

K. Saeed and V. Snášel (Eds.): CISIM 2014, LNCS 8838, pp. 11–22, 2014.
© IFIP International Federation for Information Processing 2014

A New Contention Management Technique
for Obstruction Free Transactional Memory

Ammlan Ghosh, Anubhab Sahin, Anirban Silsarma, and Rituparna Chaki

University of Calcutta, Kolkata, India
{ammlan.ghosh,anirban.silsarma}@gmail.com,

anubhab.s@hotmail.com, rchaki@ieee.org

Abstract. Transactional Memory, one of the most viable alternatives to lock based
concurrent systems, was explored by the researchers for practically implementing
parallel processing. The goal was that threads will run parallel and improve system
performance, but the effect of their execution will be linear. In STM, the non-
blocking synchronization can be implemented by Wait-Freedom, Lock-Freedom or
Obstruction-Freedom philosophy. Though Obstruction Free Transactional Memory
(OFTM) provides the weakest progress guarantee, this paper concentrates upon
OFTM because of its design flexibility and algorithmic simplifications. In this
paper, the major challenges faced by two state of the art OFTMs viz. Dynamic
Software Transactional Memory (DSTM) and Adaptive Software Transactional
Memory (ASTM), have been addressed and an alternative arbitration strategy has
been proposed that reduces the abort percentage both in case of Read-Write as well
as Write-Write conflicts.

Keywords: Software Transactional Memory (STM), Obstruction-free
Transactional Memory (OFTM), Contention Management, Concurrency.

1 Introduction

Developing systems with multiple threads that can execute concurrently is no more a
notion, but a reality. And in the current era, it is more of a necessity to utilize the full
capacity of multi-core processors. Improvement of performance within a single core
becomes essential to utilize the computational power provided by chip level
multiprocessing. Locking has been an in-vogue technique used by the programmers
for writing parallel programs. Lock based synchronization, however, leads to a
number of unwanted situations like occurrence of deadlocks, priority inversion of
processes and complication of fine-grained locking.

Concept of transactional memory addresses these issues and provides a promising
alternative to lock based synchronization. The idea is to allow concurrent execution of
transactions maintaining atomicity, consistency and isolation (ACI property) of each,
i.e. threads will run parallel and improve system performance, but the effect of their
execution will appear linear. Unlike database transactions, transactional memory
instructions are meant to be short span transactions that access a relatively smaller
number of memory locations [1]. Transactional Memory systems can be purely
hardware based (Hardware based Transactional Memory or HTM) [2], software-only

12 A. Ghosh et al.

(Software Transactional Memory or STM) [3] or hybrid. Naturally, the level of
flexibility in STM over modification and integration is maximum. In STM, the
fundamental operations i.e. the processes of acquiring and releasing ownership of
concurrent objects (shared memory locations) are done atomically by non-blocking
synchronization techniques using design primitives LL/SC (Load Linked Store
Conditional) [4] and CAS (Compare and Swap) [4,5,7]. The key advantages are low
space complexity and reduced performance overhead. These atomic operations are
widely supported by multi-core processors.

The non-blocking implementations of STM systems have been mostly designed on
the basis of either Lock-Freedom or Obstruction-Freedom philosophy. An STM
system is lock free if some transactions are guaranteed to commit in a finite number
of steps [6]. Although Lock-Freedom often delivers exceptional results, there is a
question mark over the correctness of semantics in these algorithms. An STM system
is obstruction free if every transaction is guaranteed to commit in absence of
contention. Obstruction freedom provides the weakest progress guarantee and also
admits the possibility of livelocks. Still obstruction freedom has been the preferred
choice of many as it substantially reduces the implementation complications i.e. codes
are simple, flexible and depending upon the design, can considerably improve
parallelism and scalability of a system with many cores.

In 2003, Herlihy et al. constructed one of the earliest obstruction-free STM systems
called DSTM [10] to support dynamic sized data structures. Since then several
OFTMs have been proposed including ASTM [11], RSTM [12] and NZTM [13], with
considerable differences in their respective system designs. The researchers were
mainly interested in improving the throughput and minimizing the computational
overhead of transaction processing.

In this paper, some major challenges faced by two state of the art OFTMs viz.
DSTM and ASTM, have been addressed and an alternative negotiation strategy has
been proposed. Unlike the existing OFTM systems, the proposed method allows
multiple Read-Only transactions to share data object concurrently along with Write
transactions. When a Write transaction reaches its commit point it checks the maturity
of the all active read-only transactions and decides which of them are allowed to be
committed. The proposed algorithm also presents a new contention management
policy to resolve conflicts between Write transactions. Section 2 describes some
existing works, followed by section 3 which presents the proposed algorithm; section
4 evaluates the performance of the algorithm; finally we conclude and discuss future
scope in section 5.

