕𝛎 =  γ̇̃Vν �̃�𝐕;       �̃�𝐕 = 𝛔𝐕𝐝𝐞𝐯τV                 (20) 

where γ̇̃Vν  is the viscoelastic multiplier, �̃�𝐕 provides the direction of the viscoelastic flow, 𝛔𝐕𝐝𝐞𝐯 is 

the deviatoric part of 𝛔𝐕 and τV = √tr(𝛔𝐕𝐝𝐞𝐯𝛔𝐕𝐝𝐞𝐯) is the effective stress driving the viscous flow. 

The rate equation for viscous flow is given by: γ̇̃Vν = τVσVT                 (21) 

where σVT is a material constant. 

 

3. Identification of model parameters and model predictions 

This section summarizes the correspondence of the model parameters with the mechanical 
response of semi-crystalline matrix materials and, then, the identification of the parameters for 
UHMWPE is presented. In addition, the parameters of the model are also identified for HDPE in 
order to compare the predictive capability of the model for polymers that present different 
deformation behaviour. 

 

3.1. Baseline material 

Polyethylene is a highly ductile polymer that can be subjected to large deformations without 
fracture. This polymer presents different commercial forms whose mechanical properties depend 
on variables such as crystallinity degree, molecular weight and type of branching: HDPE, low 
density polyethylene (LDPE), cross-linked polyethylene (PEX) and UHMWPE. Among these 
polyethylene types, UHMWPE is one of the most employed because of its wear resistance, 
biocompatibility and good mechanical properties [18]. This thermoplastic polymer exhibits 
yielding-dependence on strain rate and temperature, increasing the yield stress with strain rate 
and decreasing with temperature. In addition, this material presents strain-hardening after yield. 
Although UHMWPE has no clear glass transition, a melting temperature of 405-409 K is observed 



10 

 

[22,56,57] and a thermal expansion coefficient of 124.5·106 K-1 [13]. In addition, these polymers 
allow for enhancing their mechanical properties through a wide range of fillers [15]. 

 

3.2. Correspondence of the model parameters with mechanical response of the material 

The parameters of the proposed model present correspondence with the mechanical response of 
the material. This makes it easier to identify the proper values for a specific polymer. Such 
correspondence is introduced in terms of the following blocks: 

(i) Linear response: the model parameters Eref, E1 and ν determine the initial elastic response of 
the material depending on temperature. 

(ii) Yield stress: the parameters σT0, C, ε̇0  and m define the yield stress of the material. C and ε̇0 
determine the yield stress’ strain rate sensitivity and m the temperature sensitivity. 

(iii) Viscous response: the model parameters Cν and λ̅VL determine the stress contribution of the 
spring of the viscous constitutive branch. Cν is related to the initial elastic modulus of viscous 
resistance and λ̅VL is related to the maximum (fully extended) stretch that a molecule can be 
exposed to. The material parameter σVT along with the stress state determines the viscoelastic 
multiplier that governs the flow rule associated with the linear dashpot. 

(iv) Network response: the network contribution to the stress state is established by the parameters 
CR, Cθ, λ̅L and κ. CR and Cθ determine the initial elastic modulus of network resistance depending 
on temperature. The parameter λ̅L  is related to the maximum stretch that a molecule can be 
exposed to and κ is a bulk modulus used in applications where only the network contribution is 
active (e.g. rubber modelling). 

(v) Volumetric plastic strain sensitivity: the parameter β introduces the sensitivity of the material 
with inelastic volume change. This parameter can be defined as β = 1  assuming volume 
preserving. 

(vi) Stress state sensitivity: the parameter α represents the relationship between yield stress in 
compression and tension and determines the pressure sensitivity. 

Taking into account the correspondence of the model parameters with the mechanical response 
of the material, the parameters of the proposed model are identified for UHMWPE. For this 
identification process, experimental data covering a wide range of strain rate and temperature 
loading conditions is used. This experimental data and details about the experiments performance 
are reported by Brown et al. [18]. The model parameters identified from these experiments are 
provided in Table 1. 

As UHMWPE, HDPE also exhibits yielding-dependence on strain rate and temperature. 
However, while UHMWPE or others polymers like PEX exhibit significant strain hardening after 
yield, other polymers such as HDPE present flat flow behaviour [18]. In order to compare the 
predictive capability of the model for different semi-crystalline polymers and to analyse the 
effects of particular deformation mechanisms on the mechanical response of these polymers, the 
model parameters are also identified for HDPE, Table 2.  
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Table 1 
Material parameters for UHMWPE. 

Initial elastic 
properties Intermolecular resistance 

𝐄𝐫𝐞𝐟 
(GPa) 

𝐄𝟏 

(MPa/K) 
ν �̇�𝟎  (s-1) C 𝛔𝐓𝟎 (MPa) m 𝛉𝐫𝐞𝐟 

(K) 
𝛉𝐦𝐞𝐥𝐭
(K) 

𝛉𝐦𝐢𝐧
(K) 𝛂 β 

0.541 -6.5 0.46 0.1 0.048 37.5 0.7 293 406 198 1.0 1.0 

Viscous resistance Network resistance 

CV (Pa) �̅�𝐕𝐋 𝛔𝐕𝐓 (MPa) CR (MPa) Cθ (MPa/K) �̅�𝐋 

12.5 5 0.05 23 -0.15 5 

General properties 

ρ (kg/m3) Cp (J/Kg K) 𝛂𝛉 (K-1) 

940 1900 124.5·10-6 

 

Table 2 
Material parameters for HDPE. 

