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Abstract
The aim of this paper is to extend the results of Harjani and Sadarangani and some
other authors and to prove a new fixed point theorem of a contraction mapping in a
complete metric space endowed with a partial order by using altering distance
functions. Our theorem can be used to investigate a large class of nonlinear problems.
As an application, we discuss the existence of a solution for a periodic boundary value
problem.
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1 Introduction
The Banach contraction principle is a classical and powerful tool in nonlinear analysis.
Weak contractions are generalizations of Banach’s contraction mapping studied by sev-
eral authors. In [–], the authors prove some types of weak contractions in complete
metric spaces respectively. In particular, the existence of a fixed point for weak contrac-
tion and generalized contractions was extended to partially ordered metric spaces in [,
–]. Among them, the altering distance function is basic concept. Such functions were
introduced by Khan et al. in [], where they present some fixed point theorems with the
help of such functions. Firstly, we recall the definition of an altering distance function.

Definition . An altering distance function is a function ψ : [,∞)→ [,∞) which sat-
isfies
(a) ψ is continuous and nondecreasing.
(b) ψ =  if and only if t = .

Recently, Harjani and Sadarangani proved some fixed point theorems for weak contrac-
tion and generalized contractions in partially ordered metric spaces by using the altering
distance function in [, ] respectively. Their results improve the theorems of [, ].

Theorem . [] Let (X,≤) be a partially ordered set, and suppose that there exists a
metric d ∈ X such that (X,d) is a complete metric space. Let f : X → X be a continuous and
nondecreasing mapping such that

d
(
f (x), f (y)

) ≤ d(x, y) –ψ
(
d(x, y)

)
for x ≥ y,
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where ψ : [,∞) –→ [,∞) is continuous and nondecreasing function such that ψ is posi-
tive in (,∞), ψ() =  and limt→∞ ψ(t) = ∞. If there exists x ∈ X with x ≤ f (x), then f
has a fixed point.

Theorem . [] Let (X,≤) be a partially ordered set, and suppose that there exists a
metric d ∈ X such that (X,d) is a complete metric space. Let f : X → X be a continuous and
nondecreasing mapping such that

ψd
(
f (x), f (y)

) ≤ ψ
(
d(x, y)

)
– φ

(
d(x, y)

)
for x≥ y,

where ψ and φ are altering distance functions. If there exists x ∈ X with x ≤ f (x), then
f has a fixed point.

Subsequently, Amini-Harandi and Emami proved another fixed point theorem for con-
traction type maps in partially ordered metric spaces in []. The following class of func-
tions is used in [].
Let � denote the class of functions β : [,∞) –→ [, ) which satisfies the condition

β(tn) –→  ⇒ tn –→ .

Theorem . [] Let (X,≤) be a partially ordered set, and suppose that there exists a
metric d such that (X,d) is a completemetric space. Let f : X → X be an increasingmapping
such that there exists an element x ∈ X with x ≤ f (x). Suppose that there exists β ∈ �
such that

d
(
f (x), f (y)

) ≤ β
(
d(x, y)

)
d(x, y) for each x, y ∈ X with x ≥ y.

Assume that either f is continuous or M is such that if an increasing sequence xn → x ∈ X,
then xn ≤ x, ∀n. Besides, if for each x, y ∈ X, there exists z ∈mwhich is comparable to x and
y, then f has a unique fixed point.

The purpose of this paper is to extend the results of [, , ] and to obtain a new
contraction mapping principle in partially ordered metric spaces. The result is more gen-
eralized than the results of [, , ] and other works. The main theorems can be used
to investigate a large class of nonlinear problems. In this paper, we also present some ap-
plications to first- and second-order ordinary differential equations.

2 Main results
We first recall the following notion of a monotone nondecreasing function in a partially
ordered set.

Definition. If (X,≤) is a partially ordered set andT : X → X, we say thatT ismonotone
nondecreasing if x, y ∈ X, x≤ y⇒ T(x)≤ T(y).