2 Background

The STM uses primitive atomic operations like and LL/SC (load-link and store-
conditional) [4] and CAS (Compare and Swap) [5] for implementing read, write,
commit and abort statements. Load-link and store-conditional are a pair of
instructions used together in multithreading to achieve synchronization. Load-link
returns the current value of a memory location and a subsequent store-conditional will
store a new value if no updates are made in that location meanwhile. CAS is used to
read from a particular memory location and to write back the modified value in the

 A New Contention Management Technique for OFTM 13

same location after ensuring that the location has not been altered in between. Of late
a slightly sophisticated version viz. DCAS (Double-word Compare and Swap) [14]
has been used in some STMs, which basically executes two CAS operations
simultaneously. These primitive atomic operations are used to guarantee that
consistency of the system is not hampered during an update. The common
performance metrics for the various STM systems have been (i) Conflict
Management, (ii) Transaction Granularity and (iii) Number of Basic Operations. In
obstruction free environment, when a conflict occurs among two or more transactions
(of which at least one is a Write transaction) over a particular resource, the
management policy of the concerned system will determine which transaction(s) will
progress and which will abort. This conflict management strategy of an OFTM is
determined by the contention manager. The performance of an OFTM depends
largely upon the efficiency of the contention manager [15]. Granularity is considered
as the smallest data store memory unit that can be possessed by a transaction for its
Read/Write operations.

The authors have discussed two well known OFTM implementations viz. DSTM
[10] and ASTM [11] as the proposed methodology has been influenced by these
implementations.

2.1 DSTM

Herlihy et al. proposed one of the earliest obstruction-free STM (OFTM) systems
called DSTM [10] to support dynamic sized data structures. The highlight of this
system was assurance of progress in practice with the introduction of a modular
contention manager, thus removing the single biggest drawback of OFTM. In DSTM,
the TM-Object (Figure 1) points to a locator object with three pointers: pointer 1
points to the descriptor of the most recent transaction that held the object; pointers 2
and 3 point to the old and new versions of the data object. When a transaction
successfully commits, the new version of the data object is made permanent. On the
other hand, when a transaction is aborted by other transaction, the old version of the
data object is read by the aborting transaction before its execution. Concepts of early
release and visible/invisible reads were also coined by the DSTM developers, which
have been applied in various forms in the latter STM designs. The idea of early
release is that a transaction may release an opened object before committing. This
sometimes proves really beneficial in case of data structures like trees. The read
visibility helps to avoid unnecessary contention between Read only transactions. In
this scheme, each transaction maintains a separate Read-list of the objects that have
been opened by Read only transactions. Before commit, a Write transaction checks
the Read-list to resolve the contention. The read visibility yields a large performance
benefit, especially in read-dominated work load, due to its easy read-object validation.

Herlihy et al. [10] proposed two basic contention managers viz. Aggressive
Manager and Polite Manager. An Aggressive Manager directly aborts the conflicting
transaction(s) whereas Polite Manager uses exponential back-off to acquire ownership
of the TM-Object.

14 A. Ghosh et al.

Fig. 1. Trans

2.2 ASTM

Adaptive Software Transac
along with a modified con
DSTM. ASTM offered ada
acquires an object in two w
the objects at the beginning
objects at commit time.
contention earlier and help
better in write dominated w
workload. The flip side is t
adaptive nature of acquire m

Initially ASTM did not i
released with Adaptive Co
Manager uses the idea of m
from previous experience
environment so as to maxim
contention managers viz. K
Karma Manager gives abso
Eruption Manager is based
particular transaction is blo
have. Finally Greedy Mana
a lower priority or is curren
running transaction.

