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Abstract—The generalization ability of artificial neural net-
works (ANNs) is greatly dependent on their architectures.
Constructive algorithms provide an attractive automatic way of
determining a near-optimal ANN architecture for a given prob-
lem. Several such algorithms have been proposed in the litera-
ture and shown their effectiveness. This paper presents a new
constructive algorithm (NCA) in automatically determining ANN
architectures. Unlike most previous studies on determining ANN
architectures, NCA puts emphasis on architectural adaptation and
functional adaptation in its architecture determination process. It
uses a constructive approach to determine the number of hidden
layers in an ANN and of neurons in each hidden layer. To achieve
functional adaptation, NCA trains hidden neurons in the ANN
by using different training sets that were created by employing
a similar concept used in the boosting algorithm. The purpose
of using different training sets is to encourage hidden neurons
to learn different parts or aspects of the training data so that
the ANN can learn the whole training data in a better way. In
this paper, the convergence and computational issues of NCA
are analytically studied. The computational complexity of NCA
is found to be O(W × Pt × τ ), where W is the number of
weights in the ANN, Pt is the number of training examples, and
τ is the number of training epochs. This complexity has the same
order as what the backpropagation learning algorithm requires
for training a fixed ANN architecture. A set of eight classification
and two approximation benchmark problems was used to evaluate
the performance of NCA. The experimental results show that NCA
can produce ANN architectures with fewer hidden neurons and
better generalization ability compared to existing constructive and
nonconstructive algorithms.

Index Terms—Architectural adaptation, artificial neural net-
works (ANNs), constructive approach, functional adaptation,
generalization ability.
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I. INTRODUCTION

G ENERALIZATION ability of artificial neural networks
(ANNs) is greatly dependent on their architectures.

There have been many attempts in automatically determining
ANN architectures, such as various constructive, pruning,
constructive-pruning, and evolutionary algorithms [1]–[7].
Roughly speaking, a constructive algorithm starts with a mini-
mal ANN architecture and adds new layers, nodes, and connec-
tions, if necessary, during training, whereas a pruning algorithm
does the opposite, i.e., it deletes unnecessary layers, nodes, and
connections from a large ANN architecture. A constructive-
pruning algorithm is a hybrid approach that executes, first, a
constructive phase and, then, a pruning phase. Although an
evolutionary algorithm that was used in determining ANN
architectures also executes both the constructive and pruning
phases, it does not follow any predefined sequence in executing
the constructive or pruning phase.

We can formulate architecture determination for an ANN
as an optimization problem. The solution of this optimization
problem is the “complete" topological information of the ANN,
i.e., the number of hidden layers in the ANN and of neurons
in each hidden layer. Although single-hidden-layered ANNs
can solve any problem with arbitrary accuracy [8], multiple-
hidden-layered ANNs have shown to perform better for some
problems [9]–[14]. An empirical study, however, showed the
superiority of training fixed single-hidden-layered ANNs to
fixed two-hidden-layered ANNs [15]. Tamura and Tateishi [16]
later analytically proved the superiority of two-hidden-layered
ANNs to single-hidden-layered ANNs. It therefore stands to
reason that the superiority of single- or multiple-hidden-layered
ANNs is not conclusive; at the same time, it is not appropriate
to train ANNs with a fixed number of hidden layers (or hidden
neurons) and adapt either number during training.

This paper describes a new constructive algorithm (NCA) to
determine complete topological information and some particu-
lar weight values of an ANN. The new approach combines ar-
chitectural adaptation with functional adaptation in one scheme.
It starts adaptation with a minimal ANN architecture and the
whole training data. As adaptation progresses, NCA gradually
adds hidden neurons or hidden layers to the ANN and excludes
the examples of training data that are already learned. NCA’s
emphasis on architectural adaptation and functional adaptation
can improve the performance of an architecture determination
process [17].

The proposed NCA is different from previous works on sev-
eral aspects. First, NCA determines the number of hidden lay-
ers in an ANN and of hidden neurons in each hidden layer. Most
existing algorithms determine the number of hidden layers or
hidden neurons but not both (for example, see the review papers
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[1], [18] and some recent works [17], [19]–[22]). The problem
of using a fixed number of hidden layers or hidden neurons
lies in the difficulty of selecting an appropriate number that
is suitable for all problems. Although the tiling algorithm [23]
determines both numbers, the algorithm can operate only on
binary-valued attributes and does not consider functional adap-
tation. However, NCA operates on binary- or real-valued attri-
butes and considers both functional and architectural adaptation.

Second, NCA trains each hidden neuron in an ANN with a
different training set. When NCA adds a new neuron in a hidden
layer, it creates a new training set based on the performance of
the existing ANN architecture. The examples in the training set
for which the existing architecture gets wrong and correct are
“boosted” and “weakened,” respectively, in the new training set.
Although this technique is adopted in the boosting algorithm
[24] for training ensembles [25], [26], this paper is the first
attempt, to the best of our knowledge, to use a similar concept
for training a single ANN. The goal of this training strategy
is to encourage a hidden neuron to focus on unsolved parts or
aspects of the training data so that the ANN can learn the whole
training data in a better way. This training strategy is completely
different from most (perhaps all) existing strategies that train all
hidden neurons of the ANN using the same training data.

Third, NCA uses a new criterion for adding a hidden layer
to an existing ANN architecture. The new criterion utilizes
both the training error and the hidden neurons’ functionality.
The most common practice in adding a hidden layer is based
only on the training error. One problem with this layer-addition
criterion is that an algorithm may add a hidden layer, regardless
if it is necessary or not, because the training error gradually
decreases when the algorithm adds neurons one by one either in
an existing hidden layer or in a new hidden layer. Thus, it would
be very difficult to decide whether a neuron should be added in
an existing hidden layer or in a new hidden layer. One criterion
that adds a hidden layer when neurons in the existing hidden
layer exhibit a similar functionality and the training error does
not reduce much can be a simple solution of the aforementioned
problem. This instance is the main reason for using hidden
neurons’ functionality in the layer-addition criterion of NCA.

The rest of this paper is organized as follows. Section II
discusses two important components of constructive algorithms
and explains why we adopted these components in a different
way to our NCA. Section III describes our proposed algorithm
in detail. Section IV presents the results of our experimental
study. Finally, Section V concludes this paper with a brief
summary and few remarks.

II. HIDDEN NEURON ADDITION AND TRAINING IN

CONSTRUCTIVE ALGORITHMS

Two important components of constructive algorithms are
neuron addition and training. In this section, we will describe
these components in detail.

A. Neuron Addition

Constructive algorithms generally add one or few hidden
neurons in each addition step [27]. The neurons are added
in the same hidden layer for single-hidden-layered ANNs or
different hidden layers for multiple-hidden-layered ANNs. The
addition of neurons in the single-hidden-layered ANNs is very

straightforward, because one can add one or few neurons when
a neuron-addition criterion is satisfied. A large number of
constructive algorithms have been proposed, which add neurons
in single-hidden-layered ANNs (see the review paper [1] and
recent works [5], [17]).

The addition of neurons in different hidden layers, however,
is not straightforward. It is because one has to decide where
a neuron will be added: in an existing hidden layer or in a
new hidden layer. To tackle this issue, most existing algorithms
add a predefined and fixed number of neurons in the first
hidden layer, then add the same number of neurons in the
second hidden layer, and so on (see, for example, [14], [28],
and [29]). As aforementioned, this number is very crucial for
the performance of ANNs, and restricting it to a small value
limits the ability of a hidden layer to form complicated feature
detectors [1]. In this paper, we propose a new layer-addition
criterion (see Section III-D). The novelty of our criterion is that
it can automatically add a hidden neuron to an existing hidden
layer or a new hidden layer. Each hidden layer, therefore, may
contain a different number of neurons, and one does not need to
decide how many hidden neurons will be added in each hidden
layer of an ANN.

B. Issues of Training

The second important issue of constructive algorithms is
the way that an ANN is trained after adding hidden neurons.
This issue is also important for pruning, constructive-pruning,
and evolutionary algorithms. It is because, although ANNs
with fixed architectures are trained only once, ANNs must be
trained every time when their architectures are modified by
any algorithm. Hence, the computational efficiency of training
becomes an important issue. NCA is a constructive approach;
thus, we briefly summarize here two major schemes that are
widely used in constructive approaches.