This definition coincides with the notion of a nondecreasing function in the case where
X = R and ≤ represents the usual total order in R.
We shall need the following lemma in our proving.
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Lemma . If ψ is an altering distance function and φ : [,∞) → [,∞) is a continuous
function with the condition ψ(t) > φ(t) for all t > , then φ() = .

Proof Since φ(t) < ψ(t) and φ, ψ are continuous, we have

 ≤ φ() = lim
t→

φ(t) ≤ lim
t→

ψ(t) = ψ() = .

This finishes the proof. �

In what follows, we prove the following theorem which is the generalized type of Theo-
rem .-..

Theorem . Let X be a partially ordered set and suppose that there exists a metric d in
x such that (X,d) is a complete metric space. Let T : X → X be a continuous and nonde-
creasing mapping such that

ψ
(
d(Tx,Ty)

) ≤ φ
(
d(x, y)

)
, ∀x≥ y,

where ψ is an altering distance function and φ : [,∞) → [,∞) is a continuous function
with the condition ψ(t) > φ(t) for all t > . If there exists x ∈ X such that x ≤ Tx, then T
has a fixed point.

Proof Since T is a nondecreasing function, we obtain, by induction, that

xo ≤ Tx ≤ Tx ≤ Tx ≤ · · · ≤ Tnx ≤ Tn+x ≤ · · · ()

Put xn+ = Txn. Then for each integer n ≥ , as the elements xn+ and xn are comparable,
from () we get

ψ
(
d(xn+,xn)

)
= ψ

(
d(Txn,Txn–)

) ≤ φ
(
d(xn,xn–)

)
. ()

Using the condition of Theorem ., we have

d(xn+,xn) < d(xn,xn–). ()

Hence the sequence d(xn+,xn) is decreasing, and consequently, there exists r ≥  such
that

d(xn+,xn) → r,

as n→ ∞. Letting n→ ∞ in (), we get

ψ(r)≤ φ(r).

By using the condition of Theorem ., we have r = , and hence

d(xn+,xn) → , ()

http://www.fixedpointtheoryandapplications.com/content/2012/1/152
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as n→ ∞. In what follows, we will show that {xn} is a Cauchy sequence. Suppose that {xn}
is not a Cauchy sequence. Then, there exists ε >  for which we can find subsequences
{xnk } with nk >mk > k such that

d(xnk ,xmk ) ≥ ε ()

for all k ≥ . Further, corresponding to mk , we can choose nk in such a way that it is the
smallest integer with nk >mk satisfying (). Then

d(xnk– ,xmk– ) < ε. ()

From () and (), we have

ε ≤ d(xnk ,xmk ) ≤ d(xnk ,xnk– ) + d(xnk– ,xmk ) < d(xnk ,xnk– ) + ε.

Letting k → ∞ and using (), we get

lim
k→∞

d(xnk ,xmk ) = ε. ()

By using the triangular inequality, we have

d(xnk ,xmk ) ≤ d(xnk ,xnk– ) + d(xnk– ,xmk– ) + d(xmk– ,xmk ),

d(xnk– ,xmk– ) ≤ d(xnk– ,xnk ) + d(xnk ,xmk ) + d(xmk ,xmk– ).

Letting k → ∞ in the above two inequalities and () and (), we have

lim
k→∞

d(xnk– ,xmk– ) = ε. ()

As nk >mk and xnk– and xmk– are comparable, using (), we have

ψ
(
d(xnk ,xmk )

) ≤ φ
(
d(xnk– ,xmk– )

)
.

Letting k → ∞ and taking into account () and (), we have

ψ(ε) ≤ φ(ε).

From the condition of Theorem ., we get ε = , which is a contradiction. This shows that
{xn} is a Cauchy sequence and, since X is a complete metric space, there exists z ∈ X such
that xn → z as n→ ∞. Moreover, the continuity of T implies that

z = lim
n→∞xn+ = lim

n→∞Txn = Tz

and this proves that z is a fixed point. This completes the proof. �

http://www.fixedpointtheoryandapplications.com/content/2012/1/152
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In what follows, we prove that Theorem . is still valid for T not necessarily being
continuous, assuming the following hypothesis in X:

If (xn) is a nondecreasing sequence in X such
that xn → x, then xn ≤ x for all n ∈ N .