For Write transactions
similar structure as that of
objects (unacquired state).
the former suffers indirecti
TM-Object but also for the
locator to data. Analysis o

sactional Object (TM Object) structure in DSTM

ctional Memory (ASTM) [11] used the structures of DST
nflict management scheme to overcome the loopholes
aptive methodology to adjust the workload. A transact
ways. In eager acquire methodology a transaction acqu
g, where as in lazy acquire scheme a transaction acqu
Eager acquire method allows a transaction to de

ps to ensure consistency. Naturally eager-ASTM wo
workload while lazy-ASTM works better in read domina
that it increases the overhead of the system because of
methodology.
introduce any new manager, but shortly ASTM-2 [16] w

ontention Management Policies. The Adaptive Content
machine learning motivated by behaviorist psychology,

a manager decides how to take action in a particu
mize transaction throughput. ASTM2 includes a numbe
Karma Manager, Eruption Manager and Greedy Manag
olute priority to the transaction that has done more wo
d on the principle that the more number of transaction
ocking, the higher priority the blocker transaction sho
ager does not abort the conflicting transaction unless it
ntly waiting for another transaction; otherwise it aborts

(acquired state), the TM-Object points to a locator w
f DSTM. But by default the TM-Object points to the d

So when a Read transaction follows a Write transacti
ion overhead, not only for acquiring the ownership of
e extra CAS for changing the direction of the pointer fr
f this STM system over simulated test cases also veri

TM
s of
tion
ires

uires
etect
orks
ated
the

was
tion
i.e.

ular
r of
ger.
ork.
ns a
ould
has
the

with
data
ion,
the

rom
ifies

 A New Contention Management Technique for OFTM 15

this finding; as expected, in workloads dominated by either read or write operations,
ASTM gives excellent performance. But in case of a uniformly mixed set of Reads
and Writes, the throughput degrades drastically.

The above STM systems use object granularity where there is no need to change
the original object structure for converting a normal program to a transactional one.
Object granularity also perfectly suits object oriented programming style.

Both in case of ASTM and DSTM, a transaction that opens n objects in write mode
requires n CASes to acquire the objects and an additional CAS to commit which
makes a total of n+1 CASes. But the cost might increase manifold in ASTM as the
subsequent readers might perform up to n CASes to return the objects to unacquired
state [6].

3 Proposed Scheme of Arbitration over a Resource between
Two or More Competing Transactions

From the above inductive analysis we observe two major challenges common to both
DSTM and ASTM:

(i) Considerably high number of aborts, and
(ii) The complexity involved in implementing modular contention management

policy leads to a higher computational overhead

The frequent roll-backs of write transactions hamper the transactional processing
greatly as normally write transactions execute longer than read-only transactions. The
loss proves much costlier when a lengthy write transaction gets aborted by a much
smaller write because of the rigidity of the concerned contention management policy.
Also modular contention management schemes discussed above requires imparting
intelligence in the software system such that based on the workload pattern the system
can decide for itself which contention manager to use in a particular situation.
Keeping these two major challenges in mind, this paper proposes a generic conflict
management strategy aiming at reducing the abort percentage. The technique is based
on the use of a single contention manager for all types of workload patterns. The
proposed method uses lazy conflict detection scheme for both read-only as well as
write transactions. In a bid to avoid spurious aborts for read-only transactions, a list of
‘matured’ read transactions (on the basis of their execution time) is maintained. When
a write transaction tries to commit, it checks this list and backs-off to give a chance to
these read-only transactions to commit. When a transaction detects conflicts, it either
backs-off for certain time to give chance to the conflicting transactions or aborts
conflicting transactions or aborts itself. The decision is taken after consulting the
contention manager, in order to achieve synchronization in a non-blocking manner.

3.1 TM-Object Structure in Proposed OFTM

The proposed OFTM maintains the TM Object structure (Figure 2) similar to that of
DSTM. Additionally, this TMObject has a pointer to the write transaction’s
Q_RdrLst, a list of qualified read-only transaction, on the basis of which a write
transaction decides its back-off policy. Also for log file storage a descriptor is

16 A. Ghosh et al.

maintained by every transa
remains in the thread local
during thread initialization.

Fig. 2.

3.2 Nomenclature

It is presumed that transact
Random Number Generati
modifying (each write trans

The underlying assump
increasing linear function o
list of term definitions used

tµ
W: mean time taken by the

tµ
R: mean commit time of a

#Ts
w: number of committe

equal to tµ
w.

