
A new constraint for mining sets in sequences

Boris Cule∗ Bart Goethals† Céline Robardet‡

Abstract

Discovering interesting patterns in event sequences is a pop-

ular task in the field of data mining. Most existing methods

try to do this based on some measure of cohesion to deter-

mine an occurrence of a pattern, and a frequency threshold

to determine if the pattern occurs often enough. We intro-

duce a new constraint based on a new interestingness mea-

sure combining the cohesion and the frequency of a pattern.

For a dataset consisting of a single sequence, the cohesion

is measured as the average length of the smallest intervals

containing the pattern for each occurrence of its events, and

the frequency is measured as the probability of observing

an event of that pattern. We present a similar constraint

for datasets consisting of multiple sequences. We present al-

gorithms to efficiently identify the thus defined interesting

patterns, given a dataset and a user-defined threshold. After

applying our method to both synthetic and real-life data, we

conclude that it indeed gives intuitive results in a number of

applications.

1 Introduction

Discovering interesting episodes [8] is a popular area in
temporal or sequential data mining, examples of which
are mining text or protein sequences. In such data,
the order in which the events appear is being analysed
and the user’s goal is to identify the regularities that
may appear in the dataset, consisting of one or more
sequences. The usual approach to episode discovery is
to look for episodes consisting of events that frequently
appear close to each other. Most of the current state-of-
the-art methods first use a window of fixed length to find
sufficiently cohesive episodes and then retrieve those
that occur in more windows (or sequences) than a given
minimum threshold [8]. The use of a window of fixed
length is a major limitation of such approaches as no
episodes longer than this window can ever be discovered.
A different method that increases the window length
proportionally to the size of the candidate set has
been proposed in order to remove this limitation [4].
Still, in this proposal, the window length remains fixed

∗University of Antwerp, Belgium
†University of Antwerp, Belgium
‡Université de Lyon, CNRS, INSA-Lyon, LIRIS, UMR5205,

F-69621, France

for a particular candidate when counting its frequency
in the sequence. Hence, when the episode occurs in
the sequence, but in a time frame larger than the
window size, then such occurrences will be disregarded.
The high frequency of a set of events appearing close
together gives no guarantee that a subset of that set
will not sometimes appear far away from the rest of the
set.

In this paper we propose a new constraint to select
interesting sets of events. We focus on parallel episodes
which are unordered sets of events, and these can
thus be considered as sets of items, better known as
itemsets. When looking at one sequence, we define the
interestingness of an itemset based on a combination
of how often the items in the candidate set appear in
the sequence and how close to each other they appear
on average. Later on, we present a similar definition
for datasets consisting of many sequences. Hence, this
approach does not use a fixed window length but instead
also takes the occurrences of the items far from the rest
of the set into account. It is precisely such occurrences
that might sufficiently lower the cohesion of an itemset
to render it uninteresting.

As we will show, the introduced interestingness
measure has useful properties that allow us to develop
an efficient algorithm to search for interesting itemsets,
depending on a user-defined threshold. We present a
divide-and-conquer method and prune the search space
by computing an upper bound on the interestingness
measure for potential candidate itemsets. We apply our
approach to various datasets consisting of both a single
sequence and of multiple sequences. We use synthetic
and real-life datasets to test the intuitiveness of our
method and the efficiency of our algorithms.

The paper is organized as follows. In Section 2, we
present the most relevant related works and illustrate
their weaknesses on a couple of toy examples. Sec-
tion 3 gives the full description of our interestingness
constraint for datasets consisting of a single sequence
and, using the same examples, demonstrates its rel-
evance and intuitiveness. Section 4 presents a short
sketch of our algorithm including a pruning method.
Section 5 demonstrates the effectiveness of our algo-
rithm applied on synthetic and real-life datasets. In Sec-
tion 6 we extend our definitions to multiple sequences,

317 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

give an algorithm for this new setting, and present the
results of further experiments. Finally, in Section 7 we
present our conclusions and highlight some possibilities
for future work.

2 Related works

Looking for frequent episodes in an event sequence was
first proposed by Mannila et al. Each event is associated
with a time stamp. Their Winepi algorithm [7, 8] finds
all episodes that occur in a sufficient number of windows
of fixed length. This window length is chosen by the
user indicating how close to each other the events of
an interesting episode should be. The frequency of an
episode is defined as the number of windows in which the
episode occurs divided by the total number of possible
windows of chosen length.

1 2 4 5 63 7 98 10 11 12

a b dc g dc e ife h

Time Stamps

Sequence

Figure 1: An illustrative example.