One scheme is to train all weights of an ANN (e.g., [17] and
[27]), and the other scheme is to train only the weights that
are associated with a newly added hidden neuron, keeping all
other weights unchanged (fixed) (e.g., [14], [28], and [29]). The
former scheme is very simple and straightforward, because it
trains all weights of the ANN after each addition step. The main
disadvantage of this approach is the computational efficiency.
In addition, this scheme suffers from the so-called moving-
target problem, where each hidden node ‘sees’ a constantly
moving environment [14]. The exact computational require-
ment depends on a particular learning method for training. For
example, the Newton method requires O(W 3) operations in
each iteration to train an ANN with W weights, a quasi-Newton
method requires O(W 2) operations, and a simple gradient
descent method requires O(W ) operations. Due to their com-
putational inefficiency, small-sized ANNs have been trained
in previous studies using this scheme [1]. The latter scheme
[14] trains only the weights of a newly added neuron at a
time while keeping the weights of all previously trained hidden
neurons fixed. Although this scheme achieves computational
efficiency, quickly converges, and avoids the moving-target
problem [14], it may produce networks with a large number
of hidden neurons. This situation will arise when a scheme
fixes the weights of hidden neurons before properly optimizing
them. To overcome this problem, NCA introduces a two-stage
training scheme for hidden neurons of an ANN.
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Fig. 1. An ANN architecture with two hidden layers.

In addition to computational efficiency, another important as-
pect of training is the data of a learning task. When constructive
algorithms add a neuron, the objective is to solve the remaining
unsolved parts of a given learning task. The proposed NCA tries
to achieve this objective by employing AdaBoost [30], which
is a variant of boosting algorithm [24], to create new training
sets for hidden neurons of an ANN (see Section III). Although
some previous work acknowledged (e.g., [27]) the importance
of incorporating the boosting algorithm in the training process
of the ANN, no techniques have been developed so far. The
most common practice was to train each hidden neuron in the
ANN using the same training set. Such an approach tends to
produce hidden neurons with the nearly same functionality;
therefore, this approach does not help in achieving functional
adaptation in determining ANN architectures.

III. NCA

This section presents our proposed NCA in detail. In its
current implementation, NCA is used to determine the complete
topological information of feedforward ANN architectures with
sigmoid hidden neurons. Each hidden layer of such architecture
receives signals from all preceding layers (i.e., the input plus
the preceding hidden layers), whereas the output layer receives
signals from all hidden layers (see Fig. 1). The reason for using
these particular traversal paths for signals is to facilitate a fair
comparison with previous work. In fact, NCA has no constraint
on the type of ANNs. The feedforward ANNs do not have to
be strictly layered, fully connected between adjacent layers, or
be of any other connectivity. They may also contain hidden
neurons with different activation functions [31].

The major steps of NCA are summarized in Fig. 2, which are
further explained as follows.

Step 1) Choose a minimal ANN architecture with three lay-
ers: 1) an input layer; 2) a hidden layer; and 3) an
output layer. The number of neurons in the input and
output layers is the same as the number of inputs and
outputs of a given problem, respectively. Initially,
the hidden layer contains one neuron. Randomly
initialize all connection weights of the ANN within
a small range. Label the hidden layer and its neuron
with C and I , respectively.

Fig. 2. Major steps of NCA.

Step 2) Create a new training set for the I-labeled hidden
neuron of the C-labeled hidden layer. Note that
NCA does not create any training set for the first
I-labeled hidden neuron of the first C-labeled hid-
den layer. The original training set is considered here
as the new training set for this hidden neuron.

Step 3) Train the I-labeled hidden neuron of the C-labeled
hidden layer on the new training set using the
backpropagation (BP) learning algorithm [32] for a
certain number of training epochs. The number of
training epochs τ is specified by the user. We call
this training phase as the initial partial training for
the I-labeled hidden neuron.

Step 4) Check the termination criterion for stopping the
ANN construction process. If this criterion is satis-
fied, go to Step 11). Otherwise, continue.

Step 5) Compute the ANN error E on the training set. If this
error reduces by a predefined amount ε1 after train-
ing for τ epochs, go to Step 3). It is assumed that
training is progressing well and further training is
necessary. Otherwise, continue. According to [33],
E is calculated as

E = 100
omax − omin

NPt

Pt∑
p=1

m∑
i=1

(Yi(p) − Zi(p))2 (1)

where omax and omin are the maximum and mini-
mum values of the output coefficients in a problem
representation, Pt is the number of examples in the
training set, and m is the number of output neurons.
The value for omax and omin could be same as the
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maximum and the minimum target values, i.e., 1 and
0, for classification problems. The variables Yi(p)
and Zi(p) represent the actual and desired outputs
of the ith output neuron for a training example p.
Prechelt [33] suggested (1) to make the error mea-
sure less dependent on the size of a training set
and the number of output nodes. Hence, the mean
squared error percentage was adopted.

Step 6) Add a small amount of noise to all input and output
connection weights of the I-labeled hidden neuron
of the C-labeled hidden layer. Gaussian distribution
with a mean of zero and a variance of one is used to
add a small amount of noise. It is worth mentioning
that NCA adds noise to the connection weights of
any I-labeled hidden neuron only once. Train the
I-labeled hidden neuron using BP [32] for τ epochs.
We call this training phase as the final partial train-
ing for the I-labeled hidden neuron.

Step 7) Check the termination criterion for stopping the
ANN construction process. If this criterion is satis-
fied, go to Step 11). Otherwise, continue.

Step 8) Compute E on the training set. If E is reduced by
an amount ε1 after training τ epochs, go to Step 6)
for further training of the I-labeled hidden neuron.
Otherwise, freeze (keep fixed) the input and output
connection weights of the I-labeled hidden neuron,
remove the label of the I-labeled hidden neuron, and
continue.

Step 9) Check the criterion for adding a new hidden layer. If
the criterion is not satisfied, add a new neuron to the
C-labeled hidden layer and go to Step 2). Label the
new neuron with I and initialize its input and output
connection weights with zero. Otherwise, remove
the label of the C-labeled hidden layer and continue.
The reason for initializing the weights with zero is to
start further training from the previous error value.

Step 10) Add a new hidden layer with one neuron above
the existing hidden layer(s) of the ANN. Label the
new hidden layer with C and its neuron with I .
Initialize the input and output connection weights of
the neuron with zero and go to Step 2).

Step 11) The existing network architecture is the final ANN
for the given problem.

The essence of NCA is the utilization of a constructive
approach with the following four components:

1) creation of new training sets;
2) two-stage training;
3) termination criterion;
4) architecture adaptation.

Details about each of these components, along with conver-
gence issues and computational complexity, are given in the
following sections.

A. Creation of New Training Sets

The proposed NCA employs AdaBoost [30] to create a new
training set. The AdaBoost algorithm is widely used to train an
ensemble of ANNs or decision trees. This algorithm maintains
a probability distribution D over an original training set T .
We have a finite number of examples in T ; thus, D can be

considered a vector of dimension equal to the number of train-
ing examples. Each component of D denotes the probability
that each example will be selected for a training set. Initially,
the component of D is set at 1/Pt, where Pt is the number
of examples in T . The AdaBoost algorithm trains the first
ANN in the ensemble using the original training set T . It then
updates D based on the performance of the trained ANN, where
the probability of correctly and incorrectly classified examples
is decreased and increased, respectively. Finally, AdaBoost
creates a new training set T ′ based on updated D by sampling
Pt examples at random with replacement from T and trains the
second ANN in the ensemble using T ′. The whole process is
repeated to train other ANNs in the ensemble.

NCA trains only one neuron at a time; thus, the strategy
in AdaBoost for creating a new training set can easily be
incorporated in NCA, because NCA adds hidden neurons in
an ANN one by one as AdaBoost adds ANNs in an ensemble.
Furthermore, NCA trains only one, i.e., a newly added hidden
neuron of the ANN. This case is similar to training only one
ANN of the ensemble by AdaBoost. The use of a different train-
ing set in NCA facilitates functional adaptation during adapting
ANN architectures. This approach of functional adaptation is
quite different from a recently proposed approach that uses
different activation functions for different hidden neurons of
the ANN [17]. Although different activation functions facilitate
hidden neurons to differently perform, it is not sure whether
these neurons focus on different unsolved parts of a training
data, because it is the training data on which a network is trained
that mostly determines the function it approximates.