∑n
i=1T

i
R/W: set of all transac

#Tw: total number of comm

ti: total time for which a tra
time instant. Ti

R/W may be in

RdrLst: all active read-only

Ti
w.Q_RdrLst ⊂ RdrLs

corresponding to write tra
transactions that started bef

 j: Identity of the r
 Initj

R: timestamp

action that stores the transaction metadata. The descrip
l storage (TLS) and is created right at the beginning,

. TM Object structure in proposed OFTM

tions belonging to ∑n
i=1T

i
R/W and obtained from a Pseu

ing Algorithm open the object ‘O’ for either reading
saction acquires a different version).
ption is that work done by a transaction is roughly
of its total execution time. The following is an exhaust
d to describe the functioning of the system.

e CPU to finish a write transaction.

a read-only transaction.

d write transactions whose execution time is less than

ctions that initiate and commit within time span ‘t’.

mitted write transactions.

ansaction Ti
R/W has executed, as calculated at that particu

n active/aborted/committed state.

y transactions are stored in this list.

st: Qualified Reader List is a 2-tuple {j, Initj
R}

ansaction Ti
w, which is the set of all active read-o

fore Ti
w’s try_commit point.

read-only transaction
 at the initiation of Tj

R

ptor
i.e.

udo
g or

an
tive

n or

ular

list
only

 A New Contention Management Technique for OFTM 17

Mtr_lvli
W: maturity_level of the ith write transaction; if any write transaction executes

lesser than tµ
w, then maturity_level of that transaction is considered as LO; if any

write transaction executes longer than tw
max, then maturity_level of that transaction is

considered as HI,

 tw
max = tµ

w * #Tw / #Ts
w

The values of tµW and tµR get modified every time a new write transaction or a new read-
only transaction commits. Maturity_level is considered only for active write transactions.

3.3 Proposed Algorithm

For all transactions Ti
w that modified object O and has reached its try_commit point

If Found = TRUE

If Ti
w.Q_RdrLst != Ø
tb = tµ

R - Min(tk) ∀ Tk
R ∈ Ti

w.Q_RdrLst
Ti

w backs off for time tb
Commit all Tk

R ∈ Ti
w.Q_RdrLst that reach their respective try_commit points

within this time period; remove them from RdrLst and Ti
w.Q_RdrLst

Abort all Tm
R ∈ Ti

w.Q_RdrLst
End if

If Mtr_lvli
W = LO

Check if there exists transaction, Tj
w which holds a version ‘Oj’

Э (Mtr_lvlj
W = HI) && (Oi!= Oj)

If Found = TRUE
Complete execution of Tj

w and commit Tj
w

End if
End if

Commit Ti
w

Roll back all other write transactions holding Ok, Э Ok != Oi and free the
corresponding memory locations

End if

3.4 Case Study

Normally it is observed that within a workload, even the longest read-only transaction
executes for a shorter period than the smallest write transaction. But exceptions may
happen especially in case of reads involving indirect addressing. In the proposed
negotiation strategy, neither absolute free hand has been given to read-only
transactions, nor occurrence of a conflict results in indiscriminate aborting of all reads
under consideration. An intermediate approach has been adopted where only those
read-only transactions that can finish execution within a stipulated time (tb) are
allowed to commit.

18 A. Ghosh et al.

We have categorized th
execution as maturity_leve
assumed while defining tw

m

committed write transactio
greater than #Tw/2.

3.4.1 Random Generat

We can visualize the system
the following function,

i = {(Rand(x) Mod

This function gives a ve
object by different transacti

But if all the threads are
each will commit on reachi
however is a trivial case and

3.4.2 Checking Before

Before a write transaction
checks if any read-only tra
next it verifies if the matur
outcome of this second ch
transaction under consid
maturity_level = HI to rol
effectively makes way for m
saves any lengthy write tran
value of back-off time tb is e
set to another. This is show
known OFTMs i.e. DSTM
important designing parame

Fig

e active Write transactions in terms of their total time
el = LO and maturity_level = HI. Reverse ratio has b
max because experimental results reveal that the number

ons which execute for less than ‘tµ
w’ time is considera

tion of Threads

m threads that use a particular object (say O) in the form

d #Tn) + 1}

ery good virtualization of random order acquisition of
ions (For e.g. Ti can be T5, T33, T17, etc.).
e independent, i.e. they do not share any common obj
ing its try_commit point without bothering the others. T
d is very unlikely to happen in practical systems.