As was pointed out by Garriga [4], Winepi suffers
from bias against longer episodes. Figure 1 shows a
sequence, in which episode cde appears twice, as does its
subepisode cd. Clearly, to a user, a longer episode would
be more interesting than a shorter one, but applying
Winepi (with a window length greater than 1) to this
sequence will result in cd having a larger frequency than
cde. For example, using a window of length 3 gives:

fr(cd) =
4

14

fr(cde) =
2

14

This is clearly unintuitive. Garriga [4] proposes to
solve this problem by increasing the window length pro-
portionally to the episode length, using a parameter tus

equal to the maximal gap allowed between two events
in an episode. Therefore, using tus = 2 (equivalent to
using a window of length 3 for an episode made of two
event types) would result in a window of length 5 for
episodes made of three event types. Frequencies of cd

and cde are in this context

fr(cd) =
4

14

fr(cde) =
8

16

For episodes of equal length, Winepi and Garriga
methods give equal results when the chosen tus results

eh b ba caf i c k d l c djd m

16 17 19 2013 14 15 18

g

2 4 5 63 7 98 10 11 12

c

1Time
Stamps

Sequence

Figure 2: A second example

in the window length chosen for Winepi. However,
these results are also not always intuitive. The example
in Figure 2 illustrates that frequency alone is not
sufficient to estimate an episode’s interestingness. For
example, event types c and d appear relatively close to
each other more often than event types a and b, and yet
the episode ab seems to be more interesting than cd since
its event types always occur close to each other. At the
same time, event types e and f also always occur close
to each other but their low frequency makes episode ef

less interesting than cd.
The above mentioned methods of discovering inter-

esting episodes do not take this into account. If we apply
the Winepi method on the example of Figure 2 with a
window of length 3, we obtain the following frequencies:

fr(cd) =
5

22

fr(ab) =
4

22

fr(ef) =
2

22

The ranking will be the same for all windows of length
greater than 3. The same method with a window of
length 2 would give:

fr(cd) = 0

fr(ab) =
3

21

fr(ef) =
1

21

We can observe that no chosen window length gives the
desired result. The method of Garriga [4] would give the
same results depending on the used parameter. This is
not a surprise, since both Winepi and Garriga methods
are trying to find how likely we are to encounter an
episode, while it may be more interesting to find how
likely we are to encounter an event from an episode, and,
once we encountered it, how likely we are to encounter
the other events of the episode nearby.

Hence, both Winepi and Garriga ignore the first c

in the example in Figure 2, while precisely that c plays
a pivotal role in our method, indicating that, once we

318 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

encountered a c, we are not always likely to find a d

nearby.
An often mentioned method when looking for in-

teresting episodes in event sequences is Minepi [6, 8].
In this method, a minimal occurrence of an episode is
defined as a window in which the episode occurs such
that the episode does not occur in any of its proper sub-
windows. The support of an episode is then defined as
the number of such windows.

Two main disadvantages of Minepi are the use of
support instead of a frequency ratio making it difficult
for the user to make the correct choice, and also the
fact that the method completely disregards the distance
between the items in an episode.

Looking for frequent patterns in multiple sequences
was first proposed by Wang et al. in [9] and later
extended by Agrawal and Srikant in [1]. However, the
problem definitions in these approaches differ greatly
from that presented here, and a meaningful comparison
cannot be made.

3 Problem Setting

As mentioned in the introduction, parallel episodes can
also be looked at as itemsets. We therefore consider an
event to be a couple consisting of an item and a time
stamp (i, t) where i ∈ I, the set of all possible items,
and t ∈ N. For the purposes of this paper, we consider
all consecutive events to be equidistant and we assume
that two events can never occur at the same time. In
our notation, therefore, without any loss of generality,
we consider the set of time stamps of an event sequence
to be an uninterrupted sequence of natural numbers.
We denote a sequence of such events by S.

3.1 Definition of the constraint In this section,
we introduce our interestingness measure that makes it
possible to find itemsets that appear frequently in the
sequence and consist of items that, on average, appear
close to each other. The interestingness of an itemset
will therefore depend on two factors: its coverage and
its cohesion. Coverage measures how often an item
of the itemset appears in the sequence, while cohesion
measures how close together the items making up the
itemset appear on average.

For a given itemset X , we denote the set of all
occurrences of its items as

N(X) = {t | (i, t) ∈ S and i ∈ X}

The coverage of X can now be defined as:

P (X) =
|N(X)|

|S|

In order to calculate the cohesion, we must first

evaluate the length of the shortest interval containing
the itemset X for each position of N(X):

W (X, t) = min{t2 − t1 + 1 | t1 ≤ t ≤ t2

and ∀i ∈ X, ∃(i, t′) ∈ S, t1 ≤ t′ ≤ t2}

We can now compute the average length of such shortest
intervals:

W (X) =

∑
t∈N(X) W (X, t)

|N(X)|

It is clear that W (X) is greater than or equal to the
number of items in X . Furthermore, for a fully cohesive
itemset, where no other events ever occur between the
items making the itemset, W (X) = |X |. To normalize,
we want the cohesion of a fully cohesive itemset to be
equal to 1, and the cohesion of other itemsets to be
lower. Therefore, we define cohesion of X as

C(X) =
|X |

W (X)

We can now define the interestingness of an itemset
X as

I(X) = C(X)P (X) =
|N(X)| × |N(X)| × |X |∑

t∈N(X) W (X, t) × |S|

Note that both C(X) and P (X) are between 0 and
1, and the same is therefore true for I(X). This makes
it possible to apply the same interestingness threshold
to any kind of dataset. Given a user defined threshold
min int, an itemset X is considered interesting if

I(X) ≥ min int

In principle, the user can enter a coverage threshold
(min cov) and/or a cohesion threshold (min coh) as
separate parameters. In such a case, an interesting
itemset must satisfy all of the following:

P (X) ≥ min cov

C(X) ≥ min coh

I(X) ≥ min int

3.2 Computation example We will now apply our
interestingness measure on the sequences given in Fig-
ures 1 and 2.

In the example of Figure 1, cd and cde are both
fully cohesive, but cde clearly covers more of the se-
quence than cd, and will therefore be considered more
interesting. According to our definition, P (cd) = 4

12

319 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

and P (cde) = 6
12 . As cd and cde are both fully cohe-

sive, C(cd) = 1 and C(cde) = 1. Therefore, I(cd) = 4
12

and I(cde) = 6
12 .