()

Theorem . Let (X,≤) be a partially ordered set and suppose that there exists a metric d
in X such that (X,d) is a complete metric space. Assume that X satisfies (). Let T : X → X
be a nondecreasing mapping such that

ψ
(
d(Tx,Ty)

) ≤ φ
(
d(x, y)

)
, ∀x≥ y,

where ψ is an altering distance function and φ : [,∞) → [,∞) is a continuous function
with the conditions ψ(t) > φ(t) for all t > . If there exists x ∈ X such that x ≤ Tx, then
T has a fixed point.

Proof Following the proof of Theorem ., we only have to check that T(z) = z. As (xn) is
a nondecreasing sequence in X and limn→∞ xn = z, the condition () gives us that xn ≤ z
for every n ∈N , and consequently,

ψ
(
d
(
xn+,T(z)

))
= ψ

(
d
(
T(xn),T(z)

)) ≤ φ
(
d(xn, z)

)
.

Letting n → ∞ and taking into account that ψ is an altering distance function, we have

ψ
(
d
(
z,T(z)

)) ≤ φ().

Using Lemma ., we have φ() = , which implies �(d(z,T(z))) = . Thus d(z,T(z)) = 
or equivalently, T(z) = z. �

Now, we present an example where it can be appreciated that the hypotheses in Theo-
rems . and Theorems . do not guarantee the uniqueness of the fixed point. The ex-
ample appears in [].
Let X = {(, ), (, )} ⊂ R and consider the usual order (x, y) ≤ (z, t) ⇔ x ≤ z, y ≤ t.

Thus, (x, y) is a partially ordered set whose different elements are not comparable. Be-
sides, (X,d) is a complete metric space and d is the Euclidean distance. The identity map
T(x, y) = (x, y) is trivially continuous and nondecreasing, and the condition () of Theo-
rem . is satisfied since the elements in X are only comparable to themselves. Moreover,
(, ) ≤ T(, ) = (, ) and T has two fixed points in X.
In what follows, we give a sufficient condition for the uniqueness of the fixed point in

Theorems . and .. This condition is as follows:

for x, y ∈ X, there exists a lower bound or an upper bound. ()

In [], it is proved that the condition () is equivalent to

for x, y ∈ X, there exists z ∈ X which is comparable to x and y. ()

http://www.fixedpointtheoryandapplications.com/content/2012/1/152


Yan et al. Fixed Point Theory and Applications 2012, 2012:152 Page 6 of 13
http://www.fixedpointtheoryandapplications.com/content/2012/1/152

Theorem . Adding the condition () to the hypotheses of Theorem . (resp. Theo-
rem .), we obtain the uniqueness of the fixed point of T.

Proof Suppose that there exist z, y ∈ X which are fixed points.Wedistinguish the following
two cases:
Case . If y is comparable to z, then Tn(y) = y is comparable to Tn(z) = z for n = , , , . . .

and

ψ
(
d(z, y)

)
= ψ

(
d
(
Tn(z),Tn(y)

))
≤ φ

(
d
(
Tn–(z),Tn–(y)

))
≤ φ

(
d(z, y)

)
.

By the condition ψ(t) > φ(t) for t > , we obtain d(z, y) =  and this implies z = y.
Case . If y is not comparable to z, then there exists x ∈ X comparable to y and z. Mono-

tonicity of T implies that Tn(x) is comparable to Tn(y) and to Tn(z) = z, for n = , , , . . . .
Moreover,

ψ
(
d
(
z,Tn(x)

))
= ψ

(
d
(
Tn(z),Tn(x)

))
≤ φ

(
d
(
Tn–(z),Tn–(x)

))
= φ

(
d
(
z,Tn–(x)

))
. ()

Hence, ψ is an altering distance function and the condition of ψ(t) > φ(t) for t > . This
gives us that {d(z, f n(x))} is a nonnegative decreasing sequence, and consequently, there
exists γ such that

lim
n→∞d

(
z,Tn(x)

)
= γ .

Letting n→ ∞ in () and taking into account that ψ and � are continuous functions, we
obtain

ψ(γ )≤ φ(γ ).