Write Commit

commits, the system basically performs the following
ansaction(s) is holding an old version of the same obj
rity_level of the try_commit write transaction is LO; if
heck is affirmative, it performs the final check, i.e. if
deration is forcing another write transaction w
ll back. From the outcome of this threefold checking
most read-only transactions (if not all) to commit and a
nsaction which would have been sacrificed otherwise. T
environment dependent and might vary from one workl
wn in the Figure 3a and 3b. Table 1 compares two w
and ASTM with the proposed one, by characterizing so
eters.

g. 3a. Case 1. T2 waits for T7 to commit

e of
been
r of
ably

m of

f an

ect,
This,

g: it
ect;
the
the

with
g, it
also
The
load

well-
ome

F

3.5 Comparison of the

Table 1. Analysis of DSTM, AS

Designing
Parameters

Synchronization Obs
Free

Granularity Obj
Conflict Detection Eag
Update Strategy Dire
Read Visibility Invi

Data
Organization

Kee
tran
and
sepa
stru

Data Indirection Two

4 Performance Ev

The efficiency and performa
OFTMs [10], [11] depends a
been analyzed here in thre
section, it would be establi
equivalent throughput as com

4.1 Metric of Evaluatio

There are various paramete
fundamental approach is b

A New Contention Management Technique for OFTM

Fig. 3b. Case 2. T2 forces T7 to abort

Proposed OFTM with DSTM and ASTM

STM and the proposed OFTM based on some designing paramet

DSTM ASTM
PROPOSED

OFTM
struction
edom

Obstruction
Freedom

Obstruction
Freedom

ject Based Object Based Object Based
ger Lazy Lazy
ect Deferred Deferred
isible Invisible Visible
eps
nsactional data
d object data in
arate memory

uctures

Keeps
transactional data
and object data in
separate memory
structures

Keeps
transactional dat
and object data i
the same memor
structure

o indirections Two indirections One indirection

valuation

ance improvement of the proposed method over the exist
a lot upon the level of domination of reads in the set. This
ee different categories. However, towards the end of
ished that the proposed approach would guarantee at l
mpared to the existing approaches.

on

ers of evaluating the performance of an STM system. O
by measuring the percentage of committed transactio

19

ters

ta
in
ry

ting
has
this
east

One
ons.

20 A. Ghosh et al.

To compare the performance of the various Contention Managers, we have created a
pool of fifty threads. With variation in the percentage of writes, we have executed two
very well-known Contention Managers, viz. Aggressive Manager proposed by
Herlihy et. al. in DSTM and Karma Manager of ASTM-2 in the thread pool. On the
same test beds we have tested our proposed manager. Here contention over a single
resource has been considered. The start time and execution time of the transactions
were generated randomly and the following results were achieved.The following
figures show the results of evaluation.

4.2 Performance Summary

The simulation results on the three different workload sets reveal that performance of
the proposed algorithm is always better than performance of both these managers in
case of read-write conflicts. This is because of the sensible back-off performed by the
contention manager whenever there is a contention between a read transaction and a
write transaction. Also it is found that performance of the proposed manager with
respect to the others improves significantly with decrease in the domination of reads
in the workload. From the graphs, it can be concluded that though the proposed
manager performs slightly better than Karma manager, but it surpasses the commit
percentage of Aggressive Manager by miles over all workloads.

By a non-weighted average across all the four test cases, our manager achieves a
flat betterment of 36.85% over the performance of Aggressive Manager and 4.34%
over that of Karma Manager.

Fig. 4a. 10% Write Set

45

32

5

3

70

45

36

5

4

80

45

36

5

4

80

0 20 40 60 80 100

Total READ

No. of READ commited

Total Write

No. of Write Commited

Commit Percentage

Proposed Manager

Karma

Aggressive

 A New Contention Management Technique for OFTM 21

Fig. 4b. 20% Write Set

Fig. 4c. 40% Write Set

5 Conclusion and Future Scope

The proposed OFTM aims at reducing the number of aborts. It gives a fair amount of
time period to the active read-only transactions so that they can complete execution
and commit. In many cases it will not abort any of the read-only transactions. The
novelty of this system lies in the fact that in case of write-write conflicts, it saves the
matured writes, instead of aborting it. The system also performs clean-ups for all
unsuccessful transactions and frees the corresponding memory locations. On the flip
side, this STM system is not strictly non-blocking as putting Ti

w off to sleep is
basically blocking it from completing its execution. In this regard we have made a
trade-off between rigidity of non-blocking semantics and system throughput.

The authors plan to test the algorithm upon some more sophisticated benchmarks like
Red Black tree and Hash Table. Once done, the performance of the proposed OFTM

40

25

10

4

58

40

35

10

4

78

40

37

10

6

86

0 20 40 60 80 100

Total READ

No. of READ commited

Total Write

No. of Write Commited

Commit Percentage

Proposed Manager

Karma

Aggressive

30

14

20

11

50

30

24

20

12

72

30

23

20

14

74

0 20 40 60 80

Total READ

No. of READ commited

Total Write

No. of Write Commited

Commit Percentage

Proposed Manager

Karma

Aggressive

22 A. Ghosh et al.

system shall be compared with the best known existing OFTMs. Considering the degree
of reduction of computational overhead, a par performance or even 10% degradation in
terms of throughput should be a satisfactory result for proposed OFTM.