In general, an itemset will always have a lower
coverage than any of its supersets, and, provided that
they are equally cohesive, will always have a lower
interestingness than the superset.

On the other hand, we should note that the cohesion
of an itemset alone is also not suitable for estimating
its interestingness. In the example of Figure 2, ef is
just as cohesive as ab, but its frequency is too small to
be considered more interesting than cd. This is why
our interestingness measure consists of combining both
coverage and cohesion.

We shall now illustrate how our method computes
the interestingness of itemset cd. The positions of the
items c and d are in this case

N(cd) = {1, 10, 12, 14, 16, 18, 20}

which leads to the following coverage:

P (cd) =
7

20

Then we compute the minimal interval around each
position in N(cd) containing both c and d:

W (cd, 1) = length([1, 12]) + 1 = 12

W (cd, 10) = length([10, 12]) + 1 = 3

W (cd, 12) = length([10, 12]) + 1 = 3

W (cd, 14) = length([12, 14]) + 1 = 3

W (cd, 16) = length([14, 16]) + 1 = 3

W (cd, 18) = length([16, 18]) + 1 = 3

W (cd, 20) = length([18, 20]) + 1 = 3

The average length of these intervals is

W (cd) =
30

7

The cohesion is thus equal to

C(cd) =
2 × 7

30
=

7

15

Finally, the interestingness is

I(cd) =
7

15
×

7

20
=

49

300

The summary of the computation of the interesting-
ness for the 3 itemsets previously considered in Section 2
is given in Table 1.

Comparing these results with those obtained in
Section 2, it can be observed that our method gives
more intuitive results than Winepi and Garriga.

|N(X)| W (X) C(X) P (X) I(X)

ab 4 2 1 0.2 0.2
cd 7 4.29 0.47 0.35 0.16
ef 2 2 1 0.1 0.1

Table 1: Computation of interestingness for example of
Figure 2

4 Algorithm sketch

To compute all the itemsets that are interesting, our
algorithm generates candidates and uses a pruning
technique based on an upper-bound of the constraint
to reduce, as soon as possible, the search space. These
two main steps are detailed below.

4.1 Candidate generation We generate candidates
by applying the “divide-and-conquer” algorithm pub-
lished in [2, 5, 3]. In a nutshell, the algorithm recur-
sively enumerates, in depth-first manner, all itemsets
containing an element, say a, and then all itemsets not
containing a. During the enumeration process, a can-
didate 〈X, Y 〉 is composed of two sets of items: one,
denoted X , that contains the items contained in the
candidate and its descendants (the ones obtained by re-
cursive calls) and another one, denoted Y , that contains
the items that still have to be enumerated.

Algorithm 1 DFS (〈X, Y 〉)

if UBI(〈X, Y 〉) = false then

if Y = ∅ then

output X

else

Choose a in Y

DFS(〈X ∪ {a}, Y \ {a}〉)
DFS(〈X, Y \ {a}〉)

end if

end if

The pseudo code of the DFS algorithm we have
implemented is given in Algorithm 1. At the first line,
the pruning function presented below in Subsection 4.2
is called to check if the recursion process can be stopped.
If the recursion is not stopped, the second test evaluates
if there are still elements to be enumerated. If not, the
candidate is an interesting episode that is thus output.
Otherwise, an element a is picked up from Y and the
function is recursively called twice: once with a in X ,
and once without. In both calls, a is removed from Y .
For the first call, X is empty and Y is equal to the set
of all items appearing in the sequence.

For efficiency, we sort the items with respect to

320 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

their frequency in descending order. The logic behind
this decision is that to prune a candidate 〈X, Y 〉 most
efficiently, we would need to encounter the set X ′ ⊆
X ∪ Y such that

∑
t∈N(X′) W (X ′, t) is sufficiently high

to trigger the pruning. An heuristic to increase the
chance of encountering it early is to generate candidates
using items sorted with respect to their frequency
in descending order, because if the frequency of an
itemset is higher than that of another itemset then its
corresponding sum of interval lengths is also likely to be
higher.

This algorithm satisfies the following useful proper-
ties:

1. The time needed to generate an interesting itemset
is, in the worst case, bounded by O(T × |I|2),
where I is the set of all possible items and T is the
time complexity of computing the pruning function
UBI(〈X, Y 〉) as explained in Section 4.2. This
function can be computed in O(|S|2).

2. It supports pruning of monotonic and anti-
monotonic functions, that is to say that additional
monotonic constraints can be easily handled.

In addition to these advantageous features, the algo-
rithm is easy to understand and implement.