B. Two-Stage Training

Our NCA uses a training scheme with two stages: 1) initial
and 2) final. We use the BP learning algorithm [32] in both
stages. In the initial training stage, NCA first initializes the
input and output connection weights of a newly added neuron
with zero. The only exception is the first hidden neuron in an
ANN for which the weights are randomly initialized within a
small range. The BP algorithm then trains the hidden neuron to
modify its weights. When the training error does not reduce by
a predefined amount, i.e., ε1, after training for τ epochs, NCA
assumes that the weights are trapped into local optima. This
assumption is reasonable, because BP is notorious for its slow
convergence and convergence to local optima [7]. To alleviate
these problems, NCA introduces the final training stage, where
a small amount of Gaussian noise with a mean of zero and a
variance of one is added to the weights of the initially trained
hidden neuron. The BP learning algorithm is then reapplied to
optimize those weights. Both theoretical and empirical studies
have demonstrated that adding noise in the connection weights
improves the convergence rate and generalization ability of
ANNs [34].

Most existing constructive algorithms use a one-stage train-
ing scheme. They add a hidden neuron to an ANN when its
training error does not reduce by some amount ε1 after training
the ANN for τ epochs. An unsatisfactory error reduction is
assumed due to a small number of hidden neurons in the
ANN, although it is not always true. Accordingly, existing con-
structive algorithms produce ANNs with more hidden neurons.
Some algorithms (e.g., [5], [12], and [13]) therefore execute
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a pruning phase after the addition phase to produce compact
ANN architectures. There are only few algorithms (e.g., CCLA
[14] and its variants [28]) that use a two-stage training. The
problems of their two-stage training are the necessity of two
cost functions (one for training and one for adding hidden
neuron) and of training a pool of hidden neurons for adding
only one hidden neuron.

We have now understood that the two-stage training scheme
in NCA is advantageous, because it uses one cost function and
trains only one hidden neuron for adding one hidden neuron.
The purpose of two-stage training is to increase the capabilities
of a hidden neuron by properly optimizing its weights. If a
training scheme cannot produce hidden neurons with good ca-
pabilities, an ANN will require more hidden neurons to solve a
problem. To produce ANNs with a smaller number of hidden
neurons, NCA uses the two-stage training scheme. A hybrid
training scheme that uses BP [32] in initial training and sim-
ulated annealing [35] in final training can also be used in our
NCA. The investigation of the best training scheme is outside the
scope of this paper and would be the topic of a separate paper.

C. Termination Criterion

Prechelt [36] describes a number of termination criteria to
stop training for an ANN. In this paper, one of these criteria
that utilize both training and validation errors is employed. To
formally describe this criterion, let Etr(τ) and Eva(τ) be the
training and validation errors at training epoch τ , respectively,
and Eopt(τ) be the lowest validation up to epoch τ . According
to [36], the generalization loss at epoch τ , i.e., GL(τ), can be
defined as

GL(τ) =
(

Eva(τ)
Eopt(τ)

− 1
)

. (2)

A high generalization loss can be one obvious reason for
stopping the training, because it directly indicates overfitting.
However, if Etr very rapidly reduces, it is desirable not to stop
the training, because the generalization losses have a higher
chance to be repaired [36]. The training progress Pk(τ) at
training epoch τ of a training strip k can be used to measure
how much the average training error of the strip is larger than
the minimum training error during the strip. Hence, Pk(τ) can
be defined as [36]

Pk(τ) =
( ∑τ

τ ′=τ−k+1 Etr(τ ′)
k × minτ

τ ′=τ−k+1 Etr(τ ′)
− 1

)
(3)

where the strip length k is a sequence of epochs numbered
n + 1, n + 2, . . . , n + k, and n is divisible by k. The value of
k is generally set to 5 [36], which is used in this paper. Our
NCA stops the training of an ANN when GL(τ) > Pk(τ).
This criterion is a bit complex than the one that stops the
training when a validation error begins to increase. However,
the essence of using both training and validation errors is that
they can anticipate the behavior of the test data better [36].

D. Architecture Adaptation

When the two-stage training fails to improve the performance
of an ANN, NCA modifies the ANN by adding hidden neurons

or hidden layers. The proposed NCA uses two simple criteria
to decide when to add a hidden neuron and when to add a
hidden layer. The following equations are used to describe the
following criteria:

E(i) − E(i + τ) ≤ ε1, i = τ, 2τ, 3τ, . . . (4)

d =
1
Pt

Pt∑
p=1

|yk(p) − yk+1(p)| ≤ ε2, k = 1, 2, 3, . . . (5)

where E(i) and E(i + τ) are the ANN errors at epochs i and
(i + τ), respectively. The error threshold ε1 is a user-specified
small positive number. The variables yk(p) and yk+1(p), re-
spectively, are the outputs of two previously added hidden
neurons hk and hk+1 for the pth training example, whereas Pt

is the number of examples in hk+1’s training set. The output
threshold ε2 is also a user-specified small positive number.

The proposed NCA adds one neuron to a C-labeled existing
hidden layer when the condition described by (4) is satisfied,
but the condition described by (5) is not satisfied. On the
contrary, most existing constructive algorithms use only (4) to
add hidden neurons, i.e., they do not consider the functionality
of hidden neurons. Our NCA adds a new hidden layer with one
neuron above the existing hidden layer(s), provided that both
the conditions described by (4) and (5) are satisfied. It is here
assumed that adding more neurons in the same hidden layer is
not beneficial, because some hidden neurons are likely to be
redundant due to a similar functionality. Fig. 1 shows that each
hidden layer receives signals from all preceding layers. Thus,
two hidden neurons from two different hidden layers must
exhibit different functionalities, because they receive different
signals from the preceding layers (see Fig. 1). This instance is
the main reason that NCA adds a new hidden layer when hidden
neurons become functionally similar.

E. Convergence Issues

To discuss the convergence issue of NCA, we restrict our-
selves to a function approximation task with one output. This
restriction is applied without loss of generality and for simplic-
ity. The output neuron of an ANN uses the identity activation
function for the approximation problem. That is, the output
neuron just produces a weighted sum of all its inputs. The
function that was approximated by the ANN can therefore be
expressed as

f̂(x) =
n∑

j=1

βjgj(x) (6)

where gj represents the jth input to the output neuron, and n
denotes the total number of input connections to the output
neuron after the ANN construction has been completed. βj is
the weight of the jth input connection to the output neuron.

Each gj in NCA is the output of a hidden neuron of some
hidden layer. Let Γ be the set of all functions that can be
implemented by hidden units. Thus, gj ∈ Γ. The particular
form of gj depends on how the corresponding hidden neuron
is connected. As shown in Section III, NCA incrementally
adds each gj , keeping all βk and gk, for 1 ≤ k ≤ j − 1, fixed
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(frozen). Hence, after the nth input connection is given to the
output neuron, the function approximated by the ANN is

fn(x) =βngn(x) +
n−1∑
j=1

βjgj(x)

=βngn(x) + fn−1(x). (7)

Henceforth, we will drop the argument of the function, i.e.,
we will use fn instead of fn(x). The norm in L2 space will
be denoted as ‖.‖. The convergence proof of a constructive
algorithm given here is the most general one, which assumes
that this algorithm in each incremental step can find a gj

according to the requirement of the proof. In [37], such a
convergence proof is given. We briefly restate this proof here for
subsequent explanation. Later, we will show how NCA selects
each gj to proceed and construct f̂ according to the requirement
of convergence.

