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Abstract. Transactional Memory, one of the most viable alternatives to lock based 
concurrent systems, was explored by the researchers for practically implementing 
parallel processing. The goal was that threads will run parallel and improve system 
performance, but the effect of their execution will be linear. In STM, the non-
blocking synchronization can be implemented by Wait-Freedom, Lock-Freedom or 
Obstruction-Freedom philosophy. Though Obstruction Free Transactional Memory 
(OFTM) provides the weakest progress guarantee, this paper concentrates upon 
OFTM because of its design flexibility and algorithmic simplifications. In this 
paper, the major challenges faced by two state of the art OFTMs viz. Dynamic 
Software Transactional Memory (DSTM) and Adaptive Software Transactional 
Memory (ASTM), have been addressed and an alternative arbitration strategy has 
been proposed that reduces the abort percentage both in case of Read-Write as well 
as Write-Write conflicts.  
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1 Introduction 

Developing systems with multiple threads that can execute concurrently is no more a 
notion, but a reality. And in the current era, it is more of a necessity to utilize the full 
capacity of multi-core processors. Improvement of performance within a single core 
becomes essential to utilize the computational power provided by chip level 
multiprocessing. Locking has been an in-vogue technique used by the programmers 
for writing parallel programs. Lock based synchronization, however, leads to a 
number of unwanted situations like occurrence of deadlocks, priority inversion of 
processes and complication of fine-grained locking. 

Concept of transactional memory addresses these issues and provides a promising 
alternative to lock based synchronization. The idea is to allow concurrent execution of 
transactions maintaining atomicity, consistency and isolation (ACI property) of each, 
i.e. threads will run parallel and improve system performance, but the effect of their 
execution will appear linear. Unlike database transactions, transactional memory 
instructions are meant to be short span transactions that access a relatively smaller 
number of memory locations [1]. Transactional Memory systems can be purely 
hardware based (Hardware based Transactional Memory or HTM) [2], software-only 
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(Software Transactional Memory or STM) [3] or hybrid. Naturally, the level of 
flexibility in STM over modification and integration is maximum. In STM, the 
fundamental operations i.e. the processes of acquiring and releasing ownership of 
concurrent objects (shared memory locations) are done atomically by non-blocking 
synchronization techniques using design primitives LL/SC (Load Linked Store 
Conditional) [4] and CAS (Compare and Swap) [4,5,7]. The key advantages are low 
space complexity and reduced performance overhead. These atomic operations are 
widely supported by multi-core processors. 

The non-blocking implementations of STM systems have been mostly designed on 
the basis of either Lock-Freedom or Obstruction-Freedom philosophy. An STM 
system is lock free if some transactions are guaranteed to commit in a finite number 
of steps [6].  Although Lock-Freedom often delivers exceptional results, there is a 
question mark over the correctness of semantics in these algorithms. An STM system 
is obstruction free if every transaction is guaranteed to commit in absence of 
contention. Obstruction freedom provides the weakest progress guarantee and also 
admits the possibility of livelocks. Still obstruction freedom has been the preferred 
choice of many as it substantially reduces the implementation complications i.e. codes 
are simple, flexible and depending upon the design, can considerably improve 
parallelism and scalability of a system with many cores. 

In 2003, Herlihy et al. constructed one of the earliest obstruction-free STM systems 
called DSTM [10] to support dynamic sized data structures. Since then several 
OFTMs have been proposed including ASTM [11], RSTM [12] and NZTM [13], with 
considerable differences in their respective system designs. The researchers were 
mainly interested in improving the throughput and minimizing the computational 
overhead of transaction processing.  

In this paper, some major challenges faced by two state of the art OFTMs viz. 
DSTM and ASTM, have been addressed and an alternative negotiation strategy has 
been proposed. Unlike the existing OFTM systems, the proposed method allows 
multiple Read-Only transactions to share data object concurrently along with Write 
transactions. When a Write transaction reaches its commit point it checks the maturity 
of the all active read-only transactions and decides which of them are allowed to be 
committed. The proposed algorithm also presents a new contention management 
policy to resolve conflicts between Write transactions. Section 2 describes some 
existing works, followed by section 3 which presents the proposed algorithm; section 
4 evaluates the performance of the algorithm; finally we conclude and discuss future 
scope in section 5.    