Initial elastic 
properties Intermolecular resistance 

𝐄𝐫𝐞𝐟 
(GPa) 

𝐄𝟏 

(MPa/K) 
ν �̇�𝟎  (s-1) C 𝛔𝐓𝟎 (MPa) m 𝛉𝐫𝐞𝐟 

(K) 
𝛉𝐦𝐞𝐥𝐭
(K) 

𝛉𝐦𝐢𝐧
(K) 𝛂 β 

0.782 -6.5 0.46 0.01 0.028 80 0.76 293 406 198 1.0 1.0 

Viscous resistance Network resistance 

CV (Pa) �̅�𝐕𝐋 𝛔𝐕𝐓 (Pa) CR (MPa) Cθ (MPa/K) �̅�𝐋 

(-) (-) (-) 12 -0.15 5 

General properties 

ρ (kg/m3) Cp (J/Kg K) 𝛂𝛉 (K-1) 

970 1900 93.6·10-6 

 

 



12 

 

3.3. Model predictions 

In this section, the model predictions are compared with experimental data for a wide range of 
strain rate and temperature conditions. The constitutive model proposed herein is implemented in 
a VUMAT subroutine and applied to a numerical model with the dimensions of the specimens 
used in compression tests by Brown et al. [18]. This numerical model was defined with C3D8R 
elements and developed in Abaqus/Explicit. 

The expression developed for the determination of temperature evolution, Eq. (11), is reduced 
taking into account uniquely specific energy due to plastic dissipation of the intermolecular 
resistance; viscous dissipation of the viscoelastic resistance; and heat conduction. Thermoelastic 
coupling is neglected in line with published studies for thermoplastic polymers [19,45]. The 
temperature evolution is thus reduced to: θ̇ = �̅�𝐈:�̅�𝐩C̅ + �̅�𝐕:�̅�𝛎C̅ −  

∇̅x�̅�C̅               (22) 

The model predictions show a good agreement with experiments in terms of strain rate and 
temperature sensitivities [18]. In this regard, Figs. 4 and 5 show the yield stress model predictions 
depending on strain rate and temperature; and their comparison with the experimental values for 
UHMWPE and HDPE respectively. This predictive capacity is determined by the intermolecular 
constitutive branch that accounts for strain rate sensitivity through the viscoplastic flow rule, Eq. 
(13), and for temperature sensitivity through the term σT that introduced thermal softening in the 
viscoplastic multiplier through Eq. (14). 
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Fig. 4. Experimental data [18] versus model predictions in terms of: (a) strain rate sensitivity; and 
(b) temperature sensitivity of UHMWPE for uniaxial compression tests. 
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Fig. 5. Experimental data [18] versus model predictions in terms of: (a) strain rate sensitivity; and 
(b) temperature sensitivity of HDPE for uniaxial compression tests. 
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Fig. 6. Stress-strain experimental curves of UHMWPE [18] versus model predictions for: (a) 
different strain rates; and (b) different temperatures. 
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Fig. 7. Stress-strain experimental curves of HDPE [18] versus model predictions for: (a) different 
strain rates; and (b) different temperatures. 
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Furthermore, the model not only predicts the strain rate and temperature dependences on yield 
stress, but also on the stress response along the whole deformation process. With the aim of 
highlighting the predictive capacity of the proposed model, a comparison between model 
predictions and experimental data [18] is provided in Figs. 6 and 7. These figures show stress-
strain curves for UHMWPE and HDPE covering a wide range of strain rate and temperature 
conditions. A good agreement between model predictions and experiments is observed in these 
terms. In this regard, the model faithfully predicts the initial slope of the stress-strain curve 
depending on temperature. This is determined by the definition of E(θ) in the intermolecular 
resistance. In addition, in the case of UHMWPE, once the yield point is reached, the stress-shape 
is mainly governed by the viscous and network resistances, especially at large deformations where 
their contribution is more relevant. The rate-dependent non-linear behaviour at large deformations 
is determined by the viscous resistance through the viscoelastic dashpot, Fig. 6a. Moreover, the 
network resistance introduces temperature dependence in the non-linear behaviour at large 
deformations, Fig. 6b. Unlike UHMWPE, the viscous flow of HDPE is defined uniquely by the 
intermolecular resistance since presents a linear behaviour without significant hardening after 
yielding, Fig. 7. Consequently, the viscoelastic branch was neglected here for HDPE.  

Therefore, it can be concluded that the model allows for the introduction of temperature-
dependent behaviour associated to both intermolecular and network resistances and couple 
viscoelastic and viscoplastic deformation mechanisms. This model, calibrated for different 
biomaterials, is potentially applied to problems in biomedical engineering allowing for the 
analysis of prosthesis devices that can be subjected to dynamic loading. In addition, the model 
offers other possibilities in terms of analysis of deformation mechanisms and their implications 
in semi-crystalline polymeric matrices, also allowing the extrapolation of results to a wider range 
of temperature and strain rate. In the next section, it is applied to the analysis of viscous 
behaviours and thermo-mechanical coupling on the deformation process of both polyethylene 
materials. 

 

4. Analysis of viscous behaviours and thermo-mechanical coupling on necking 

This section presents an analysis of the influence of viscous behaviours and deformation 
mechanisms on necking localization and temperature evolution due to inelastic dissipation. To 
this end, numerical simulations of tensile tests at different strain rate conditions were conducted.  

4.1. Definition of the numerical model  

A FE model of tensile specimen with a normalized ASTM D638 Type V geometry and 3 mm of 
thickness was developed, Fig. 8(a). The specimen presents a gauge section of 9.53 mm in length 
and 3.18 mm in width. This geometry was chosen in accordance with the specimens used by 
Mohagheghian et al. [58] in the experimental tensile tests carried out on HDPE and UHMWPE 
samples. A total number of 176,464 linear elements with reduced integration (C3D8R in Abaqus 
notation) were employed to mesh the whole region. A higher mesh density was defined in the 
central zone of the specimen, progressively decreasing the element size along the Z axis to the 
extremes of the specimen. 

Regarding the boundary conditions, a constant stretching velocity is applied on one end face, 
while the nodes on the opposite face are embedded, Fig. 8 (b). These imposed loading conditions 
can be formulated as VZ (Lt, t) = ε̇0 ∙ L0 and VZ (0, t) = 0 where t is the time, ε̇0 the initial strain 
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rate, Lt the specimen length and L0 the gauge length. Note that the stretching velocity was defined 
assuming that the deformation localizes along the gauge length. Thus, the simulations were 
performed at two different strain rates, ε̇0 = 0.1 s−1 and ε̇0 = 100 s−1, allowing for evaluating 
the influence of this variable on material hardening and on thermo-mechanical coupling. Although 
an initial temperature of 293 K was defined for all simulations, it evolves along the deformation 
process due to the consideration of inelastic dissipation following Eq. (22). According to 
observations of other authors about temperature evolution for semi-crystalline polymers [19,59], 
Eq. (22) can be reduced neglecting the term associated to thermal conduction for high strain rate 
conditions assuming adiabatic heating. 