Proposition 1: For a fixed g ∈ Γ(‖g‖ �= 0),1 the expression
‖f − (fn−1 + βg)‖ achieves its minimum if and only if

β = β∗ =
〈en−1, g〉
‖g‖2

(8)

where 〈., .〉 denotes the inner product, and en−1 = f − fn−1,
with f being the target function that will be approximated by
the ANN. Moreover, with β∗

n and β∗ as defined in (8), ‖f −
(fn−1 + β∗

ngn)‖ ≤ ‖f − (fn−1 + β∗g)‖ ∀g ∈ Γ, if and only if

〈en−1, gn〉2
‖gn‖2

≥ 〈en−1, g〉2
‖g‖2

∀g ∈ Γ.

Proof: We see that

Δe(g) = ‖f − fn−1‖2 − ‖f − (fn−1 + βg)‖2

= ‖en−1‖2 − ‖en−1 − βg‖2. (9)

Based on the triangle law for vector addition [37]

‖en−1‖2 = ‖βg‖2 + ‖en−1 − βg‖2 + 2 〈βg, (en−1 − βg)〉 .

Thus, according to (9)

Δe(g) = ‖βg‖2 + 2〈en−1, βg〉 − 2β2‖g‖2

= 2β〈en−1, g〉 − β2‖g‖2

=
〈en−1, g〉2

‖g‖2
−

(
〈en−1, g〉

‖g‖ − β‖g‖
)2

.

With a fixed g, Δe(g) will be maximum if

〈en−1, g〉
‖g‖ − β‖g‖ = 0

which implies that β = β∗ = 〈en−1, g〉/‖g‖2, and Δemax(g) =
〈en−1, g〉2/‖g‖2. Maximization of Δe(g) for a given g implies
the minimization of ‖f − (fn−1 + βg)‖ over β. Based on the
set Γ, the expression ‖f − (fn−1 + βg)‖ is minimized when
Δemax(g) is maximized over all g ∈ Γ. We define the span of
Γ as the set of all linear combinations of the elements of Γ. It is

1‖g‖ = 0 implies that g(x) ≡ 0 ∀x ∈ X .

well established that span(Γ) is dense in the space of all square
integrable functions or L2 space [8], [38].

Theorem 1: Given that span (Γ) is dense in L2 and ∀g ∈
Γ, 0 < ‖g‖ < b for some b ∈ �. If gn is selected to maximize
〈en−1, g〉2/‖g‖2, then limn→∞ ‖f − fn‖ = 0.

Proof: It follows from Proposition 1 that

‖en−1‖2 − ‖en‖2 =
〈en−1, gn〉2

‖gn‖2
(10)

which is bounded in the following discussion by zero. The
boundary case, i.e., zero will occur when en−1, is orthogonal to
gn. Span(Γ) is dense in L2; thus, orthogonality will occur only
when en−1 = 0 [39, Lemma 3.3–7]. In that case, the sequence
{‖en‖2} is already converged. In other words, {‖en‖2} is a
strictly decreasing sequence and converges to zero. �

The boundedness assumption of ‖g‖ holds, because NCA
uses a sigmoid transfer function for all hidden neurons.
Theorem 1 leads to strong convergence, provided that a con-
structive algorithm in each incremental step can find gn to
maximize 〈en−1, g〉2/‖g‖2. However, it is impractical to search
gn over the whole set Γ in each step. In practice, constructive
algorithms search gn over a smaller subspace, because as we
have mentioned, the particular form of gn is determined by how
a hidden neuron is connected to the current ANN.

BP [32] minimizes the ANN error by adjusting its connection
weights, i.e., by searching a gn over a subspace, and NCA adds
random noises to the connection weights for escaping from
local minima; thus, it can be expected that NCA approximates
such a gn over the subspace that maximizes 〈en−1, g〉2/‖g‖2.
However, it is clear from (10) that the reduction of residual
error will be close to zero if en−1 is nearly orthogonal to gn.
Moreover, Theorem 1 implies that, in each step, en is orthogo-
nal to the span {g1, g2, . . . , gn}; otherwise, en will not be the
minimum for the given g1, g2, . . . , gn. This condition indicates
that, if gn+1 ≈ gn, en will also be nearly orthogonal to gn+1,
resulting in 〈en, gn+1〉/‖g‖2 ≈ 0. In other words, the residual
error will not decrease when gn+1 ≈ gn. The proposed NCA
detects this situation using a condition, as described by (5),
of its layer-addition criterion that determines whether gn+1 ≈
gn. In this situation, one should extend the search space. The
proposed NCA extends the search space by adding a new
hidden layer with one neuron. The neuron of the new hidden
layer gets inputs from all preceding layers (see Fig. 1); thus,
it is not difficult to show that the new subspace contains the
earlier subspace and produces a different g [40]. In fact, NCA
expands the search space by creating a new layer whenever
it detects gn+1 ≈ gn. Thus, it complies with Theorem 1 and,
hence, converges.

F. Computational Complexity

We have already seen NCA adopt several techniques in
its different stages. The computational complexities of these
techniques and NCA, as a whole, are presented in this section.

1) Creation of a New Training Set: The proposed NCA cre-
ates a new training set by employing a similar concept used in
AdaBoost [24], which maintains a probability distribution over
a training set. Each time NCA trains a newly added hidden neu-
ron, it changes the distribution by increasing the probabilities
of misclassified examples of an existing ANN while decreasing
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the probabilities of correctly classified examples. To update the
probabilities, it requires O(Pt) computations, where Pt is the
number of training examples in a training set. Given a probabil-
ity distribution, NCA selects Pt examples (with replacement)
using at most O(Pt log2 Pt) computations. It is because NCA
first computes cumulative probabilities by a cost of O(Pt)
computations. Then, for each selection, NCA applies the binary
search of a generated random number over the cumulative
probabilities, which requires at most O(log2 Pt) computations.

2) Initial Training: We use the standard BP algorithm [32]
to train an ANN. Each epoch of BP takes O(W ) computations
for one example, where W is the number of weights in the
ANN. Thus, training Pt examples for τ epochs requires O(τ ×
Pt × W ) computations.

3) Stop ANN Construction: The termination criterion in
NCA for stopping ANN construction uses the training and
the validation errors. The training error is computed as a part
of training; thus, the stopping operation takes O(Pv × W )
computations, where Pv denotes the number of examples in the
validation set.

4) Stop Initial Training: This operation takes a constant
O(1) computation, because NCA stops the initial training based
on the training error, which is a part of training and does not
require any extra computations.

5) Final Training: All computations for the final training
are the same as the initial training, except that the final training
needs an extra cost of O(W ) computations for adding noise.
Thus, the cost of the final training is O(τ × Pt × W ) + O(W )
i.e., O(τ × Pt × W ).

6) Stop Final Training: This operation also takes a constant
O(1) computation as the stop initial training.

7) Checking for Adding a Hidden Layer: The proposed
NCA uses (4) and (5) to add a hidden layer. It takes a constant
computation O(1) for evaluating (4) and O(Pt) operations for
evaluating (5), because the outputs of hidden neurons for each
training example are stored during the training process. Thus,
checking for adding a hidden layer takes O(Pt) computations.

8) Adding a Hidden Neuron: It takes O(i +
∑L−1

j=1 hj)
computations for the initialization of connection weights, where
i is the number inputs, hj is the number of neurons of the
jth hidden layer, and L the current hidden layer. Note that
(i +

∑L−1
j=1 hj) < W .

9) Adding a Hidden Layer: The computation cost for
adding a hidden layer is the same as adding a hidden neuron,
except that we have L instead of L − 1. Thus, the computation
cost of this step is O(i +

∑L
j=1 hj).

Based on the aforementioned discussion, it is clear that the
leading computation requirement is training with a cost of
O(τ × Pt × W ) computations. Practically, τ × W > log2Pt

and Pt >= Pv; thus, the computation complexity of NCA is
O(τ × Pt × W ), which is the same order of training a fixed
ANN architecture using BP [32].

IV. EXPERIMENTAL STUDIES

We evaluate the performance of NCA on several bench-
mark problems that were selected from the University of
California−Irvine Machine Learning Repository, which are
summarized in Table I. The selected problems have consid-
erable diversities: some were easy (e.g., the cancer problem),

TABLE I
CHARACTERISTICS OF TEN BENCHMARK PROBLEMS. NOTE THAT THE

FIRST EIGHT AND THE LAST TWO PROBLEMS ARE CLASSIFICATION

AND APPROXIMATION PROBLEMS, RESPECTIVELY

some were difficult (e.g., the glass problem), and some were
large (e.g., the letter problem). Hence, the selected problems
provide a good test bed for evaluating the performance of any
algorithm on a set of problems with different characteristics.
These problems were also widely used in many previous studies
(e.g., [2], [4], [11], and [17]).