References

1. Harris, T., Larus, J., Rajwar, R.: Transactional Memory, 2nd edn. Morgan & Claypool
(2010)

2. Herlihy, M., Eliot, J., Moss, B.: Transactional memory: architectural support for lockfree
data structures. In: ISCA 1993: Proc. 20th Annual International Symposium on Computer
Architecture, pp. 289–300 (May 1993)

3. Shavit, N., Touitou, D.: Software transactional memory. In: ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing, pp. 204–213. ACM (August 1995)

4. Marathe, V.J., Scott, M.L.: Using LL/SC to simplify word-based software transactional
memory (poster). In: PODC 2005: Proc. 24th ACM Symposium on Principles of
Distributed Computing (July 2005)

5. Guerraoui, R., Kapalka, M.: On Obstruction-Free Transactions. In: SPAA 2008: Proc. 20th
Annual Symposium on Parallelism in Algorithms and Architectures, pp. 304–313 (June 2008)

6. Marathe, V.J., Scott, M.L.: A Qualitative Survey of Modern Software Transactional
Memory Systems. Technical Report Nr. TR 839. University of Rochester Computer
Science Dept. (2004)

7. Herlihy, M.: Wait-free synchronization. TOPLAS: ACM Transactions on Programming
Languages and Systems 13(1), 124–149 (1991)

8. Fraser, K.: Practical lock freedom, PhD Dissertation, Cambridge University Computer
Laboratory (2003)

9. Herlihy, M., Luchangco, V., Moir, M.: Obstruction-free synchronization: Double-
endedqueues as an example. In: Proceedings of the 23rd International Conference on
Distributed Computing Systems, pp. 522–529 (2003)

10. Herlihy, M., Luchangco, V., Moir, M., Scherer III., W.N.: Software Transactional Memory
for Dynamic-sized Data Structures. In: 22nd Annual ACM Symposium on Principles of
Distributed Computing, pp. 92–101 (July 2003)

11. Marathe, V.J., Scherer III, W.N., Scott, M.L.: Adaptive software transactional memory. In:
Fraigniaud, P. (ed.) DISC 2005. LNCS, vol. 3724, pp. 354–368. Springer, Heidelberg (2005)

12. Marathe, V.J., Spear, M.F., Heriot, C., Acharya, A., Eisenstat, D., Scherer III, W.N., Scott,
M.L.: The Rochester software transactional memory runtime (2006),
http://www.cs.rochester.edu/research/synchronization/rstm

13. Tabba, F., Wang, C., Goodman, J.R., Moir, M.: NZTM: non-blocking zero-indirection
transactional memory. In: Proceedings of the 21st ACM Annual Symposium on
Parallelism in Algorithms and Architectures (SPAA), pp. 204–213 (2009)

14. Attiya, H., Hillel, E.: The power of DCAS: highly-concurrent software transactional
memory. In: Proceedings of the Twenty-sixth Annual ACM Symposium on Principles of
Distributed Computing. ACM (2007)

15. Scherer III, W.N., Scott, M.L.: Advanced contention management for dynamic software
transactional memory. In: PODC ’05: Proceedings of the Twenty-Fourth Annual ACM
Symposium on Principles of Distributed Computing, NY, USA, pp. 240–248 (2005)

16. Frank, J.C., Chun, R.: Adaptive Software Transactional Memory: A Dynamic Approach to
Contention Management. In: PDPTA 2008: Proceedings of 14th International Conference
on Parallel and Distributed Processing Techniques and Applications, Nevada, USA,
pp. 40–46 (2008)

	A New Contention Management Technique for Obstruction Free Transactional Memory
	1 Introduction
	2 Background
	2.1 DSTM
	2.2 ASTM

	3 Proposed Scheme of Arbitration over a Resource between Two or More Competing Transactions
	3.1 TM-Object Structure in Proposed OFTM
	3.2 Nomenclature
	3.3 Proposed Algorithm
	3.4 Case Study
	3.5 Comparison of the Proposed OFTM with DSTM and ASTM

	4 Performance Evaluation

	4.1 Metric of Evaluation

	4.2 Performance Summary

	5 Conclusion and Future Scope
	References