4.2 Pruning Recall that an interesting itemset must
satisfy the following:

I(X) =
|N(X)| × |N(X)| × |X |∑

t∈N(X) W (X, t) × |S|
≥ min int

Starting from a given candidate 〈X, Y 〉, it is clear
that for each Z such that X ⊆ Z ⊆ X ∪Y the following
inequalities stand:

|N(Z)| ≤ |N(X ∪ Y)|

|Z| ≤ |X ∪ Y |
∑

t∈N(X)

W (X, t) ≤
∑

t∈N(Z)

W (Z, t)

It therefore follows that

I(Z) ≤
|N(X ∪ Y)| × |N(X ∪ Y)| × |X ∪ Y |∑

t∈N(X) W (X, t) × |S|

Because all such Z are generated by recursive calls of
DFS starting from candidate < X, Y >, we can safely
prune all itemsets Z that satisfy X ⊆ Z ⊆ X ∪ Y if

UBI(〈X, Y 〉) ≡
|N(X ∪ Y)|2 × |X ∪ Y |∑

t∈N(X) W (X, t) × |S|
< min int

by suppressing further recursive calls.

If minimal cohesion is given as a parameter
(min coh), we can achieve further pruning. Using the
above inequalities, we find that

C(Z) ≤
|N(X ∪ Y)| × |X ∪ Y |∑

t∈N(X) W (X, t)

We can therefore prune Z if

|N(X ∪ Y)| × |X ∪ Y |∑
t∈N(X) W (X, t)

< min coh

The crucial step in evaluating UBI(〈X, Y 〉) is the
computation of the intervals W (X, t) for the relevant
time stamps t, i.e. those time stamps at which an item
of X occurred. In our implementation, we keep the set
of intervals associated with X in a list. When we have
generated a candidate 〈X ∪ {a}, Y \ {a}〉 from 〈X, Y 〉,
we start its evaluation by updating, if necessary, the
set of intervals corresponding to X , i.e. {W (X, t) | t ∈
N(X)}. In this step, the intervals that do not contain
an occurrence of a are removed from the list and new
minimal intervals for the corresponding time stamps are
computed.

To find the minimal interval around position t

containing all elements of X ∪ {a}, we start by looking
for the nearest occurrences of elements of X both left
and right of position t. We then start reading from
the side on which the furthest element is closest to t

and continue by removing one element at a time and
adding the same element from the other side. This
process can stop when the interval on the other side
has grown sufficiently to make it impossible to improve
on the minimum we have found so far. When we have
found this minimal interval, we can add it to the list.

We then proceed by generating the intervals corre-
sponding to each occurrence of a in the event sequence.
These intervals are generated in exactly the same way
as the new intervals in the previous step.

As many intervals occur many times, we store the
list of distinct intervals together with a list of positions
each one applies to.

In the worst case, the number of minimal intervals
that need to be found can be equal to the number of
items in the sequence, |S|. To find an interval, we might
need to read the whole sequence both to the left and
to the right of the item. Therefore, the time needed
to evaluate the pruning function is O(|S|2). It is worth
noting that this worst case can actually materialise only
if we are evaluating the itemset consisting of all items
that appear in the sequence, and even then only if items
appearing at each end of the sequence do not appear
anywhere else.

321 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

5 Experiments

In this section, we present the results of our experiments
performed on various synthetic and real-life datasets,
and analyse their implications.

5.1 Synthetic datasets Fully random datasets
would not be suitable for our purposes because all item-
sets of equal length would be likely to have similar inter-
estingness values. A more suitable dataset would be one
generated using a Markov chain model, which enables
us to increase the likelihood of certain items appearing
close together and thus forming interesting itemsets.

In our experiments, we use a memoryless model,
also called a simple random walk, in which the next
item depends only on its immediate predecessor. We
can therefore easily describe such a model using a tran-
sition matrix. The transition matrix used to generate
the dataset is given in Table 2. Our goal is to generate
a sequence in which abc would be an interesting pat-
tern hidden among occurrences of several other items
denoted x in the table. When a transition leads to an
occurrence of x, a random item is picked from a group of
25 items, not including a, b or c. Doing this ensures that
none of these 25 items will form interesting itemsets.

a b c x

a 0.2 0.35 0.35 0.1
b 0.35 0.2 0.35 0.1
c 0.35 0.35 0.2 0.1
x 0.05 0.05 0.05 0.85

Table 2: Transition matrix defining a Markov model

Using this model, we generated a sequence of 2000
events. We then ran our algorithm varying the inter-
estingness threshold min int from 0.9 down to 0.2, 0.05
at a time. In all experiments no thresholds were set
for coverage and cohesion separately. The results of our
experiments can be seen in Figures 3(a) and 3(b).

Figure 3(a) shows that as long as there are few
interesting itemsets to be found, our pruning method
works very efficiently. The most interesting itemset
abc is found using a relatively high interestingness
threshold of 0.45. No further interesting itemsets can be
found without lowering the threshold below 0.3, which
confirms the intuitiveness of our method. With the
interestingness level of 0.25, itemsets ab, ac and bc are
also discovered as interesting. Because of the uniform
distribution of the remaining 25 items, the number
of considered candidates grows significantly once the
threshold is lowered further.

We can observe in Figure 3(b) that the execution

time grows proportionally with the number of generated
candidates indicating that the most interesting itemsets
can be discovered in a reasonable amount of time. To
determine the most appropriate interestingness thresh-
old value for a given dataset, an inexperienced user can
start with a high value and decrease it until the first re-
sults come through. Running the algorithm with a high
interestingness threshold takes only few seconds.