A. Experimental Setup

In the past, there were some criticisms toward ANN bench-
marking methodologies and suggestions for improvement have
been put forward [33], [41]. We used benchmark problems and
followed the benchmarking methodologies to conduct experi-
ments and presenting results. The same problems and method-
ologies were employed in many previous and recent studies
(e.g., [2], [5], [7], [17], and [20]). The data sets of all problems
were partitioned into the following three sets: 1) a training set;
2) a validation set; and 3) a testing set. The number of examples
in these sets is shown in the Table I. For all problems except
letter, the first P1 examples were used for the training set, the
following P2 examples for the validation set, and the final P3

examples for the testing set. To have a fair comparison with our
previous work, for the letter problem, we randomly selected
1000, 500, and 4000 examples for the training, validation,
and testing sets, respectively. In all experiments, we used one
bias neuron with a fixed input +1 for the hidden and output
layers. We employed a logistic sigmoid activation function,
f(x) = 1/(1 + exp(−x)), for hidden layers. For classification
problems, the same activation function was also employed for
the output layer. However, for approximation problems, we
employed the identity function for the output layer.

The initial connection weights of ANNs were chosen be-
tween −0.5 and +0.5. The learning rate and momentum term
of BP [32] were set to 0.10 and 0.8, respectively. As shown
in Section III, NCA introduces three control parameters: 1) τ ;
2) ε1; and 3) ε2. The value of τ was set to 20 for all problems
except letter, which used a τ of 50. The thresholds ε1 and ε2
were set to 2e-03 and 0.20, respectively. These values were
chosen after a preliminary run.
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TABLE II
PERFORMANCE OF NCA ON EIGHT CLASSIFICATION (THE FIRST EIGHT

ROWS) AND TWO APPROXIMATION (THE LAST TWO ROWS) PROBLEMS.
TER AND STE REPRESENT THE GENERALIZATION ABILITY OF PRODUCED

ANNs FOR CLASSIFICATION AND APPROXIMATION PROBLEMS,
RESPECTIVELY. THE RESULTS WERE AVERAGED OVER 50 INDEPENDENT

RUNS. SD REPRESENTS STANDARD DEVIATION

B. Experimental Results

Table II shows the results of NCA over 50 independent runs
for different problems. For each run, moderate changes were
made in the parameters value mentioned in the previous section.
Testing error rate (TER) refers to the percentage of wrong
classifications produced by trained ANNs on the testing set of a
classification problem. The squared testing error (STE), which
is computed according to (1), refers to the error produced by
trained ANNs on the testing set of an approximation problem.
The TER or STE represents the generalization ability of pro-
duced ANNs. Fig. 3 shows the training progress of ANNs for
the glass and thyroid problems.

The effect of different techniques that were adopted in NCA is
clearly visible from the results presented in Table II and Fig. 3.
The following observations can be made based on these results.

1) It can be observed that NCA produces different-sized
ANNs for different problems, and NCA spent a different
number of epochs for producing ANNs (see Table II).

2) Our NCA produced complex ANN architectures for some
problems and simple ANN architectures for other prob-
lems (see Table II). For the letter problem, for example,
ANNs produced by NCA had, on the average, 2.76 hidden
layers and 15.64 hidden neurons, whereas those produced
for the iris problem had, on the average, 1.00 hidden
layer and 2.60 hidden neurons. The letter problem was a
26-class problem, whereas iris was a three-class problem
(see Table I). The complexity of these two problems can
be understood from the TER and the number of training
epochs (see Table II). The proposed NCA spent, on the
average, 5530.8 epochs for the letter problem, which
was larger compared to that spent for the iris problem.
Furthermore, the TER for the letter problem was also
larger (worse) compared to that for the iris problem.

3) The number of hidden layers in ANNs produced by NCA
had, on the average, one for three problems and more than
two for one problem. However, ANNs had, on the aver-
age, more than one and less than two hidden layers for six

problems. These results indicate that, even for the same
problem, ANNs that were produced by NCA had a dif-
ferent number of hidden layers in different independent
runs. In other words, the characteristics of a problem were
not only the factor that determined the number of hidden
layers in an ANN but also different parameters that were
employed by a learning and an architecture determination
algorithm. A similar argument could be drawn for the
number of hidden neurons in ANNs. These results quite
match our intuition that puts emphasis on determining the
complete topological information of ANNs for solving
different problems.

4) It is shown in Fig. 3 that the training error gradually de-
creased as a training process progressed and hidden neu-
rons added. When the error reduction slowed down, the
addition of hidden neurons accelerated such a reduction.
In fact, there is no sign of trapping at serious local optima
during the entire training process of ANNs. Although
the theoretical analysis in Section III-E confirms the
convergence of NCA, Fig. 3 gives its empirical evidence.

Recently, a receiver-operating characteristics (ROC) graph
has been used, aside from classification accuracy to a learning
mechanism, to examine its performance in the machine learning
community. The main advantage of the ROC graph is that it
is independent of class distribution; thus, it is very useful for
problems with unbalanced classes. The ROC graph is a plot
where the false positive rate is on the x-axis and the true
positive rate is on the y-axis. The point (0,1) is the perfect
classifier: it correctly classifies all positive cases and negative
cases. In general, the upper left region indicates the good
performance of ANNs. A detailed description of the ROC graph
can be found in [42]. Fig. 4 shows the ROC graphs for the
cancer and heart problems. This figure also illustrates the good
performance of NCA.

1) Effect of Different Training Sets: A set of new experi-
ments was carried out to observe the effect of different training
sets used in NCA. The setup of these experiments was exactly
the same as those previously described. The only difference
was that NCA trained here all hidden neurons using the same
training set. We call this variant of NCA as NCAST, which is
equivalent to NCA without functional adaptation.

Table III presents the results of NCAST over 50 independent
runs. The comparison of results in Tables II and III indicated
that NCAST used more epochs and larger ANN architectures
than NCA. This step is reasonable, because NCA trained
all hidden neurons of an ANN using different training sets,
whereas NCAST trained all hidden neurons using the same
training set. Hidden neurons could not communicate each other
during training; thus, they might learn the same information
from the same training set. It is natural to require more com-
putational resources, i.e., large architectures and many training
epochs, when hidden neurons learn redundant information for
solving a given problem.

To gain a better understanding about the performance differ-
ence between NCA and NCAST, we measured the functional
dissimilarity between different pairs of hidden neurons in an
ANN. We measured the functional dissimilarity between two
hidden neurons based on the original training set using (5).
There are CM

2 numbers of functional dissimilarities for an
ANN with M hidden neurons. In our experiments, both NCA
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Fig. 3. Training progress of NCA for the (top row) glass and (bottom row) thyroid problems. All results have been averaged over 50 runs.

Fig. 4. ROC graphs for the (a) cancer and (b) heart problems. All results have been averaged over 50 runs.

and NCAST were allowed to add six hidden neurons within
450 training epochs. These values were chosen based on our
experience in our previous experiments. The reason for choos-
ing the same value is to make a fair comparison.

Fig. 5 shows the functional dissimilarity of different pairs of
hidden neurons in an ANN trained by NCA and NCAST for
the thyroid problem. A similar phenomenon was observed for
other problems. This figure also shows the number of hidden
layers against the hidden neuron number. It is shown in Fig. 5

that some degree of regularity is apparent in the functionality
of hidden neurons trained by NCA. This regularity is due to
training different hidden neurons by different training sets that
were created by the Adaboost algorithm [24]. The dissimilarity
between the training sets of hidden neurons hm and hm+1, for
1 ≤ m ≤ M , is less compared to, for example, those of hm

and hm+1+i, for i ≥ 1 and (m + 1 + i) ≤ M . This instance
is why the dissimilarity between the functionality of hm and
hm+1 is small compared to that of hm and hm+1+i. Although
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TABLE III
PERFORMANCE OF NCAST ON FOUR CLASSIFICATION (THE FIRST FOUR

ROWS) AND ONE APPROXIMATION (THE LAST ROW) PROBLEMS. TER AND

STE REPRESENT THE GENERALIZATION ABILITY OF PRODUCED ANNs
FOR CLASSIFICATION AND APPROXIMATION PROBLEMS, RESPECTIVELY.