This and the condition of Theorem . implies φ(γ ) = , and consequently, γ = .
Analogously, it can be proved that

lim
n→∞d

(
y,Tn(x)

)
= .

Finally, as

lim
n→∞d

(
z,Tn(x)

)
= lim

n→∞d
(
y,Tn(x)

)
= ,

the uniqueness of the limit gives us y = z. This finishes the proof. �

Remark . Under the assumption of Theorem ., it can be proved that for every x ∈ X,
limn→∞ Tn(x) = z, where z is the fixed point (i.e., the operator f is Picard).

http://www.fixedpointtheoryandapplications.com/content/2012/1/152
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Remark . Theorem . is a particular case of Theorem . for ψ , the identity function,
and φ(x) = x –ψ(x).
Theorem . is a particular case of Theorem . for φ(x) = ψ(x) – φ.(x), φ. is an al-

tering function in Theorem .. Theorem . is a particular case of Theorem . for ψ , the
identity function, and φ(x) = ψ(x)x.

3 Application to ordinary differential equations
In this section, we present two examples where our Theorems . and . can be applied.
The first example is inspired by []. We study the existence of a solution for the following
first-order periodic problem:

⎧⎨
⎩
u′(t) = f (t,u(t)), t ∈ [,T]

u() = u(T),
()

where T >  and f : I × R –→ R is a continuous function. Previously, we considered the
space C(I) (I = [,T]) of continuous functions defined on I . Obviously, this space with the
metric given by

d(x, y) = sup
{∣∣x(t) – y(t)

∣∣ : t ∈ I
}
, for x, y ∈ C(I)

is a complete metric space. C(I) can also be equipped with a partial order given by

x, y ∈ C(I), x≤ y ⇔ x(T)≤ y(t) for t ∈ I.

Clearly, (C(I),≤) satisfies the condition () since for x, y ∈ C(I), the functions max{x, y}
and min{x, y} are the least upper and the greatest lower bounds of x and y, respectively.
Moreover, in [] it is proved that (C(I),≤) with the above mentioned metric satisfies the
condition ().
Now, we give the following definition.

Definition . A lower solution for () is a function α ∈ C()(I) such that
⎧⎨
⎩

α′(t) ≤ f (t,α(t)), for t ∈ I,

α()≤ α(T).

Theorem . Consider the problem () with f : I ×R –→ R continuous, and suppose that
there exist λ,α >  with

α ≤
(
λ(eλT – )
T(eλT + )

) 


such that for x, y ∈ R with x ≥ y,

 ≤ f (t,x) + λx –
[
f (t, y) + λy

] ≤ α

√
ln

[
(x – y) + 

]
.

Then the existence of a lower solution for () provides the existence of a unique solution
of ().

http://www.fixedpointtheoryandapplications.com/content/2012/1/152
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Proof The problem () can be written as
⎧⎨
⎩
u′(t) + λu(t) = f (t,u(t)) + λu(t), for t ∈ I = [,T],

u() = u(T).

This problem is equivalent to the integral equation

u(t) =
∫ T


G(t, s)

[
f
(
s,u(s)

)
+ λu(s)

]
ds,

where G(t, s) is the Green function given by

G(t, s) =

⎧⎨
⎩

eλ(T+s–t)
eλT– ,  ≤ s < t ≤ T ,

eλ(s–t)
eλT– ,  ≤ t < s ≤ T .

Define F : C(I) → C(I) by

(Fu)(t) =
∫ T


G(t, s)

[
f
(
s,u(s)

)
+ λu(s)

]
ds.

Note that if u ∈ C(I) is a fixed point of F , then u ∈ C(I) is a solution of (). In what
follows, we check that the hypotheses in Theorems . and . are satisfied. The mapping
F is nondecreasing for u≥ v; using our assumption, we can obtain

f (t,u) + λu≥ f (t, v) + λv,

which implies, since G(t, s) > , that for t ∈ I ,

(Fu)(t) =
∫ T


G(t, s)

[
f
(
s,u(s)

)
+ λu(s)

]
ds

≥
∫ T


G(t, s)

[
f
(
s, v(s)

)
+ λv(s)

]
ds = (Fv)(t).