 0

 60000

 120000

 180000

 240000

 300000

 360000

 420000

 480000

 540000

 600000

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

N
um

be
r

of
 c

an
di

da
te

s

N
um

be
r

of
 in

te
re

st
in

g
ite

m
se

ts

Interestingness threshold

Nb candidates
Nb Interesting Itemsets

(a) number of candidates and found itemsets

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E
xe

cu
tio

n
tim

e
(s

)

Interestingness threshold

Time

(b) execution time

Figure 3: (a) Number of generated candidates and
interesting itemsets for the Markov chain generated
data, with varying min int. (b) Execution time in
seconds for the Markov chain generated data, with
varying min int.

Analysing the generated dataset, we observed that
the coverage of abc was around 0.6. Its interestingness
was around 0.46, which means its cohesion was around
0.77. In order to show that the high interestingness of
abc was not only due to its coverage, we investigate what
is obtained in a randomly ordered sequence in which

322 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

items have the same frequency as in the Markov Chain
dataset. We generated such a sequence of 2000 events
made of 28 items.

As we can see in Figure 4(a), we have to lower
the interestingness threshold much further in order to
get the first results. Itemset abc is found to have
interestingness of around 0.3 indicating a cohesion of
0.5.

Figure 4(b) shows that, once again, the execution
time is fully proportional with number of generated
candidates.

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 0

 2000

 4000

 6000

 8000

 10000

N
um

be
r

of
 c

an
di

da
te

s

N
um

be
r

of
 in

te
re

st
in

g
ite

m
se

ts

Interestingness threshold

Nb candidates
Nb Interesting Itemsets

(a) number of candidates and found itemsets

 0

 10000

 20000

 30000

 40000

 50000

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E
xe

cu
tio

n
tim

e
(s

)

Interestingness threshold

Time

(b) execution time

Figure 4: (a) Number of generated candidates and
interesting itemsets for the Random dataset, with
varying min int. (b) Execution time in seconds for the
Random dataset, with varying min int.

To test how much the execution time depends on
the size of the sequence, we generated several Markov
chain datasets of different sizes, varying between 1000
and 25000. For each size, we generated 10 datasets and

applied our algorithm with min int = 0.3, because it
is around this threshold that the first results usually
appeared.

Figure 5 shows the obtained results. Each vertical
line corresponds to one sequence length showing the
mean execution time of the 10 algorithm runs and
their standard deviation. It can be observed that the
execution time depends much more on the structure
of the dataset than on its size, even for such similarly
structured datasets (all the datasets contained exactly
the same number of different items that were distributed
according to the same transition matrix).

 0

 200

 400

 600

 800

 1000

 1200

 0 5000 10000 15000 20000 25000 30000

E
xe

cu
tio

n
tim

e
(s

)

Sequence size

Time

Figure 5: Execution time in seconds for the Markov
chain generated data, when min int = 0.3 and the
sequence length is varying.

5.2 Real-life datasets The first real-life dataset we
used is one obtained from the amino-acid sequence from
human alcohol dehydrogenase [10]. This enzyme has
been heavily researched and its genomic sequence is
widely available and therefore reliable1. The sequence
consists of 20 different amino-acids making a chain of
375.

In Figure 6(a), we can see that we get some results
with an interestingness value below 0.4, but no itemset
really sticks out, suggesting a uniform distribution of
items in the sequence. It turns out that the most
interesting itemsets are quite large and can be found
in a reasonable amount of time. These results were
not surprising, as biologists confirmed that items were
distributed in such a way. To double-check, we once
again created a synthetic dataset, 375 items long, where
items were distributed randomly, using their frequency

1http://www.expasy.org/cgi-bin/sprot-ft-
details.pl?P07327@SEQUENCE@2@375

323 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

in the DNA dataset to determine their probability of
occurrence. Figure 6(b) shows that the results obtained
on this dataset are very similar to those in Figure 6(a).

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 1

 100

 10000

T
im

e
(s

)

N
um

be
r

of
 in

te
re

st
in

g
ite

m
se

ts
 (

lo
g

sc
al

e)

Interestingness threshold

Time
Nb Interesting Itemsets

(a) DNA dataset

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 1

 100

 10000

T
im

e
(s

)

N
um

be
r

of
 in

te
re

st
in

g
ite

m
se

ts
 (

lo
g

sc
al

e)

Interestingness threshold

Time
Nb Interesting Itemsets

(b) random DNA-like dataset

Figure 6: (a) Execution time in seconds and number
of extracted itemsets (log-scale) for the DNA dataset,
with varying min int. (b) The same for the random
DNA-like dataset.

Our second dataset consisted of music notes, col-
lected from one track of a midi-file. We used the notes
of the song Abide With Me2, having first converted the
midi-file into a text file, and then pruned all other el-
ements (pitch, channel, velocity, etc.3) from the file.
This left us with a sequence of 400 notes, made of 18
distinct notes.

Figure 7 shows that no interesting itemsets were
found using high interesting thresholds, but what was

2http://www.tc.umn.edu/∼sorem002/hymn midi.html
3http://www.fourmilab.ch/webtools/midicsv/

 0

 100

 200

 300

 400

 500

 600

 0 0.05 0.1 0.15 0.2 0.25 0.3

 1

 500

 250000

T
im

e
(s

)

N
um

be
r

of
 in

te
re

st
in

g
ite

m
se

ts
 (

lo
g

sc
al

e)

Interestingness threshold

Time
Nb Interesting Itemsets

Figure 7: Execution time in seconds and number of
interesting itemsets (log-scale) for the Music dataset,
with varying min int.

encouraging was the fact that the execution time was
minimal. We found the first three interesting itemsets
at the level of 0.2: one consisting of four notes, one
of five, and the third was a singleton, which was also
included in the other two sets. This indicated that this
note appeared most often in the sequence, and that the
other four notes always appeared relatively close to it
(certainly closer than the other 13 notes).