ALL RESULTS WERE AVERAGED OVER 50 INDEPENDENT RUNS.
SD REPRESENTS STANDARD DEVIATION

there are many maxima and minima in the functionality of
hidden neurons trained by NCAST, no definite regularity is
visible; rather, the histograms consist of some ups and downs
that indicate the random learning strategy of hidden neurons.
It is also shown that hidden neurons trained by NCAST were
functionally less dissimilar compared to that trained by NCA
(see Fig. 5). Accordingly, ANNs that were produced by NCAST
had more hidden layers (see Tables II and III). This result
is because NCAST (or NCA) added hidden layers when the
functionality of hidden neurons became similar.

The positive effect of compact architectures and small train-
ing epochs can be observed on the TER/STE of produced
ANNs. The TER/STE achieved by NCA for different problems
was lower compared to those achieved by NCAST (see Tables II
and III). The t-test based on the number of hidden neurons,
epochs, and TER/STE indicated that NCA was significantly
better than NCAST at a 95% confidence level, with the excep-
tion of the card problem. The performance of NCA and NCAST
was found similar for the card problem. As shown in Tables II
and III, an ANN with one or slightly more hidden neurons could
solve the card problem. Both NCA and NCAST started training
on the original training data for an ANN with one hidden
neuron; thus, the strategy employed by NCA to create a new
training set could barely be utilized. This instance is the main
reason for the similar performance of NCA and NCAST for
the card problem. In short, the performance difference between
NCA and NCAST indicates that the incorporation functional
adaptation with architectural adaptation, which we employed
in NCA, can greatly improve the performance of ANNs.

2) Effect of the Layer-Addition Criterion: The purpose of
this section is to evaluate the effect of the hidden-layer-addition
criterion used in NCA. To understand the effect, we performed
a set of new experiments using NCA without the layer-addition
criterion. This variant of NCA is dubbed NCAWL. It can be
observed in Table II that ANNs produced by NCA for the glass,
letter, thyroid, and building problems had more than one hidden
layers, whereas those produced for the cancer, card, gene, heart,
iris, and flare problems had one or slightly more hidden layers.
It is worth mentioning that the only difference between NCA
and NCAWL is that the former approach could produce ANNs
with one or more hidden layers, whereas the latter one could
produce ANNs with only one hidden layer. Thus, we applied

NCAWL to the glass, letter, thyroid, and building problems so
that the effect of the layer-addition criterion could easily be
understood.

Table IV presents the results of NCAWL on four problems
over 50 independent runs. The positive effect of the layer-
addition criterion can be observed when we compare the results
presented in Table IV with those presented in Table II. For
example, NCAWL spent more epochs, produced larger ANN
architectures, and achieved larger TERs/STEs compared to
those of NCA. The t-test based on the number of hidden
neurons, number of epochs, and TER/STE indicated that NCA
was significantly better than its counterpart NCAWL at a 95%
confidence level.

To gain a better understanding about the layer-addition cri-
terion, we investigated the necessity of adding new hidden
layers. Fig. 6 shows the functional dissimilarity between two
consecutive hidden neurons hm and hm+1, for 1 ≤ m ≤ M , of
an ANN trained by NCA and NCAWL for the letter problem.
Unlike Fig. 5, we computed the functional dissimilarity on
the training set of hm+1, which was used in (5) for adding
a new hidden layer. It is shown in Fig. 6 that the functional
dissimilarity gradually decreased as NCAWL added all hidden
neurons in the same hidden layer. This dissimilarity was the
same for both NCAWL and NCA until the later approach added
the ninth hidden neuron in the new, i.e., the second, hidden
layer. When NCA added the ninth hidden neuron, the functional
dissimilarity increased but again started decreasing. The reason
for increasing the functional dissimilarity is due to processing
different information by the neuron. Consider two hidden neu-
rons hm and hm+1 that reside in two different hidden layers l
and l + 1, respectively. For a particular training example, the
hm neuron receive information from all preceding layers, i.e.,
up to layer (l − 1), whereas the hm+1 neuron receive informa-
tion up to layer l. Two neurons process different information;
thus, they will exhibit different functionality for the same
training example. The results in Fig. 6 indicate the necessity
of adding hidden layers to increase the functional dissimilarity
among hidden neurons in the ANN. The hidden-layer-addition
capability made NCA better compared to NCAWL, which tried
to solve all problems using ANNs with only one hidden layer.

Now let us look at what happens when we compare the re-
sults in Table IV with those in Table III. In terms of TER/STE, it
is clearly visible that neither NCAWL nor NCAST is found bet-
ter for all the four problems that we compare here. The NCAST
algorithm is found to be significantly better than NCAWL for
the glass problem, whereas NCAWL is found to be significantly
better than NCAST for the thyroid problem. For the letter
and building problems, the TER/STE of both NCAST and
NCAWL was found similar. These comparisons again indicate
that neither architectural adaptation nor functional adaptation
alone is sufficient for efficiently solving problems using ANNs.

3) Effect of Control Parameters: We have seen in Section III
that NCA introduces three control parameters (i.e., τ , ε1, and
ε2) in its adaptation process. This case is usual in the field (e.g.,
[2], [5], [7], and [17]). As mentioned in Section III, τ defines
the number of training epochs for the initial partial training of a
hidden neuron. The parameter ε1 measures the improvement of
training error, whereas ε2 measures the functional dissimilarity
between any two hidden neurons. We can choose any positive
integer value for τ and any real value for ε1 and ε2.
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Fig. 5. (a) Functional dissimilarities among the hidden neurons’ pairs in an ANN trained by NCA and NCAST. (b) The addition of hidden neurons in the hidden
layer(s) by NCA and NCAST. The presented result is the single run of NCA and NCAST for the thyroid problem.

TABLE IV
PERFORMANCE OF NCAWL ON THREE CLASSIFICATION (THE FIRST

THREE ROWS) AND ONE APPROXIMATION (THE LAST ROW) PROBLEMS.
TER AND STE REPRESENT THE GENERALIZATION ABILITY OF PRODUCED

ANNs FOR CLASSIFICATION AND APPROXIMATION PROBLEMS,
RESPECTIVELY. ALL RESULTS WERE AVERAGED OVER

50 INDEPENDENT RUNS. SD REPRESENTS STANDARD DEVIATION

Although a very small value for τ may undertrain a hidden
neuron, a very large value may overtrain the neuron. In any
case, NCA deals with this problem by introducing final training
and keeping the weights of a hidden neuron fixed after final
training. If the value of ε1 is set very large but that of ε2 is
very small, ANNs that were produced by NCA will have a large
number of hidden layers and a small number of hidden neurons
[see (4) and (5)]. An opposite scenario will happen, i.e., the
number of hidden layers and of hidden neurons would be small
and large, respectively, for a very small ε1 and a very large ε2.
That is, the value for ε1 and ε2 chosen in an opposite direction
will affect either the number of hidden layers or the number of
hidden neurons but not both. This instance is a desirable feature
in the sense that ANNs that were produced by NCA will have a
similar number of connections for different ε1s and ε2s.

If there are ϕ possible choices, we can select a set of values
for three control parameters from a combination of ϕ3 values.
Thus, it is not easy to select values for τ , ε1, and ε2 without
looking at their relationship. We have already established the
relationship between ε1 and ε2. Now, we shall look at the
relationship between τ and ε1 (or ε2). For example, if the value
of τ is chosen small, the training error will be reduced by a
small amount due to insufficient training, and the functional
dissimilarity between hidden neurons will also be small for the
same reason. This result means that, if the value of τ is chosen
small, moderate, or large, the value of ε1 (or ε2) will also be

chosen in the same manner. Note that the value of ε1 will be
chosen in the opposite direction of ε2. In general, we can say
that τ , ε1, and ε2 will have less effect on NCA, provided that
they are chosen in accordance with the aforementioned guide-
lines. The following experimental results support our intuition.