 

 

 

       (a)         (b) 
Fig. 8. Numerical model: (a) geometrical information; (b) boundary conditions applied. 

4.2. Results and analysis  

A series of numerical simulations were performed to study and compare the influence of viscous-
behaviours and thermo-mechanical coupling during the deformation process of two types of 
polyethylene. In these simulations, specimens of both materials were subjected to stretching 
conditions varying the initial strain rate. Experimentally, the mechanical behaviour of both 
materials presents a strong dependence on strain rate and temperature, increasing the yield stress 
with strain rate and decreasing with temperature. However, while the UHMWPE exhibits 
significant strain hardening after yield, Fig. 6, the HDPE presents flat flow behaviour Fig. 7. In 
the former, the viscoelastic resistance plays an important role in the deformation process, whereas 
in the HDPE this contribution is not relevant. In this regard, the mechanical response of these 
materials can be understood as the competition between hardening due to strain and strain rate 
effects and softening due to thermal effects. This competition becomes more complex at high 
strain rates where this variable induces an important hardening but thermal softening is more 
relevant because of the strong thermo-mechanical coupling under these conditions, as can be 
deduced from Eq. (22). 

Figs. 9 and 10 show two stages of the tensile deformation process for UHMWPE and HDPE at 
strain rate conditions of 0.1 s-1 and 100 s-1. These stages are identified by the engineering strain 
defined as ε = ∆Z/L0, where ∆Z is the current displacement applied in the longitudinal direction. 
A uniform deformation along the whole gauge length is observed for UHMWPE whereas HDPE 
presents a local deformation which results in a pronounced necking process. This difference in 
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the behaviour of both materials can be explained by the higher viscosity and strain-hardening after 
yield of UHMWPE with respect to HDPE. In this sense, viscous contributions to the mechanical 
behaviour have been demonstrated to stabilize necking formation leading to higher ductility [19]. 
Moreover, strain hardening also plays a stabilizing role in necking formation [58-60]. In addition, 
thermal softening also influences the deformation process of thermoplastic polymers [61-65], as 
observed in other ductile materials [66,67]. In this regard, understanding this as a negative 
hardening, if temperature evolution occurs heterogeneously by inelastic dissipation, local necking 
is favoured leading to instability in the zone that reaches higher temperatures. Fig. 11 shows the 
temperature distribution along the gauge length for both polyethylene materials at strains of 0.2 
and 0.5 and strain rates of 0.1 s-1 and 100 s-1. Temperature remains practically uniform along the 
gauge length of UHMWPE specimen whereas it shows a relevant concentration in the necking 
zone of HDPE specimen. This temperature increment due to inelastic dissipation is more relevant 
at high strain rates and leads to a more pronounced necking formation, see Fig. 10(d) where the 
temperature reaches a maximum up to ∆θ = 60 K in the necking zone of HDPE. Comparing the 
results in terms of temperature, a higher increment of this variable is reached by HDPE. Although 
this material does not present contribution of the viscous branch, the higher values of stress flow 
result in higher contribution of inelastic dissipation according to Eq. (22). This higher temperature 
increment in HDPE favours necking formation in comparison with UHMWPE. 

 

  
(a) (b) 

  
(c) (d) 

Fig. 9. Stress distribution at ε̇0 = 0.1 s−1 for: (a) UHMWPE at ε = 0.2 (b) UHMWPE at ε = 0.5 
(c) HDPE at ε = 0.2 (d) HDPE at ε = 0.5. 
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(a) (b) 

  
(c) (d) 

Fig. 10. Stress distribution at ε̇0 = 100 s−1 for: (a) UHMWPE at ε = 0.2 (b) UHMWPE at ε =0.5 (c) HDPE at ε = 0.2 (d) HDPE at ε = 0.5. 

 

The results numerically obtained here in terms of necking formation correlate with experiments 
conducted by others authors [58,59]. Mohagheghian et al. [58] studied the response of different 
types of polyethylene at nominal strain rates of 0.01 s −1, 0.1 s −1 and 1 s −1 over specimens 
with the same geometry used in our numerical simulations. At low strain rates, HDPE presents 
neck formation while at high strain rates HDPE fails during neck propagation phases. In contrast, 
no necking process was showed in the UHMWPE specimen for all strain rates studied. This 
response was explained by the stabilising effect associated to strain hardening. Moreover, the 
same way to deform was observed by Torres et al. [68] for HDPE. These authors also observed a 
necking process with an increase in temperature along necking length in agreement with the 
results obtained here. 
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Fig. 11. Temperature distribution along gauge length at strains of 0.2 and 0.5 in UHMWPE and 
HDPE specimens at: (a) strain rate of 0.1 s-1; and (b) strain rate of 100 s-1.  

 

5. Conclusions 

In this work, a hyperelastic constitutive model which combines viscoelasticity and viscoplasticity 
with thermo-mechanical coupling is developed to predict the mechanical behaviour of semi-
crystalline polymeric matrices. This model is physically motivated on the interpretation of the 
stress-strain response of semi-crystalline polymers as the combination of overcoming an 
intermolecular resistance, a viscous resistance and a network resistance. To this end, the 
intermolecular resistance introduces the thermo-viscoplastic behaviour of the polymer and the 
viscous and network resistances introduce the thermo-viscoelastic behaviour. In addition, 
temperature evolution due to inelastic dissipation is accounted for, as well as thermal softening 
associated to temperature increment. 

The constitutive equations were implemented in a VUMAT subroutine for Abaqus/Explicit and 
then, the model parameters were identified for UHMWPE and HDPE from experimental data 
covering a wide range of strain rate and temperature conditions. Finally, the model was employed 
to study the influence of viscous contributions and thermo-mechanical coupling on necking 
process when semi-crystalline specimens are subjected to large stretching conditions. Numerical 
predictions show that UHMWPE can undergo higher strain values without neck formation leading 
to higher ductility with respect to HDPE. 