Besides, for u≥ v, we have

d(Fu,Fv) = sup
t∈I

∣∣(Fu)(t) – (Fv)(t)
∣∣

= sup
t∈I

(
(Fu)(t) – (Fv)(t)

)

= sup
t∈I

∫ T


G(t, s)

[
f
(
s,u(s)

)
+ λu(s) – f

(
s, v(s)

)
– λv(s)

]
ds

≤ sup
t∈I

∫ T


G(t, s)α

√
ln

[(
u(s) – v(s)

) + 
]
ds. ()

Using the Cauchy-Schwarz inequality in the last integral, we get
∫ T


G(t, s)α

√
ln

[(
u(s) – v(s)

) + 
]
ds

≤
(∫ T


G(t, s) ds

) 

(∫ T


α ln

[(
u(s) – v(s)

) + 
]
ds

) 

. ()

http://www.fixedpointtheoryandapplications.com/content/2012/1/152
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The first integral gives us

∫ T


G(t, s) ds =

∫ t


G(t, s) ds +

∫ T

t
G(t, s) ds

=
∫ t



eλ(T+s–t)

(eλT – )
ds +

∫ T

t

eλ(s–t)

(eλT – )
ds

=


λ(eλT – )
(eλT–)

=
eλT + 

λ(eλT – )
. ()

The second integral in () gives us the following estimate:

∫ T


α ln

[(
u(s) – v(s)

) + 
]
ds ≤ α ln

[‖u – v‖ + 
] · T

= α ln
[
d(u, v) + 

] · T . ()

Taking into account ()-(), we have

d(Fu,Fv) ≤ sup
t∈I

(
eλT + 

λ(eλT – )

) 
 · (α ln

[
d(u, v) + 

] · T) 


=
(

eλT + 
λ(eλT – )

) 
 · α · √T · (ln[d(u, v) + 

]) 
 ,

and from the last inequality, we obtain

d(Fu,Fv) ≤ eλT + 
λ(eλT – )

· α · T · ln[d(u, v) + 
]

or equivalently,

λ
(
eλT – 

)
d(Fu,Fv) ≤ (

eλT + 
) · α · T · ln[d(u, v) + 

]
.

By our assumption, as

α ≤
(
λ(eλT – )
T(eλT + )

) 

,

the last inequality gives us

λ
(
eλT – 

)
d(Fu,Fv) ≤ λ

(
eλT – 

) · ln[d(u, v) + 
]
,

and hence,

d(Fu,Fv) ≤ ln
[
d(u, v) + 

]
. ()

http://www.fixedpointtheoryandapplications.com/content/2012/1/152
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Put ψ(x) = x and φ = ln(x + ). Obviously, ψ is an altering distance function, ψ(x) and
φ(x) satisfy the condition of ψ(x) > φ(x) for x > . From (), we obtain for u≥ v,

ψ
(
d(Fu,Fv)

) ≤ φ
(
d(u, v)

)
.

Finally, let α(t) be a lower solution for (). We claim that α ≤ F(α). In fact

α′(t) + λα(t)≤ f
(
t,α(t)

)
+ λα(t), for t ∈ I.

Multiplying by eλt

(
α(t)eλt)′ ≤ [

f
(
t,α(t)

)
+ λα(t)

]
eλt , for t ∈ I,

we get

α(t)eλt ≤ α() +
∫ t



[
f
(
s,α(s)

)
+ λα(s)

]
eλs ds, for t ∈ I. ()

As α()≤ α(T), the last inequality gives us

α()eλt ≤ α(T)eλT ≤ α() +
∫ T



[
f
(
s,α(s)

)
+ λα(s)

]
eλs ds,

and so

α()≤
∫ T



eλs

eλT – 
[
f
(
s,α(s)

)
+ λα(s)

]
ds.