A larger number of itemsets was found to be in-
teresting as we lowered the threshold further, growing
consistently even for small decreases in the threshold.

6 Multiple Sequences

Another setting in which discovering interesting pat-
terns can be applied is that of multiple sequences. Here,
the data again consists of items, this time coming in
many separate sequences. The frequency of an occur-
rence of a pattern would now be the number of different
sequences in which the pattern occurs, regardless of how
many times the pattern occurs in any single sequence.
In other words, when looking for the frequency of a pat-
tern alone, we can stop looking at a sequence as soon as
we have encountered the first occurrence of the pattern.

To determine the interestingness of a pattern, how-
ever, it is not enough to know that the items making
the pattern occur in a given sequence. We would also
like to know how close they appear to each other. Once
again, a possible method to do this would be to define a
fixed window length as a measure of how close to each
other the items need to occur before they can count as
an occurrence of the pattern. We could then slide this
window over each sequence and find whether the pattern

324 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

appears in it or not. By then counting the sequences in
which the pattern occurs within such a window, we can
say that a pattern is interesting if the number of such
sequences is high enough. In other words, a pattern is
interesting if its items occur close enough to each other
in a high enough number of sequences.

Once again, we would like to do more than that. We
would like to give a guarantee not only that the items
making up a pattern will appear close to each other in
a high number of sequences, but also that if they do all
appear in a sequence, then they will appear close to each
other. To do this, we will once again define interesting
patterns in terms of both frequency and cohesion.

6.1 Definition of the constraint Formally, a single
sequence Sj is still defined as in Section 3, and we now
denote the set of all sequences by S. We can now
redefine coverage, cohesion and interestingness given
this new problem setting. This time, coverage will
measure in how many sequences the itemset appears,
while cohesion will measure how close to each other the
items making up the itemset appear on average in their
minimal occurrences for a given sequence.

For a given itemset X , we denote the set of all
sequences in which all items of X can be found as

N(X) = {j | ∀i ∈ X, ∃(i, t) ∈ Sj}

The coverage of X can now be defined as:

P (X) =
|N(X)|

|S|

In order to calculate the cohesion, we must first
evaluate the length of the shortest interval containing
the itemset X for each sequence in N(X):

W (X, j) = min{t2 − t1 + 1 | t1 ≤ t2

and ∀i ∈ X, ∃(i, t) ∈ Sj , t1 ≤ t ≤ t2}

We can now compute the average length of such shortest
intervals:

W (X) =

∑
j∈N(X) W (X, j)

|N(X)|

Once again, it is clear that W (X) is greater than or
equal to the number of items in X . Furthermore, for a
fully cohesive itemset, W (X) = |X |. Therefore, we can
again define cohesion of X as

C(X) =
|X |

W (X)

We can now define the interestingness of an itemset
X as

I(X) = C(X)P (X) =
|N(X)| × |N(X)| × |X |∑

j∈N(X) W (X, j) × |S|

Given a user defined threshold min int, an itemset
X is considered interesting if

I(X) ≥ min int

Again, minimal coverage and minimal cohesion can
be used as separate thresholds.

6.2 Computation example To illustrate our inter-
estingness measure, we will now apply it on the se-
quences given in Figures 1 and 2, this time looked at
as two sequences in the same set of sequences.

Once again, we start by looking at itemsets ab, cd

and ef . Items a and b can be found next to each other
in both sequences, therefore P (ab) = 1, C(ab) = 1,
and, as a result, I(ab) = 1. Exactly the same is true
for ef , as this time the number of occurrences in any
given sequence is of no importance. c and d, meanwhile,
appear next to each other in the first sequence, but the
minimal interval containing both c and d in the second
sequence, W (cd, 2), is of length 3. Therefore,P (cd) = 1,
W (cd) = 2.5, C(cd) = 0.8, and I(cd) = 0.8.

In other words, ab and ef are in this context equally
interesting, while cd is slightly less interesting, as there
exists a sequence in which both c and d appear, but
never next to each other.

Let us now consider itemset eg. This itemset
appears in both sequences, so P (eg) = 1. Further, we
find that W (eg, 1) = 3, W (eg, 2) = 3, and therefore
W (eg) = 3. As a result, C(eg) = 0.67, and I(eg) =
0.67.

It may be worth noting that a sliding window
method would either conclude that ab and eg are equally
interesting (if the window size was greater than 2) or
that eg is not interesting at all (if the window size was
2).

Finally, let’s take a look at two more itemsets, dh

and ck. Items d and h appear in both sequences, but
never near each other, while items c and k appear to-
gether only in one sequence, but then next to each other.
Intuitively, itemset ck seems to be more interesting. The
results are given in Table 3.

P (X) W (X, 1) W (X, 2) W (X) C(X) I(X)

dh 1 8 11 9.5 0.21 0.21
ck 0.5 - 2 2 1 0.5

Table 3: Computation of interestingness for itemsets dh

and ck

Once again, all these results confirm the intuitive-
ness of our method.