2 Background 

The STM uses primitive atomic operations like and LL/SC (load-link and store-
conditional) [4] and CAS (Compare and Swap) [5] for implementing read, write, 
commit and abort statements. Load-link and store-conditional are a pair of 
instructions used together in multithreading to achieve synchronization. Load-link 
returns the current value of a memory location and a subsequent store-conditional will 
store a new value if no updates are made in that location meanwhile. CAS is used to 
read from a particular memory location and to write back the modified value in the 
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same location after ensuring that the location has not been altered in between. Of late 
a slightly sophisticated version viz. DCAS (Double-word Compare and Swap) [14] 
has been used in some STMs, which basically executes two CAS operations 
simultaneously. These primitive atomic operations are used to guarantee that 
consistency of the system is not hampered during an update. The common 
performance metrics for the various STM systems have been (i) Conflict 
Management, (ii) Transaction Granularity and (iii) Number of Basic Operations. In 
obstruction free environment, when a conflict occurs among two or more transactions 
(of which at least one is a Write transaction) over a particular resource, the 
management policy of the concerned system will determine which transaction(s) will 
progress and which will abort. This conflict management strategy of an OFTM is 
determined by the contention manager. The performance of an OFTM depends 
largely upon the efficiency of the contention manager [15].  Granularity is considered 
as the smallest data store memory unit that can be possessed by a transaction for its 
Read/Write operations. 

The authors have discussed two well known OFTM implementations viz. DSTM 
[10] and ASTM [11] as the proposed methodology has been influenced by these 
implementations.  

2.1 DSTM  

Herlihy et al. proposed one of the earliest obstruction-free STM (OFTM) systems 
called DSTM [10] to support dynamic sized data structures. The highlight of this 
system was assurance of progress in practice with the introduction of a modular 
contention manager, thus removing the single biggest drawback of OFTM. In DSTM, 
the TM-Object (Figure 1) points to a locator object with three pointers: pointer 1 
points to the descriptor of the most recent transaction that held the object; pointers 2 
and 3 point to the old and new versions of the data object. When a transaction 
successfully commits, the new version of the data object is made permanent. On the 
other hand, when a transaction is aborted by other transaction, the old version of the 
data object is read by the aborting transaction before its execution. Concepts of early 
release and visible/invisible reads were also coined by the DSTM developers, which 
have been applied in various forms in the latter STM designs. The idea of early 
release is that a transaction may release an opened object before committing. This 
sometimes proves really beneficial in case of data structures like trees. The read 
visibility helps to avoid unnecessary contention between Read only transactions. In 
this scheme, each transaction maintains a separate Read-list of the objects that have 
been opened by Read only transactions. Before commit, a Write transaction checks 
the Read-list to resolve the contention. The read visibility yields a large performance 
benefit, especially in read-dominated work load, due to its easy read-object validation.  

Herlihy et al. [10] proposed two basic contention managers viz. Aggressive 
Manager and Polite Manager. An Aggressive Manager directly aborts the conflicting 
transaction(s) whereas Polite Manager uses exponential back-off to acquire ownership 
of the TM-Object.  
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this finding; as expected, in workloads dominated by either read or write operations, 
ASTM gives excellent performance. But in case of a uniformly mixed set of Reads 
and Writes, the throughput degrades drastically.  

The above STM systems use object granularity where there is no need to change 
the original object structure for converting a normal program to a transactional one. 
Object granularity also perfectly suits object oriented programming style. 

Both in case of ASTM and DSTM, a transaction that opens n objects in write mode 
requires n CASes to acquire the objects and an additional CAS to commit which 
makes a total of n+1 CASes. But the cost might increase manifold in ASTM as the 
subsequent readers might perform up to n CASes to return the objects to unacquired 
state [6]. 

3 Proposed Scheme of Arbitration over a Resource between 
Two or More Competing Transactions 

From the above inductive analysis we observe two major challenges common to both 
DSTM and ASTM: 

(i)  Considerably high number of aborts, and  
(ii)  The complexity involved in implementing modular contention management 

policy leads to a higher computational overhead 

The frequent roll-backs of write transactions hamper the transactional processing 
greatly as normally write transactions execute longer than read-only transactions. The 
loss proves much costlier when a lengthy write transaction gets aborted by a much 
smaller write because of the rigidity of the concerned contention management policy. 
Also modular contention management schemes discussed above requires imparting 
intelligence in the software system such that based on the workload pattern the system 
can decide for itself which contention manager to use in a particular situation. 
Keeping these two major challenges in mind, this paper proposes a generic conflict 
management strategy aiming at reducing the abort percentage. The technique is based 
on the use of a single contention manager for all types of workload patterns. The 
proposed method uses lazy conflict detection scheme for both read-only as well as 
write transactions. In a bid to avoid spurious aborts for read-only transactions, a list of 
‘matured’ read transactions (on the basis of their execution time) is maintained. When 
a write transaction tries to commit, it checks this list and backs-off to give a chance to 
these read-only transactions to commit. When a transaction detects conflicts, it either 
backs-off for certain time to give chance to the conflicting transactions or aborts 
conflicting transactions or aborts itself. The decision is taken after consulting the 
contention manager, in order to achieve synchronization in a non-blocking manner. 