The consideration of viscous behaviours and their thermo-mechanical coupling in the constitutive 
modelling of semi-crystalline polymers were identified as key points in the faithful prediction of 
the characteristic mechanical behaviour of both injection moulded and 3D printed thermoplastic 
polymers. In this sense, the constitutive model developed in this work is able not only to be 
considered as a predictive tool, but also to be useful in the understanding of the material behaviour 
of semi-crystalline polymers. The proposed model provides insights into the mechanical 
behaviour of polymeric matrices, allowing for the development of new composite materials with 
dynamic applications. 
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Appendix A. Nomenclature used in the formulation 

Nomenclature {Ωo, Ω̅, Ω̿, Ω̃, Ω} initial, dilated, plastic dilated relaxed, 
viscous dilated relaxed and current 
configurations 

�̿�𝐈𝐩 skew part of the plastic velocity gradient 
in Ω e̅ specific internal energy per unit volume 

in Ω̅ 
�̃�𝐕𝛎 skew part of the viscous velocity 

gradient in Ω̃ �̅� heat flux per unit volume in Ω̅ 𝛔 Cauchy stress tensor R̅ heat resource per unit volume in Ω̅ 𝛔𝐍 network Cauchy stress tensor η̅ specific entropy per unit volume in Ω̅ 𝛔𝐈 intermolecular Cauchy stress tensor C̅ heat capacity per unit volume in Ω̅ 𝛔𝐕 viscous Cauchy stress tensor {θ, θref, θmelt, θmin} current, reference, melting and lowest 
temperature considered 

�̅�𝐍 network second Piola-Kirchhoff stress 
tensor in Ω̅ 𝑓𝜃 temperature-dependent function {�̅�𝐈, �̿�𝐈} intermolecular second Piola-Kirchhoff 
stress tensor in Ω̅ and Ω̿ Ψ̅ Helmholtz free energy per unit volume in Ω̅ 

�̅�𝐕 viscous second Piola-Kirchhoff stress 
tensor in Ω̅ ∇̅x gradient with respect to the point x in Ω̅ �̅�𝐍 network Mandel stress tensor in Ω̅ 𝔗 Langevin function {�̅�𝐈, �̿�𝐈} intermolecular Mandel stress tensor in Ω̅ 
and Ω̿ 𝐈 Identity matrix �̅�𝐕 viscous Mandel stress tensor in Ω̅ JI determinant of the intermolecular 

deformation gradient 
λ̅ average total stretch ratio JN determinant of the network deformation 

gradient 
λ̅L locking stretch JV determinant of the viscous deformation 

gradient 
{I1I, J2I} stress invariants of the intermolecular 

Mandel stress tensor 𝐅 deformation gradient σ̿eqI Rhagava equivalent stress 𝐅𝛉 thermal deformation gradient gI plastic potential 𝐅𝐌 mechanical deformation gradient �̿�𝐈 gradient of the plastic potential 𝐅𝐍𝐞 network elastic deformation gradient γ̇̿Ip viscoplastic multiplier 𝐅𝐈𝐞 intermolecular elastic deformation 
gradient 

αθ thermal expansion coefficient 𝐅𝐈𝐩 intermolecular plastic deformation 
gradient 

{λ0, μ0} classical Lamé constants 𝐅𝐕𝐞 viscoelastic elastic deformation gradient E Young’s modulus 𝐅𝐕𝛎 viscoelastic viscous deformation gradient {Eref, E1} Young’s modulus at the reference 
temperature and a specified material 
parameter {𝐂𝐍𝐞 , 𝐁𝐍𝐞 } network elastic right and left Cauchy-

Green tensor 
{σT, σT0} yield stress in uniaxial tension and its 

value at reference temperature 𝐂𝐈𝐞 intermolecular elastic right Cauchy-
Green tensor 

α pressure sensitivity parameter {𝐂𝐕𝐞 , 𝐁𝐕𝐞} viscous elastic right Cauchy-Green tensor β volumetric plastic strain parameter 
l velocity gradient ε̇0  reference strain rate 𝐥𝐕𝐞  viscous elastic velocity spatial gradient C rate sensitivity parameter 
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�̅�𝚹 thermal velocity gradient in Ω̅ m temperature sensitivity parameter �̃�𝐕𝛎  viscous velocity gradient in Ω̃ CR initial elastic modulus of the network 
backstress resistance �̿�𝐈𝐩 plastic velocity gradient in Ω̿ Cθ temperature-dependent material 
parameter controlling the elastic modulus 
of network 𝐝𝐍𝐞  symmetric part of the network elastic 

velocity gradient in Ω 
Cν initial elastic modulus of the viscous 

backstress resistance 𝐝𝐈𝐞 symmetric part of the intermolecular 
elastic velocity gradient in Ω 

λ̅V average viscous stretch ratio  𝐝𝐕𝐞  symmetric part of the viscous elastic 
velocity gradient in Ω 

λ̅VL viscous locking stretch �̅�𝐩
 symmetric part of the plastic velocity 

gradient in Ω̅ 
�̃�𝐕 gradient of the viscoelastic flow �̅�𝛎

 symmetric part of the viscous velocity 
gradient in Ω̅ 

γ̇̃Vν  viscoelastic multiplier �̿�𝐈𝐩 symmetric part of the intermolecular 
plastic velocity gradient in Ω̿ 

τV effective stress driving the viscous flow �̃�𝐕𝛎  symmetric part of the intermolecular 
viscous velocity gradient in Ω̃ 

σVT  Material parameter of the viscous 
resistance �̅�𝚹 skew part of the thermal velocity gradient 

in Ω̅ 
  

 

 



21 

 

REFERENCES  

[1] Chukov DI, Stepashkin AA, Maksimkin AV, Tcherdyntsev VV, Kaloshkin SD, Kuskov KV, 
Bugakov VI. Investigation of structure, mechanical and tribological properties of short carbon 
fiber reinforced UHMWPE-matrix composites. Compos Part B Eng 2015;76:79–88. 
 