This and () give us

α(t)eλt ≤
∫ t



eλ(T+s)

eλT – 
[
f
(
s,α(s)

)
+ λα(s)

]
ds +

∫ T

t

eλs

eλT – 
[
f
(
s,α(s)

)
+ λα(s)

]
ds

and consequently,

α(t) ≤
∫ t



eλ(T+s–t)

eλT – 
ds +

∫ t



eλ(s–t)

eλT – 
[
f
(
s,α(s)

)
+ λα(s)

]
ds

=
∫ T


G(t, s)

[
f
(
s,α(s)

)
+ λα(s)

]
ds

= (Fα)(t), for t ∈ I.

Finally, Theorems . and . give that F has an unique fixed point. �

The second example where our results can be applied is the following two-point bound-
ary value problem of the second-order differential equation

⎧⎨
⎩
– dx

dt = f (t,x), x ∈ [,∞], t ∈ [, ],

x() = x() = .
()

http://www.fixedpointtheoryandapplications.com/content/2012/1/152
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It is well known that x ∈ C[, ], a solution of (), is equivalent to x ∈ C[, ], a solution
of the integral equation

x(t) =
∫ 


G(t, s)f

(
s,x(s)

)
ds, for t ∈ [, ],

where G(t, s) is the Green function given by

G(t, s) =

⎧⎨
⎩
t( – s),  ≤ t ≤ s ≤ ,

s( – t),  ≤ s ≤ t ≤ .
()

Theorem . Consider the problem () with f : I × R → [,∞) continuous and nonde-
creasing with respect to the second variable, and suppose that there exists  ≤ α ≤  such
that for x, y ∈ R with y ≥ x,

f (t, y) – f (t,x)≤ α

√
ln

[
(y – x) + 

]
. ()

Then our problem () has a unique nonnegative solution.

Proof Consider the cone

P =
{
x ∈ C[, ] : x(t)≥ 

}
.

Obviously, (P,d) with d(x, y) = sup{|x(t) – y(t)| : t ∈ [, ]} is a complete metric space. Con-
sider the operator given by

(Tx)(t) =
∫ 


G(t, s)f

(
s,x(s)

)
ds, for x ∈ P,

where G(t, s) is the Green function appearing in ().
As f is nondecreasing with respect to the second variable, then for x, y ∈ P with y ≥ x

and t ∈ [, ], we have

(Ty)(t) =
∫ 


G(t, s)f

(
s, y(s)

)
ds≥

∫ 


G(t, s)f

(
s,x(s)

)
ds ≥ (Tx)(t),

and this proves that T is a nondecreasing operator.
Besides, for y≥ x and taking into account (), we can obtain

d(Ty,Tx) = sup
t∈[,]

∣∣(Ty)(t) – (Tx)(t)
∣∣

= sup
t∈[,]

(
(Ty)(t) – (Tx)(t)

)

= sup
t∈[,]

∫ 


G(t, s)

(
f
(
s, y(s)

)
– f

(
s,x(s)

))
ds

≤ sup
t∈[,]

∫ 


G(t, s)α

√
ln

[
(y – x) + 

]
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≤ sup
t∈[,]

∫ 


G(t, s)α

√
ln

[‖y – x‖ + 
]
ds

= α

√
ln

[‖y – x‖ + 
]
sup
t∈[,]

∫ 


G(t, s)ds. ()

It is easy to verify that

∫ 


G(t, s)ds =

–t


+
t


and that

sup
t∈[,]

∫ 


G(t, s)ds =



.

These facts, the inequality (), and the hypothesis  < α ≤  give us

d(Ty,Tx) ≤ α



√
ln

[‖y – x‖ + 
]

≤
√
ln

[‖y – x‖ + 
]
=

√
ln

[
d(x, y) + 

]
.

Hence

d(Ty,Tx) ≤ ln
[
d(x, y) + 

]
.

Put ψ(x) = x, φ(x) = ln(x + ); obviously, ψ is an altering distance function, ψ and φ

satisfy the condition ψ(x) > φ(x), for x > . From the last inequality, we have

ψ
(
d(Tx,Ty)

) ≤ φ
(
d(x, y)

)
.

Finally, as f and G are nonnegative functions,

(T)(t) =
∫ 


G(t, s)f (s, )ds≥ .

Theorems . and . tell us that F has a unique nonnegative solution. �
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