We have chosen the glass, heart, and letter problems for
empirical studies here. As shown in Tables II–IV, these three
problems were the most challenging among all other problems
that we tested in this paper. The use of three problems from
a set of ten problems helps us limit the size of this paper. In
experiments, τ was chosen in the range of 10 to 50 for the heart
and glass problems and in the range of 30 to 80 for the letter
problem. The thresholds ε1 and ε2 were chosen in the range of
1e-04 to 3e-03 and 0.05 to 0.30, respectively. The value of other
parameters in NCA was chosen to be the same as mentioned
in Section IV-A. Tables V–VII show the performance of NCA
with different parameter values for the glass, heart, and letter
problems. It is shown that, when the values of τ , ε1, and ε2 were
chosen to be small, medium, or large, the generalization ability
(i.e., TER) of ANNs produced by NCA was not much affected.
However, when the value of τ was chosen to be large but the
values of ε1 and ε2 were chosen to be small, the generalization
ability was much affected.

C. Comparisons With Other Work

This section presents the comparison between NCA and
other algorithms based on the experimental results of different
problems. Although there are many architecture determination
algorithms in the literature that could be compared, it is not
feasible to conduct an exhaustive comparison with all such
algorithms. The aim of our experimental comparison here is to
evaluate and understand the strengths and weaknesses of NCA
for different problems. NCA uses a constructive approach in
determining network architectures; thus, few similar and recent
algorithms are chosen for comparison. These algorithms are
listed as follows:

1) constructive feedforward neural network (CFNN) [17];
2) optimization methodology for neural network

(OMNN) [20];
3) cascade correlation learning architecture (CCLA) [14];
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Fig. 6. (a) Functional dissimilarities among the hidden neurons’ pairs in an ANN trained by NCA and NCAWL. (b) The addition of hidden neurons in the hidden
layer(s) by NCA and NCAWL. The presented result is the single run of NCA and NCAWL for the letter problem.

TABLE V
PERFORMANCE OF NCA WITH DIFFERENT PARAMETER VALUES FOR THE

GLASS PROBLEM. TER REPRESENTS THE GENERALIZATION ABILITY

OF PRODUCED ANNs FOR THE GIVEN CLASSIFICATION PROBLEM.
ALL RESULTS WERE AVERAGED OVER 50 INDEPENDENT RUNS.

SD REPRESENTS STANDARD DEVIATION

TABLE VI
PERFORMANCE OF NCA WITH DIFFERENT PARAMETER VALUES FOR THE

HEART PROBLEM. TER REPRESENTS THE GENERALIZATION ABILITY

OF PRODUCED ANNs FOR THE GIVEN CLASSIFICATION PROBLEM.
ALL RESULTS WERE AVERAGED OVER 50 INDEPENDENT RUNS.

SD REPRESENTS STANDARD DEVIATION

4) constructive neural network design algorithm
(CNNDA) [13];

5) modified CCLA (MCCLA) [28];
6) feedforward neural network constructive algorithm

(FNNCA) [43].

All these algorithms, except CNNDA and OMNN, employed
a constructive approach in determining ANN architectures.
CNNDA employed a hybrid constructive and pruning ap-
proaches, whereas OMNN employed a hybrid simulated an-
nealing [44] and tabu search [45] methods.

The BP algorithm [32] was used in NCA, CNNDA, MCCLA,
and OMNN for training ANNs, whereas the quasi-Newton
method [43] was used in FNNCA. CCLA and CFNN used the
quickprop method [46] for training ANNs. It has been known

TABLE VII
PERFORMANCE OF NCA WITH DIFFERENT PARAMETER VALUES FOR THE

LETTER PROBLEM. TER REPRESENTS THE GENERALIZATION ABILITY

OF PRODUCED ANNs FOR THE GIVEN CLASSIFICATION PROBLEM.
ALL RESULTS WERE AVERAGED OVER 50 INDEPENDENT RUNS.

SD REPRESENTS STANDARD DEVIATION

TABLE VIII
COMPARISON BETWEEN NCA, CNNDA [13], CCLA [14], CFNN [17],

MCCLA [28], AND FNNCA [43] ON THE CANCER PROBLEM. TER
REPRESENTS THE GENERALIZATION ABILITY OF PRODUCED ANNs FOR

THE GIVEN CLASSIFICATION PROBLEM. THE RESULTS OF NCA AND CCLA
WERE AVERAGED OVER 50 INDEPENDENT RUNS, WHEREAS THEY WERE

AVERAGED OVER 30 INDEPENDENT RUNS FOR CNNDA AND OMNN.
THE RESULTS OF MCCLA AND FNNCA WERE THE BEST OF 5 AND

50 INDEPENDENT RUNS, RESPECTIVELY. SD REPRESENTS STANDARD

DEVIATION AND ‘−’ MEANS NOT AVAILABLE

that quasi-Newton and quickprop are faster than BP. To make
a fair comparison, we compared NCA with other algorithms
in terms of the number of hidden neurons and TER/STE.
However, the number of training epochs was also compared
when other algorithms used BP for training ANNs.

Tables VIII–XI present the results of NCA and other algo-
rithms for several classification and approximation problems. It
is shown that NCA achieved the smallest TER/STE for eight
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TABLE IX
COMPARISON BETWEEN NCA AND CCLA [14] ON FOUR CLASSIFICATION

(THE FIRST FOUR ROWS) AND TWO APPROXIMATION (THE LAST TWO

ROWS) PROBLEMS. TER AND STE REPRESENT THE GENERALIZATION

ABILITY OF PRODUCED ANNs FOR CLASSIFICATION AND

APPROXIMATION PROBLEMS, RESPECTIVELY. THE RESULTS OF BOTH

NCA AND CCLA WERE AVERAGED OVER 50 INDEPENDENT RUNS.
SD REPRESENTS STANDARD DEVIATION

TABLE X
COMPARISON BETWEEN NCA, CNNDA [13], AND MCCLA [28] ON THE

LETTER PROBLEM. TER REPRESENTS THE GENERALIZATION ABILITY

OF PRODUCED ANNs FOR THE GIVEN CLASSIFICATION PROBLEM.
THE RESULTS OF NCA WERE AVERAGED OVER 50 INDEPENDENT RUNS,

WHEREAS THEY WERE AVERAGED OVER INDEPENDENT 30 RUNS

FOR CNNDA. THE RESULTS OF MCCLA WERE THE

BEST RESULTS OF FIVE INDEPENDENT RUNS

TABLE XI
COMPARISON BETWEEN NCA, CCLA [14], AND OMNN [20] ON THE

THYROID PROBLEM. TER REPRESENTS THE GENERALIZATION ABILITY

OF PRODUCED ANNs FOR THE GIVEN CLASSIFICATION PROBLEM. THE

RESULTS OF NCA AND CCLA WERE AVERAGED OVER 50 INDEPENDENT

RUNS, WHEREAS THEY WERE AVERAGED OVER 30 INDEPENDENT

RUNS FOR OMNN. SD REPRESENTS STANDARD DEVIATION

AND ‘−’ MEANS NOT AVAILABLE

out of nine problems. The proposed NCA also produced more
compact network architectures compared to other algorithms
for most of the problems. The performance of CCLA was
found better than NCA for the card problem. Both NCA and
CCLA used ANNs with, on the average, about one hidden
neuron for the card problem; thus, NCA could barely utilize its

TABLE XII
COMPARISON BETWEEN NCA, VNP [2], OBS [3], OMNN [20], AND OBD

[47] ON THE IRIS PROBLEM. TER REPRESENTS THE GENERALIZATION

ABILITY OF PRODUCED ANNs FOR THE GIVEN CLASSIFICATION

PROBLEM. THE RESULTS OF NCA AND OMNN WERE AVERAGED OVER

50 AND 30 INDEPENDENT RUNS, RESPECTIVELY, WHEREAS THEY

WERE NOT MENTIONED IN [2] FOR VNP, OBS, AND OBD

two key components: 1) training hidden neurons with different
training sets and 2) adding new hidden layers based on hidden
neurons’ functionality. This case is the main reason for the
better performance of CCLA over NCA for the card problem.
In addition, CCLA used direct connections from the input layer
to the output layer. This result helped CCLA in solving the card
problem with a little bit smaller number of hidden neurons.