[2] Shrama S, Bijwe J, Panier S. Assessment of potential of nano and micro-sized boron carbide 
particles to enhance the abrasive wear resistance of UHMWPE. Compos Part B Eng 2016;99:312–
320. 
 
[3] Wood W, Maguire RG, Zhong WH. Improved wear and mechanical properties of UHMWPE–
carbon nanofiber composites through an optimized paraffin-assisted melt-mixing process. 
Compos Part B Eng 2011;42:584-591. 
 
[4] Savas LA, Tayfun U, Dogan M. The use of polyethylene copolymers as compatibilizers in 
carbon fiber reinforced high density polyethylene composites. Compos Part B Eng 2016;99;188-
195. 
 
[5] Chang B, Akil H, Nasir R, Khan A. Optimization on wear performance of UHMWPE 
composites using response surface methodology. Tribology International 2015; 88:252-262. 
 
[6] Atkins GJ, Welldon KJ, Holding CA, Haynes DR, Howie DW, Findlay DM. The induction of 
a catabolic phenotype in human primary osteoblasts and osteocytes by polyethylene particles. 
Biomaterials 2009;30(22):3672–3681. 
 
[7] Senatov FS, Gorshenkov MV, Tcherdyntsev VV, Kaloshkin SD, Sudarchikov VA. 
Fractographic analysis of composites based on ultra high molecular weight polyethylene. Compos 
Part B Eng 2014;56:869-875. 
 
[8] Abdul-Hameed H, Messager T, Ayoub G, Zaïri F, Naït-Abdelaziz M, Qu Z, Zaïri F. A two-
phase hyperelastic-viscoplastic constitutive model for semi-crystalline polymers: Application to 
polyethylene materials with a variable range of crystal fractions. J Mech Behav Biomater 
2014;37:323–332.  
 
[9] Wang X, Jiang  M, Zhou Z, Gou J, Hui D. 3D printing of polymer matrix composites: A 
review and prospective. Compos Part B Eng 2017; 110:442-458. 

[10] Singh D, Singh R, Boparai K, Farina I, Anita Kamra Verma A. In-vitro studies of SS 316 L 
biomedical implants prepared by FDM, vapor smoothing and investment casting. Compos Part B 
Eng 2018;132:107-114. 

[11] Cheung H, Lau K, Lu T, Hui D. A critical review on polymer-based bio-engineered materials 
for scaffold development. Compos Part B Eng 2007;38(3):291-300.  
 
[12] Garcia-Gonzalez D, Jayamohan J, Sotiropoulos N, H.Yoon H.Cook, Siviour C, Arias A, 
Jérusalem A. On the mechanical behaviour of PEEK and HA cranial implants under impact 
loading. J Mech Behav Biomater 2017;69:342-354.  
 
[13] Affatato S, Ruggiero A, Merola M. Advanced biomaterials in hip joint arthroplasty. A review 
on polymer and ceramics composites as alternative bearings. Compos Part B Eng 2015;83:276–
283.   
 

http://www.sciencedirect.com/science/article/pii/S1359836816321230
http://www.sciencedirect.com/science/article/pii/S1359836816321230


22 

 

[14] Fouad H, Elleithy R. High density polyethylene/graphite nano-composites for total hip joint 
replacements: processing and in vitro characterization. J Mech Behav Biomater 2011;4(7):1376–
1383. 
  
[15] Kurtz SM. UHMWPE biomaterials handbook ultra-high molecular weight polyethylene in 
total joint replacement and medical devices. 2nd ed. Elsevier; 2009. 
 
[16] Fang L, Gao P, Leng Y. High strength and bioactive hydroxyapatite nano-particles reinforced 
ultrahigh molecular weight polyethylene. Compos Part B Eng 2007;38(3):345–351. 
  
[17] Suñer S, Joffe R, Tipper JL, Emami N. Ultra high molecular weight polyethylene/graphene 
oxide nanocomposites: Thermal, mechanical and wettability characterization. Compos Part B Eng 
2015;78:185–191. 
 
[18] Brown EN, Willms RB, Gray III GT, Rae PJ, Cady CM, Vecchio KS, Flowers J, Martinez 
MY. Influence of Molecular Conformation on the Constitutive Response of Polyethylene: A 
Comparison of HDPE, UHMWPE, and PEX. Exp Mech 2007;47(3):381–393. 
 
[19] Garcia-Gonzalez D, Zaera R, Arias A. A hyperelastic-thermoviscoplastic constitutive model 
for semi-crystalline polymers: Application to PEEK under dynamic loading conditions. Int J 
Plasticity 2017;88:27–52. 
 
[20] Hachour K, Zaïri F, Naït-Abdelaziz M, Gloaguen JM, Aberkane M, Lefebvre JM. 
Experiments and modeling of high-crystalline polyethylene yielding under different stress states. 
Inter J Plasticity 2014;54:1–18. 
 
[21] G’Sell C, Dahoun A. Evolution of microstructure in semicrystalline polymers under large 
plastic deformations. Mater Sci Eng A 1994:175;183–99.  
 
[22] Bogetti TA, Walter M, Staniszewski J, Cline J. Interlaminar shear characterization of ultra-
high molecular weight polyethylene (UHMWPE) composite laminates. Compos Part A-Appl S 
2017;98:105–115. 
 
[23] Walley SM, Field JE, Pope PH, Safford NA. A study of the rapid deformation behaviour of 
a range of polymers. Philos Trans R Soc London A 1989;328:1–33.   

[24] Zeltmann S, Prakash K, Doddamani M,  Gupta N. Prediction of modulus at various strain 
rates from dynamic mechanical analysis data for polymer matrix composites. Compos Part B: 
Eng 2017;120:27-34.  

[25] Garg M, Mulliken AD, Boyce MC. Temperature rise in polymeric materials during high rate 
deformation. J Appl Mech 2008;75(1):011009. 
 
[26] Arias A, Forquin P, Zaera R, Navarro C. Relationship between static bending and 
compressive behaviour of particle-reinforced  composites. Compos Part B Eng 2008;39 (7-8): 
1205-1215. 
 