325 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

6.3 Algorithm Sketch We use the same divide-and-
conquer algorithm presented in Section 4 to generate
candidates, but now the pruning technique is different.
Starting from a given candidate 〈X, Y 〉, for each Z such
that X ⊆ Z ⊆ X ∪ Y the following inequalities stand:

|N(Z)| ≤ |N(X)|

|Z| ≤ |X ∪ Y |
∑

j∈N(X)

W (X, j) ≤
∑

j∈N(Z)

W (Z, j)

It therefore follows that

I(Z) ≤
|N(X)| × |N(X)| × |X ∪ Y |∑

j∈N(X) W (X, j) × |S|

Because all such Z are generated by recursive calls of
DFS starting from candidate < X, Y >, we can safely
prune all itemsets Z that satisfy X ⊆ Z ⊆ X ∪ Y if

UBI(〈X, Y 〉) ≡
|N(X)|2 × |X ∪ Y |∑
j∈N(X) W (X, j) × |S|

< min int

by suppressing further recursive calls.
Note that the first inequality is different from its

counterpart in Section 4, as an occurrence of an itemset
X in a sequence directly implies an occurrence of all
its subsets in that same sequence, and each sequence
appears only once in N(X) regardless of how many
times items making up the itemset appear in it. The
coverage of a subset can thus never be smaller than
the coverage of the set itself. As a result, if minimal
coverage is given as a parameter (min cov), we can
achieve further pruning using

P (Z) ≤ P (X)

meaning we can prune Z if

P (X) < min cov

If minimal cohesion is given as a parameter
(min coh), we can achieve even more pruning. Using
the above inequalities, we find that

C(Z) ≤
|N(X)| × |X ∪ Y |∑

t∈N(X) W (X, t)

We can therefore prune Z if

|N(X)| × |X ∪ Y |∑
t∈N(X) W (X, t)

< min coh

6.4 Experiments We ran our algorithm on a dataset
consisting of 4343 protein sequences of the E. Coli bac-
teria, containing 22 different items. The most inter-
esting itemsets turned out to be singletons, which was
to be expected, since singletons always have cohesion
equal to 1, and the coverage of a singleton can never be
smaller than the coverage of any of its supersets. After
the singletons, the most interesting itemsets were sets
of two items consisting of the most interesting single-
tons, which was not surprising, as the items were all
well spread within the sequences, increasing the likeli-
hood that two items would appear close to each other
in those sequences in which they both appeared at least
once.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
um

be
r

of
 it

em
se

ts
 (

lo
g

sc
al

e)

Interestingness threshold

Nb candidate itemsets
Nb interesting itemsets

(a) number of candidates and found itemsets

 0.1

 1

 10

 100

 1000

 10000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

 (
lo

g
sc

al
e)

Interestingness threshold

Time

(b) execution time

Figure 8: (a) Number of generated candidates and
interesting itemsets of size 4 or higher (log-scale) for
the E. Coli dataset with varying min int. (b) Execution
time in seconds (log-scale) for the E. Coli dataset, with
varying min int.

326 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

To obtain more meaningful results, we decided to
look only for itemsets of size 4 or higher. As we can
see in Figure 8(a), the number of discovered interesting
itemsets still rises sharply as the interestingness thresh-
old declines. The most interesting itemsets were still
combinations of the most interesting singletons. Fig-
ure 8(b) shows that the execution time for this dataset
was proportional to the number of generated candidate
itemsets.

Our second dataset consisted of 56 abstracts of
papers accepted at the 2008 ECML PKDD conference.
We preprocessed these abstracts to obtain a stemmed
version and remove all the stop words (such as articles
or prepositions) using the Porter stemming algorithm4.
This resulted in 56 sequences containing 1111 different
items (stems). To further speed up our algorithm, we
substituted all stems that appeared fewer than 6 times
with a dummy. This left us with 56 sequences containing
200 different items. When running the algorithm, we
disregarded any candidates containing the dummy.

The results were very satisfactory. As expected, the
stems that appeared in most abstracts had the highest
interestingness value, followed by some sets of two or
more stems. The stems that appeared in most abstracts
were use, show and method, yet the highest ranked
set of two stems was {real, world} (see Table 4 and
Table 5 for details and further examples). The stem
use not only appears in more abstracts than world, but
it appears more often in the same abstract with real

than world does, and yet the set {real, world} was
recognised as much more interesting than the set {use,
real}. In fact, the set {use, real} is so uninteresting
that we did not find it even when we lowered the
interestingness threshold to 0.03. This shows that our
algorithm recognises that when both real and world

appear in an abstract, they tend to appear near each
other, which cannot be said for use and real.