3.1 TM-Object Structure in Proposed OFTM 

The proposed OFTM maintains the TM Object structure (Figure 2) similar to that of 
DSTM. Additionally, this TMObject has a pointer to the write transaction’s 
Q_RdrLst, a list of qualified read-only transaction, on the basis of which a write 
transaction decides its back-off policy. Also for log file storage a descriptor is 
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Mtr_lvli
W: maturity_level of the ith write transaction; if any write transaction executes 

lesser than tµ
w, then maturity_level of that transaction is considered as LO; if any 

write transaction executes longer than tw
max, then maturity_level of that transaction is 

considered as HI, 

 tw
max = tµ

w * #Tw / #Ts
w 

The values of tµW and tµR get modified every time a new write transaction or a new read-
only transaction commits. Maturity_level is considered only for active write transactions. 

3.3 Proposed Algorithm 

For all transactions Ti
w that modified object O and has reached its try_commit point 

If Found = TRUE 

If Ti
w.Q_RdrLst != Ø 
tb = tµ

R - Min(tk) ∀ Tk
R ∈ Ti

w.Q_RdrLst 
Ti

w backs off for time tb 
Commit all Tk

R ∈ Ti
w.Q_RdrLst that reach their respective try_commit points 

within this time period; remove them from RdrLst  and Ti
w.Q_RdrLst 

Abort all Tm
R ∈ Ti

w.Q_RdrLst 
End if 

If Mtr_lvli
W = LO 

Check if there exists transaction, Tj
w  which holds a version ‘Oj’ 

Э (Mtr_lvlj
W = HI) && (Oi!= Oj) 

If Found = TRUE 
Complete execution of Tj

w and commit Tj
w 

End if 
End if 

Commit Ti
w 

Roll back all other write transactions holding Ok, Э Ok != Oi and free the 
corresponding memory locations 

End if 

3.4 Case Study 

Normally it is observed that within a workload, even the longest read-only transaction 
executes for a shorter period than the smallest write transaction. But exceptions may 
happen especially in case of reads involving indirect addressing. In the proposed 
negotiation strategy, neither absolute free hand has been given to read-only 
transactions, nor occurrence of a conflict results in indiscriminate aborting of all reads 
under consideration. An intermediate approach has been adopted where only those 
read-only transactions that can finish execution within a stipulated time (tb) are 
allowed to commit. 
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To compare the performance of the various Contention Managers, we have created a 
pool of fifty threads. With variation in the percentage of writes, we have executed two 
very well-known Contention Managers, viz. Aggressive Manager proposed by 
Herlihy et. al. in DSTM and Karma Manager of ASTM-2 in the thread pool. On the 
same test beds we have tested our proposed manager. Here contention over a single 
resource has been considered. The start time and execution time of the transactions 
were generated randomly and the following results were achieved.The following 
figures show the results of evaluation. 

4.2 Performance Summary 

The simulation results on the three different workload sets reveal that performance of 
the proposed algorithm is always better than performance of both these managers in 
case of read-write conflicts. This is because of the sensible back-off performed by the 
contention manager whenever there is a contention between a read transaction and a 
write transaction. Also it is found that performance of the proposed manager with 
respect to the others improves significantly with decrease in the domination of reads 
in the workload. From the graphs, it can be concluded that though the proposed 
manager performs slightly better than Karma manager, but it surpasses the commit 
percentage of Aggressive Manager by miles over all workloads. 

By a non-weighted average across all the four test cases, our manager achieves a 
flat betterment of 36.85% over the performance of Aggressive Manager and 4.34% 
over that of Karma Manager. 
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Fig. 4b. 20% Write Set 

 

Fig. 4c. 40% Write Set 

5 Conclusion and Future Scope  

The proposed OFTM aims at reducing the number of aborts. It gives a fair amount of 
time period to the active read-only transactions so that they can complete execution 
and commit. In many cases it will not abort any of the read-only transactions. The 
novelty of this system lies in the fact that in case of write-write conflicts, it saves the 
matured writes, instead of aborting it. The system also performs clean-ups for all 
unsuccessful transactions and frees the corresponding memory locations. On the flip 
side, this STM system is not strictly non-blocking as putting Ti

w off to sleep is 
basically blocking it from completing its execution. In this regard we have made a 
trade-off between rigidity of non-blocking semantics and system throughput. 

The authors plan to test the algorithm upon some more sophisticated benchmarks like 
Red Black tree and Hash Table. Once done, the performance of the proposed OFTM  
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system shall be compared with the best known existing OFTMs. Considering the degree 
of reduction of computational overhead, a par performance or even 10% degradation in 
terms of throughput should be a satisfactory result for proposed OFTM.  
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