[27] Garcia-Gonzalez D, Rusinek A, Jankowiak T, Arias A. Mechanical impact behavior of 
polyether–ether–ketone (PEEK). Compos Struct 2015;124:88-99 
 
[28] Garcia-Gonzalez D, Rodriguez-Millan M, Rusinek A, Arias A. Investigation of mechanical 
impact behavior of short carbon-fiber-reinforced PEEK composites. Compos Struct 
2015;133:1116-1126. 
 



23 

 

[29] Garcia-Gonzalez D, Rodriguez-Millan M, Rusinek A, Arias A. Low temperature effect on 
impact energy absorption capability of PEEK composites. Compos Struct 2015;134:440-449. 

[30] Hughes TJR. Numerical implementation of constitutive models: rate-independent 
deviatoric plasticity. In: S. Nemat-Nasser, R.J. Asaro. editors. Theoretical foundation for large-
scale computations for nonlinear material behavior. Nijhoff Publishers, 1984. 

[31] Bartel DL, Bicknell VL, Wright TM. The effect of conformity, thickness, and material on 
stresses in ultra-high molecular weight components for total joint replacement. J Bone Joint Surg 
Am 1986;68(7):1041–1051. 
 
[32] Ishikawa H, Fujiki H, Yasuda K. Contact analysis of ultrahigh molecular weight 
polyethylene articular plate in artificial knee joint during gait movement. J Biomech Eng 
1996;118(3):377–386. 
 
[33] Kurtz SM, Jewett CW, Crane D, Pruitt L, Foulds JR, Edidin AA. Ultimate properties and 
crystalline morphology of ultra-high molecular weight polyethylene during uniaxial and biaxial 
tension. Trans 24th Soc Biomater 1998. p. 125. 
 
[34] Bergström JS, Rimnac CM, Kurtz SM. An augmented hybrid constitutive model for 
simulation of unloading and cyclic loading behavior of conventional and highly crosslinked 
UHMWPE. Biomaterials 2004;25(11):2171–2178. 
 
[35] Khan A, Zhang H. Finite deformation of polymer: experiments and modeling. Int J of 
Plasticity 2001;17:1167–1188. 
 
[36] Bergström JS, Kurtz SM, Rimnac CM, Edidin AA. Constitutive modeling of ultra-high 
molecular weight polyethylene under large-deformation and cyclic loading conditions. 
Biomaterials 2002;23(11):2329–2343.  
 
[37] Boyce MC, Arruda EM. Constitutive models of rubber elasticity: a review. Rubber Chem  
Technol 2000;73(3):504–523.  
 
[38] Ahzi S, Makradi A, Gregory RV, Edie DD. Modeling of deformation behavior and strain-
induced crystallization in poly(ethylene terephthalate) above the glass transition temperature. 
Mech Mater 2003;35(12):1139–1148. 
 
[39] Ayoub G, Zaïri F, Naït-Abdelaziz M, Gloaguen JM. Modelling large deformation behaviour 
under loading-unloading of semicrystalline polymers: Application to a high density polyethylene. 
Int J Plast 2010;26(3):329–347. 
 
[40] Dassault Systemes Abaqus v6.12 Documentation, 2012. ABAQUS Analysis User's Manual. 
Abaqus Inc. 
 
[41] Yu JS, Maniatty AM, Knorr DB. Model for predicting thermal stresses in thin crystalline 
films. J Mech Phys Solids 1997;45(4):511–534. 
 
[42] Kamlah M, Tsakmakis C. Use of isotropic thermoelasticity laws in finite viscoplasticity 
models. Continuum Mech Therm 1999;11(2):73–88. 
 
[43] Boyce MC, Parks DM, Argon AS. Large inelastic deformation of glassy polymers. Part I: 
rate dependent constitutive model. Mech Mater 1988;7(1):15–33. 
 



24 

 

[44] Gurtin ME, Anand L. The decomposition F = FeFp, material symmetry, and plastic 
irrotationality for solids that are isotropic-viscoplastic or amorphous. Int J Plast 2005;21:1686–
1719. 
 
[45] Bouvard JL, Francis DK, Tschopp MA, Marin EB, Bammann DJ, Horstemeyer MF. An 
internal state variable material model for predicting the time, thermomechanical, and stress state 
dependence of amorphous glassy polymers under large deformation. Int J Plast 2013;42:168–193. 
 
[46] Reese S. Multiplicative thermo-viscoplasticity: a thermodynamic model and its finite 
element implementation. Tech Mech 1998;18:209–216. 
 
[47] Vladimirov IN, Pietryga MP, Reese S. Anisotropic finite elastoplasticity with nonlinear 
kinematic and isotropic hardening and application to sheet metal forming. Int J Plast 
2010;26(5):659–687. 
 
[48] Coleman BD, Noll W. The thermodynamics of elastic materials with heat conduction and 
viscosity. Arch Rational Mech Analysis 1963;13(1):167–178. 
 
[49] Coleman BD, Gurtin ME. Thermodynamics with internal state variables. The J Chem Phys 
1967;45:597. 
 
[50] Rae PJ, Brown EN, Orler EB. The mechanical properties of poly(ether-ether-ketone) (PEEK) 
with emphasis on the large compressive strain response Polymer 2007;48(2):598–615. 
 
[51] Raghava RS, Caddell RM. Macroscopic yield criterion for crystalline polymers. Int J Mech 
Sci 1973;15(12):967–974. 
 
[52] Arruda EM, Boyce MC. A three-dimensional constitutive model for the large stretch 
behaviour of rubber elastic materials. J Mech Phys Solids 1993;41(2):389–412. 
 
[53] Anand L. A constitutive model for compressible elastomeric solids. Comput Mech 
1996;18(5):339–355. 
 
[54] Bergström JS, Boyce MC. Constitutive modeling of the time-dependent and cyclic loading 
of elastomers and application to soft biological tissues. Mech Mater 2001;33(9):523–530. 
 
[55] Bergström JS. Mechanics of Solid Polymers: theory and computational modeling, first ed. 
William Andrew, San Diego, USA, 2015. 
 
[56] Sobieraj M, Kurtz S, Rimnac C. Notch strengthening and hardening behavior of conventional 
and highly crosslinked UHMWPE under applied tensile loading. Biomaterials 2005;26(17):3411–
3426. 
  