X |N(X)| P (X) C(X) I(X)
use 31 0.55 1 0.55

show 31 0.55 1 0.55
method 31 0.55 1 0.55

algorithm 30 0.54 1 0.54
paper 30 0.54 1 0.54
propos 30 0.54 1 0.54
base 30 0.54 1 0.54
data 29 0.52 1 0.52

Table 4: The most interesting stems identified in the
abstracts of papers accepted at the 2008 ECML PKDD
conference

4http://tartarus.org/∼martin/PorterStemmer/index.html

X |N(X)| P (X) C(X) I(X)
{real, world} 9 0.16 1 0.16

{dimension, reduct} 6 0.11 1 0.11
{semi, supervis} 6 0.11 1 0.11

{state, art} 6 0.11 1 0.11
{experiment, result} 6 0.11 1 0.11

{learn, task} 7 0.13 0.78 0.1
{dimension, low} 5 0.09 1 0.09

Table 5: The most interesting pairs of stems identified
in the abstracts of papers accepted at the 2008 ECML
PKDD conference

X |N(X)| P (X) C(X) I(X)
{algorithm, show} 17 0.3 0.19 0.06
{use, algorithm} 16 0.29 0.14 0.04
{propos, method} 20 0.36 0.11 0.04
{use, method} 18 0.32 0.12 0.04
{method, base} 15 0.27 0.13 0.04

{algorithm, data} 16 0.29 0.12 0.03

Table 6: Some examples of uninteresting pairs of stems
in the abstracts of papers accepted at the 2008 ECML
PKDD conference

Table 5 also shows that while stems reduct and low

do not appear very frequently, when they do appear they
appear right next to stem dimension, making the sets
{dimension, reduct} and {dimension, low} interesting.
Table 6, meanwhile, shows that our algorithm recognises
that while some stems frequently appear in the same
abstract, they are not interesting unless they regularly
appear close to each other. We can safely conclude that
our algorithm correctly identifies interesting itemsets
and does not output any spurious results.

7 Conclusion and future work

In this paper we presented a new constraint to identify
interesting itemsets in one or many event sequences.
For one sequence, such itemsets consist of frequent
items that on average appear close to each other.
Unlike previous approaches that only look for items
that appear close to each other frequently enough, our
constraint gives a guarantee that when an item from an
interesting itemset is encountered, the remainder of the
set will be found nearby.

We also provide a sound and complete algorithm to
extract itemsets having an interestingness value above
a user given threshold. This algorithm takes advantage
of certain properties of the defined interestingness that
allow us to efficiently prune large numbers of candidates.

327 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

We ran experiments on both synthetic and real-
life datasets and the results proved the intuitiveness
of our measure. The synthetically generated Markov
chain datasets confirmed that our algorithm detects the
expected interesting itemsets and, unless the threshold
is set too low, does not output any spurious itemsets.
The random dataset confirmed that there is no spurious
output. The experiments made on real-life datasets
provided further proof of the efficiency of our pruning
technique.

We extended our definitions to a situation where
the dataset consists of multiple sequences. Here, an
itemset is deemed interesting if its items appear in many
sequences close to each other. We developed another
algorithm that efficiently looks for such sets in multiple
sequences. Experiments demonstrated the method’s
efficiency and intuitiveness.

In future work, we plan to examine the possibilities
of using separate coverage and cohesion thresholds
differently, possibly in combination with a minimal
set size threshold, in an attempt to improve both the
definition of interestingness and the efficiency of the
algorithm. We further plan to extend our research into
ordered patterns, or serial episodes, as they are often
referred to.

References

[1] R. Agrawal and R. Srikant, Mining Sequential Pat-

terns, Proc. 11th Int. Conf. on Data Engineering,
Washington DC: IEEE Comput. Soc., 1995

[2] J. Besson, C. Robardet, J.-F. Boulicaut and S. Rome,
Constraint-based concept mining and its application to

microarray data analysis, IDA, volume 9(1), pp. 59-82,
IOS Press, 2005

[3] L. Cerf, J. Besson, C. Robardet and J.-F. Boulicaut,
Data-Peeler: Constraint-based Closed Pattern Mining

in n-ary Relations, Proc. SIAM Int. Conference on
Data Mining (SDM), pp. 37-48, 2008

[4] G. C. Garriga, Discovering unbounded episodes in se-

quential data, Proceedings of the 7th European Con-
ference on Principles and Practice of Knowledge Dis-
covery in Databases (PKDD-03), pp. 83–94, 2003

[5] A. Gély, A generic algorithm for generating closed sets

of a binary relation, In Proc. of 3rd Int. Conf. on
Formal Concept Analysis (ICFCA), volume 3403, pp.
223-234, Springer, 2005

[6] H. Mannila and H. Toivonen, Discovering General-

ized Episodes Using Minimal Occurrences, Proc. Int.
Conference on Knowledge Discovery and Data Mining
(KDD), pp. 146-151, 1996

[7] H. Mannila, H. Toivonen and A. I. Verkamo, Dis-

covering frequent episodes in sequences, International
Conference on Knowledge Discovery and Data Mining
(KDD), pp. 210-215, 1995

[8] H. Mannila, H. Toivonen and A. I. Verkamo, Discovery

of Frequent Episodes in Event Sequences, Data Mining
and Knowledge Discovery, volume 1(3), pp. 259–289,
1997

[9] J. T.-L. Wang, G.-W. Chirn, T. G. Marr, B. Shapiro,
D. Shasha and K. Zhang, Combinatorial pattern dis-

covery for scientific data: some preliminary results,
Proc. 1994 ACM SIGMOD Int. Conf. on Management
of Data, pp. 115-125, Minneapolis, Minnesota, 1994

[10] G. Wu, Frequency and markov chain analysis of the

amino-acid sequence of human alcohol dehydrogenase

alpha-chain, Alcohol and Alcoholism, volume 35(3),
pp. 302-306, 2000

328 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