Direct comparison with other algorithms using statistical
tests is impossible, unless the results of each independent run
are available. Such results for CCLA are available through
an anonymous file transfer protocol from ftp.ira.uka.de in
directory/pub/neuron as file nndata.tar.gz, and for CNNDA and
MCCLA, they are available from our previous study [13]. We
therefore conducted t-test to assess the significance in perfor-
mance difference between NCA and CCLA/CNNDA/MCCLA.
The t-test, based on the number of hidden neurons and
TER/STE, indicates that NCA was significantly better than
CCLA at a 95% confidence level, except for the card and flare
problems. Both NCA and CCLA showed similar performance
in terms of the number of hidden neurons and TER of the
card problem. These two algorithms also showed similar perfor-
mance when compared based on the STE of the flare problem.
However, NCA was found to be better than CCLA based on
the number of hidden neurons of the flare problem. The t-test,
based on the number of hidden neurons, number of epochs, and
TER, indicated that NCA was significantly better than CNNDA
and MCCLA at a 95% confidence level for the two problems
that we compared here.

We have not yet compared NCA with any algorithm based
on pruning and evolutionary approaches. It is interesting to
compare the performance of NCA with those algorithms. We
therefore compared the performance of NCA with that of vari-
ance nullity pruning (VNP) [2], optimal brain surgeon (OBS)
[3], EPNet [7] and optimal brain damage (OBD) [47]. The
algorithms VNP, OBS, and OBD use a pruning approach in
determining the number of hidden neurons of single-hidden-
layered ANNs, whereas EPNet uses an evolutionary approach.
Tables XII and XIII present the results of the aforementioned
algorithms along with NCA. The results of NCA and EPNet
were averaged over 50 and 30 independent runs, respectively,
whereas they were not mentioned in [2] for VNP, OBS, and
OBD. It is shown that NCA performed better than EPNet both
in terms of hidden neurons and TER. However, NCA performed
better than OBS and OBD in terms of hidden neurons, whereas
OBS and OBD performed better than NCA in terms of TER.
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TABLE XIII
COMPARISON BETWEEN NCA AND EPNet [7] ON THE CANCER AND

THYROID PROBLEMS. TER REPRESENTS THE GENERALIZATION

ABILITY OF PRODUCED ANNs FOR THE GIVEN CLASSIFICATION

PROBLEMS. THE RESULTS OF NCA WERE AVERAGED OVER

50 INDEPENDENT RUNS, WHEREAS THEY WERE

AVERAGED OVER 30 INDEPENDENT RUNS FOR EPNet.
SD REPRESENTS STANDARD DEVIATION

The VNP algorithm performed better than NCA in terms of
hidden neurons, whereas NCA performed better than VNP in
terms of TER.

D. Discussion

This section briefly explains why the performance of
NCA is better than other algorithms that we compared in
Tables VIII–XI. There are a number of possible reasons for
NCA’s better performance.

First, NCA emphasizes on determining the complete topo-
logical information of an ANN architecture for solving prob-
lems. This algorithm therefore determines not only the number
of hidden layers in ANNs but also the number of neurons in
each hidden layer. In contrast, VNP [2], OBS [3], EPNet [7],
CFNN [17], OMNN [20], CNNDA [13], FNNCA [43], and
OBD [47] determine the number of hidden neurons for fixed
hidden-layered ANNs. The other two algorithms, i.e., CCLA
[14] and MCCLA [28], determine the number of hidden layers
in ANNs with a fixed number of neurons in each hidden layer.
It is clear, based on the characteristics of different problems and
their TERs or STEs, that the complexity of all problems are not
the same (see Table I and Tables VIII–XI). Our experimental
results revealed that, even for the same problem, the number of
hidden layers and of hidden neurons could be different due to
the effect of different parameters involved in the architecture
determination process (see Table II). They also revealed that
the use of a fixed number of hidden layers was not beneficial
for solving different problems (see Table III).

Second, NCA uses a training strategy that trains each hidden
neuron in ANNs with a different training set. This training
strategy encourages and forces each hidden neuron to work
on unsolved parts of the training data. Although CFNN [17],
CCLA [14], CNNDA [13], FNNCA [43], and CFNN [17]
add hidden neurons one by one, with the aim of solving the
unsolved parts of the training data, they train all hidden neurons
using the same training data. When hidden neurons are added
one by one, the neurons, which were added and trained earlier,
could solve some parts of the training data. It is therefore
natural to train a new hidden neuron on the remaining unsolved
parts of the training data. The benefit of this approach is that
each hidden neuron can concentrate on its own tasks; therefore,
it can more efficiently handle the complex portion of the task.
Our empirical studies reveal that such a training scheme is

beneficial for producing compact network architectures with a
good generalization ability (see Tables II and III).

CNNDA [13] uses two phases: 1) an additive phase for de-
termining the number of hidden neurons in ANNs roughly and
2) a pruning phase for refining the determination, i.e., for the
removal of possible irrelevant connections and/or neurons. The
aim of using the pruning phase is to produce compact network
architectures. The problem with this approach is that the execu-
tion of the pruning phase requires some training epochs. This
instance may overfit the training data due to overtraining, or
the training algorithm may produce large connection weights.
These two factors are not suitable for the generalization ability
of ANNs [48]. CFNN used a different activation function,
with the aim of producing ANNs with functionally different
neurons. However, it is not known whether each added neuron
is focused on the unsolved parts of the training data. The other
two algorithms, i.e., CCLA [14] and FNNCA, do not use any
scheme to produce compact ANN architectures.

The third reason is the effect of the layer-addition criterion.
CCLA [14], MCCLA, [28] and CNNDA use a criterion based
on the training error to add new hidden layers in ANNs. As
aforementioned, the training error reduces when a hidden neu-
ron is added in a new hidden layer or in an existing hidden layer.
In other words, the error reduction does not give the precise
information for the necessity of adding hidden layers. The
proposed NCA therefore uses hidden neurons’ functionality in
association with the training error in the hidden-layer-addition
criterion.

V. CONCLUSION

The automatic determination of ANNs’ architecture is one
of the most important and discussed issues in the neural net-
work community. This paper has described a new construc-
tive approach, i.e., NCA, to automatically determine ANNs’
architecture. The idea behind NCA is to put more emphasis
on complete architectural adaptation and functional adaptation
rather than only partial architectural adaptation. A constructive
approach is better suited due to its simplicity for handling such
a multiobjective adaptation scheme. It also helps in avoiding the
initialization problem suffered by other approaches.

A number of techniques have been adopted in NCA to
achieve architectural adaptation and functional adaptation. For
example, the proposed approach determines not only the num-
ber of hidden neurons in an ANN but also the number of
neurons in each hidden layer to achieve complete architectural
adaptation. This approach freezes the connection weights of a
previously added hidden neuron and creates a new training set
when a new neuron is added to the ANN. The new training set
is created in such a way that it emphasizes on unsolved parts of
the training data. The hidden-layer-addition criterion of NCA
incorporates the functionality of hidden neurons’ along with
training error. NCA employs the aforementioned techniques to
achieve functional adaptation during architectural adaptation.

The extensive experiments in this paper have been carried
out to evaluate how well NCA performed on different problems
compared with other algorithms. In almost all cases, NCA
outperformed the others. However, our experimental study ap-
peared to have revealed a weakness of NCA in dealing with the
card problem, which can be solved by an ANN with about one
hidden neuron. It is found that training hidden neurons with
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different training sets do not work well for solving problems
with a small-sized ANN. It would be interesting to more
rigorously analyze NCA in the future to gain more insights
into when NCA is most likely to perform well and for what
kind of problems. In its current implementation, NCA has few
user-specified parameters, although this case is not unusual in
the field. These parameters, however, are not very sensitive to
moderate changes. One of the future improvements to NCA
would be to reduce the number of parameters or to make them
adaptive. In addition, the use of a different activation functions
in NCA for each hidden neuron in ANNs would also be an
interesting future research topic.
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