[57] Lim KLK, Ishak ZAM, Ishiaku US, Fuad AMY, Yusof AH, Czigany T, Pukanszky B, 
Ogunniyi DS. High-density polyethylene/ultrahigh-molecular-weight polyethylene blend. I. The 
processing, thermal, and mechanical properties. J Appl Polym Sci 2005;97:413–425. 
 
[58] Mohagheghian I, McShane GJ, Stronge WJ. Impact perforation of monolithic polyethylene 
plates: Projectile nose shape dependence. Int J Impact Eng 2015;80:162–176. 
 
[59] Hillmansen S, Haward RN. Adiabatic failure in polyethylene. Polymer 2001;42(22):9301–
9312. 
 
[60] Pȩcherski R. Discussion of sufficient condition for plastic flow localization. Eng Fract 
Mech 1985;21(4):767-779.  



25 

 

 
[61] Segreti M, Rusinek A, Klepaczko J. Experimental study on puncture of PMMA at low and 
high velocities, effect on the failure mode. Polymer Testing 2004;23(6):703-718.  
 
[62] Forquin P, Nasraoui M, Rusinek A, Siada L. Experimental study of the confined behaviour 
of PMMA under quasi-static and dynamic loadings. Int J Impact Eng 2012;40:46-57.  
 
[63] Chalal H, Abed-Meraim F. Hardening effects on strain localization predictions in porous 
ductile materials using the bifurcation approach. Mech Mater 2015; 91:152–166.  
 
[64] Nasraoui M, Forquin P, Siad L, Rusinek A. Influence of strain rate, temperature and adiabatic 
heating on the mechanical behaviour of poly-methyl-methacrylate: Experimental and modelling 
analyses. Mater Design 2012;37:500-509.  
 
[65] Matadi-Boumbimba R, Froustey C, Viot P, Gerard P. Low velocity impact response and 
damage of laminate composite glass fibre/epoxy based tri-block copolymer. Compos Part B:Eng 
2015;76:332–342.  
 
[66] Rodriguez-Martinez JA, Rodríguez-Millan M, Rusinek A, Arias A. A dislocation-based 
constitutive description for modeling the behavior of FCC metals within wide ranges of strain 
rate and temperature. Mech Mater 2011;43(12):901-912. 
  
[67] Rodriguez-Martinez JA, Pesci R, Rusinek A, Arias A, Zaera R, Pedroche D. Thermo-
mechanical behaviour of TRIP 1000 steel sheets subjected to low velocity perforation by conical 
projectiles at different temperatures. Int J Solids Struct 2010;47(9):1268-1284.  
 
[68] Torres JP, Frontini PM, Machado M, Major Z. Deformation and failure of semicrystalline 
polymers under dynamic tensile and biaxial impact loading. Int J Impact Eng 2016;98:52–61. 



Figures 

 

 

 
Fig. 1. (a) Real polyethylene-metal hip prosthetic. (b)-(c) Polyethylene acetabular cup removed from 
patients due to excessive material erosion. Materials provided by Dra. I. Gómez Arrayás (Hospital 
Ruber Internacional of Madrid). 
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Fig. 2. Rheological scheme of the proposed constitutive model. 

  



 

Fig. 3. Kinematics of the model showing the reference or initial configuration Ωo, the dilated 
configuration Ω̅, the plastic dilated relaxed configuration Ω̿, the viscous dilated relaxed configuration Ω̃, and the current or loaded configuration Ω. 
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(a) (b) 

Fig. 4. Experimental data [18] versus model predictions in terms of: (a) strain rate sensitivity; and (b) 
temperature sensitivity of UHMWPE for uniaxial compression tests. 
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Fig. 5. Experimental data [18] versus model predictions in terms of: (a) strain rate sensitivity; and (b) 
temperature sensitivity of HDPE for uniaxial compression tests. 
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(a) (b) 

Fig. 6. Stress-strain experimental curves of UHMWPE [18] versus model predictions for: (a) different 
strain rates; and (b) different temperatures. 
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Fig. 7. Stress-strain experimental curves of HDPE [18] versus model predictions for: (a) different strain 
rates; and (b) different temperatures. 

  



 

 

       (a)         (b) 
Fig. 8. Numerical model: (a) geometrical information; (b) boundary conditions applied. 

  



  
(a) (b) 

  
(c) (d) 

Fig. 9. Stress distribution at ε̇0 = 0.1 s−1 for: (a) UHMWPE at ε = 0.2 (b) UHMWPE at ε = 0.5 (c) 
HDPE at ε = 0.2 (d) HDPE at ε = 0.5. 

  



  
(a) (b) 

  
(c) (d) 

Fig. 10. Stress distribution at ε̇0 = 100 s−1 for: (a) UHMWPE at ε = 0.2 (b) UHMWPE at ε = 0.5 (c) 
HDPE at ε = 0.2 (d) HDPE at ε = 0.5. 
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Fig. 11. Temperature distribution along gauge length at strains of 0.2 and 0.5 in UHMWPE and HDPE 
specimens at: (a) strain rate of 0.1 s-1; and (b) strain rate of 100 s-1.  

 

 

 



Tables 

 

Table 1 
Material parameters for UHMWPE. 

Initial elastic 
properties Intermolecular resistance 𝐄𝐫𝐞𝐟 

(GPa) 

𝐄𝟏 
(MPa/K) 

ν �̇�𝟎  (s-1) C 𝛔𝐓𝟎 (MPa) m 𝛉𝐫𝐞𝐟 
(K) 

𝛉𝐦𝐞𝐥𝐭
(K) 

𝛉𝐦𝐢𝐧
(K) 𝛂 β 

0.541 -6.5 0.46 0.1 0.048 37.5 0.7 293 406 198 1.0 1.0 

Viscous resistance Network resistance 

CV (Pa) �̅�𝐕𝐋 𝛔𝐕𝐓 (MPa) CR (MPa) Cθ (MPa/K) �̅�𝐋 

12.5 5 0.05 23 -0.15 5 

General properties 

ρ (kg/m3) Cp (J/Kg K) 𝛂𝛉 (K-1) 

940 1900 124.5·10-6 

 

  



Table 2 
Material parameters for HDPE. 

Initial elastic 
properties Intermolecular resistance 𝐄𝐫𝐞𝐟 

(GPa) 

𝐄𝟏 
(MPa/K) 

ν �̇�𝟎  (s-1) C 𝛔𝐓𝟎 (MPa) m 𝛉𝐫𝐞𝐟 
(K) 

𝛉𝐦𝐞𝐥𝐭
(K) 

𝛉𝐦𝐢𝐧
(K) 𝛂 β 

0.782 -6.5 0.46 0.01 0.028 80 0.76 293 406 198 1.0 1.0 

Viscous resistance Network resistance 

CV (Pa) �̅�𝐕𝐋 𝛔𝐕𝐓 (Pa) CR (MPa) Cθ (MPa/K) �̅�𝐋 

(-) (-) (-) 12 -0.15 5 

General properties 

ρ (kg/m3) Cp (J/Kg K) 𝛂𝛉 (K-1) 

970 1900 93.6·10-6 

 

  



 

Appendix A. Nomenclature used in the formulation 

Nomenclature {Ωo, Ω̅, Ω̿, Ω̃, Ω} initial, dilated, plastic dilated relaxed, 
viscous dilated relaxed and current 
configurations 

�̿�𝐈𝐩 skew part of the plastic velocity gradient 
in Ω e̅ specific internal energy per unit volume 

in Ω̅ 
�̃�𝐕𝛎 skew part of the viscous velocity 

gradient in Ω̃ �̅� heat flux per unit volume in Ω̅ 𝛔 Cauchy stress tensor R̅ heat resource per unit volume in Ω̅ 𝛔𝐍 network Cauchy stress tensor η̅ specific entropy per unit volume in Ω̅ 𝛔𝐈 intermolecular Cauchy stress tensor C̅ heat capacity per unit volume in Ω̅ 𝛔𝐕 viscous Cauchy stress tensor {θ, θref, θmelt, θmin} current, reference, melting and lowest 
temperature considered 

�̅�𝐍 network second Piola-Kirchhoff stress 
tensor in Ω̅ 𝑓𝜃 temperature-dependent function {�̅�𝐈, �̿�𝐈} intermolecular second Piola-Kirchhoff 
stress tensor in Ω̅ and Ω̿ Ψ̅ Helmholtz free energy per unit volume in Ω̅ 

�̅�𝐕 viscous second Piola-Kirchhoff stress 
tensor in Ω̅ ∇̅x gradient with respect to the point x in Ω̅ �̅�𝐍 network Mandel stress tensor in Ω̅ 𝔗 Langevin function {�̅�𝐈, �̿�𝐈} intermolecular Mandel stress tensor in Ω̅ 
and Ω̿ 𝐈 Identity matrix �̅�𝐕 viscous Mandel stress tensor in Ω̅ JI determinant of the intermolecular 

deformation gradient 
λ̅ average total stretch ratio JN determinant of the network deformation 

gradient 
λ̅L locking stretch JV determinant of the viscous deformation 

gradient 
{I1I, J2I} stress invariants of the intermolecular 

Mandel stress tensor 𝐅 deformation gradient σ̿eqI Rhagava equivalent stress 𝐅𝛉 thermal deformation gradient gI plastic potential 𝐅𝐌 mechanical deformation gradient �̿�𝐈 gradient of the plastic potential 𝐅𝐍𝐞 network elastic deformation gradient γ̇̿Ip viscoplastic multiplier 𝐅𝐈𝐞 intermolecular elastic deformation 
gradient 

αθ thermal expansion coefficient 𝐅𝐈𝐩 intermolecular plastic deformation 
gradient 

{λ0, μ0} classical Lamé constants 𝐅𝐕𝐞 viscoelastic elastic deformation gradient E Young’s modulus 𝐅𝐕𝛎 viscoelastic viscous deformation gradient {Eref, E1} Young’s modulus at the reference 
temperature and a specified material 
parameter {𝐂𝐍𝐞 , 𝐁𝐍𝐞 } network elastic right and left Cauchy-

Green tensor 
{σT, σT0} yield stress in uniaxial tension and its 

value at reference temperature 𝐂𝐈𝐞 intermolecular elastic right Cauchy-
Green tensor 

α pressure sensitivity parameter {𝐂𝐕𝐞 , 𝐁𝐕𝐞} viscous elastic right Cauchy-Green tensor β volumetric plastic strain parameter 
l velocity gradient ε̇0  reference strain rate 𝐥𝐕𝐞  viscous elastic velocity spatial gradient C rate sensitivity parameter �̅�𝚹 thermal velocity gradient in Ω̅ m temperature sensitivity parameter �̃�𝐕𝛎  viscous velocity gradient in Ω̃ CR initial elastic modulus of the network 

backstress resistance �̿�𝐈𝐩 plastic velocity gradient in Ω̿ Cθ temperature-dependent material 
parameter controlling the elastic modulus 
of network 𝐝𝐍𝐞  symmetric part of the network elastic 

velocity gradient in Ω 
Cν initial elastic modulus of the viscous 

backstress resistance 𝐝𝐈𝐞 symmetric part of the intermolecular 
elastic velocity gradient in Ω 

λ̅V average viscous stretch ratio  



𝐝𝐕𝐞  symmetric part of the viscous elastic 
velocity gradient in Ω 

λ̅VL viscous locking stretch �̅�𝐩
 symmetric part of the plastic velocity 

gradient in Ω̅ 
�̃�𝐕 gradient of the viscoelastic flow �̅�𝛎

 symmetric part of the viscous velocity 
gradient in Ω̅ 

γ̇̃Vν  viscoelastic multiplier �̿�𝐈𝐩 symmetric part of the intermolecular 
plastic velocity gradient in Ω̿ 

τV effective stress driving the viscous flow �̃�𝐕𝛎  symmetric part of the intermolecular 
viscous velocity gradient in Ω̃ 

σVT  Material parameter of the viscous 
resistance �̅�𝚹 skew part of the thermal velocity gradient 

in Ω̅ 
  

 


