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Abstract— This paper proposes a tracking control method of
sinusoidal motions utilizing stiffness adjustment of mechanical
elastic elements for serial link systems. Although dynamics
of the controlled objects is nonlinear, the stiffness adjustment
realize a condition similar to a resonance of linear systems. We
present a controller that adjusts stiffness of the elastic elements
to reduce torque requirement of actuators while generating
desired motions. The proposed controller works without using
dynamics models nor parameters of the controlled objects.
Stability of the controller is proved, and tracking errors are
guaranteed to converge to a certain region. Simulation results
demonstrate the validity of the proposed method. We also
present an application of the proposed method to power assist
systems.

Index Terms— Resonance, Robot Dynamics, Power Assist
System

I. INTRODUCTION

Recently, control methods and applications utilizing pas-

sive elements come under spotlight [1]-[4]. Elastic torque

caused by gravity or springs can generate periodic motions

without actuation. Passive walking robots can generate fun-

damental motions of walking by gravitational torque [1] [2].

Walsh et al. developed walking support systems utilizing

springs and adjustable damping elements to reduce torque

of actuators [3]. Fujimoto et al. proposed a control method

based on iterative learning control for hopping robots [4].

This control method generates hopping motions, which re-

quire no actuation in steady states. In these studies, stiffness

of the elastic torque is fixed, and motions are not controlled

specifically.

However, in the case of applications to walking robots or

human support systems such as prostheses, tracking control

of periodical motions and specification of its properties

such as frequency becomes important in some cases. For

example, some power assist systems generate periodical

desired motions based on information of its operator [5] [6].

Stiffness adjustment is one of the realistic ways to generate

specified periodical motions while reducing actuation. Ozawa

et al. proposed a control method to track specified sinusoidal

motions utilizing elastic elements [7]. This method optimizes

Actuator

Operator

Hip Joint

Link 1 of 

Power Assist

System

Link 2 of

Power Assist

System

Spring
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stiffness to realize an anti-resonance, which enables no en-

ergy consumption to track specified motions in steady states.

However, in their study, controlled objects are restricted to

linear systems containing two masses and two springs.

We have proposed power assist systems like Fig.1 that

amplify the sinusoidal operator’s torque while generating

sinusoidal motions by minimum actuator’s torque utilizing

a resonance [5] [8] [9]. This method is assumed to be used

as walking support systems of hip joints because there are

some Clinical Gate Analysis (CGA) data show that torque

and motion of hip joint are nearly sinusoidal [10]. However,

even though the dynamics of the walking support systems

of hip joints is nonlinear, our previous paper treated the

dynamics of the controlled object as linear [5] [8] [9].

As stated above, stiffness adjustment has been considered

for linear systems, because the resonance and the anti-

resonance are concepts of linear systems originally.

This paper proposes a control method utilizing stiffness

adjustment for serial link systems having nonlinear dynamics

as shown in Fig.2. Mechanical elastic elements are installed

in each joint of the model. We mathematically prove stability

of a proposed controller and an effect of the stiffness

adjustment. The proposed controller guarantees a region of

tracking errors when time is consumed enough. The stiffness

adjustment minimizes this region as if an optimal stiffness is

realized even the controlled objects have nonlinear dynamics.

As a result, inertial and gravity torque are largely compen-

sated by torque of the adjusted stiffness like a resonance of

linear systems.

In this paper, desired motions are assumed to be given

firstly. In this case, dynamics models and all parameters of

the controlled objects can be unknown, because we adopt

a simple feedback controller. This controller guarantees

tracking performance like a control method as stated in [11].

Secondary, the proposed method in this paper is combined

with a method of our power assist systems [5] [8]. In this

case, we propose a controller that simultaneously realize

torque amplification and the stiffness adjustment. Due to

a necessity of calculation of operator’s torque, dynamics
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model and all parameters of the model are assumed to be

known. However, amplitudes, frequencies, and phases can

be unknown to adapt change of operator’s torque pattern.

The model of Fig.2 is more precise than the linear model of

our previous study to represent a model of walking support

systems. Therefore, the method of this paper extends our

previous power assist systems for support systems of whole

walking motion.

II. SYSTEM INCLUDING NONLINEAR STIFFNESS

In this section, we consider a 1-dof pendulum system

shown in Fig.3 as an example of serial link systems. This

system includes nonlinear elastic torque caused by gravity.

This section shows a basic concept of the proposed

method.

A. Dynamics

The dynamics of the 1-dof pendulum system can be

described like this.

Iq̈ = −dq̇ − g sin q − kq + τ (1)

where q is an angle of the pendulum, I is an inertia, d is

a viscosity, g is a constant of gravitational torque, k is an

adjustable stiffness, and τ is torque of an actuator.

All physical parameters I, d, g are assumed to be un-

known.

B. Control Objective

The control objective is to let the joint angle q track a

sinusoidal desired trajectory qd = a sin(ωt+φ)+apπ and to

reduce the torque of the actuator τ by adjusting the stiffness

k, where a, ω, φ are an amplitude, an angular frequency,

a phase of the desired trajectory respectively, and ap is a

constant, which is set to be 0 or 1. The amplitude a is

assumed to satisfy the inequality |a| < π−ar, where ar < π

is a positive constant. Hence, the desired motion is a simple

harmonic motion that the gravitational torque of its center is

0.

C. Optimal Stiffness

Here, let us consider necessary torque of the actuator τd

to generate the desired motion. This necessary torque is

calculated by substituting the desired trajectory qd into the

angle q of the dynamics (1).

τd = Iq̈d + dq̇d + kqd + g sin qd (2)

If the elasticity of the gravitational torque g sin qd has a linear

characteristic like gqd, the right side of the inertial torque Iq̈d

and the elastic torque kqd + gqd can vanish by an optimal

stiffness of a resonant condition k = Iω2−g [8]. This means

that an amplitude of the necessary torque τd is minimized.
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Fig. 3. Pendulum

The viscous torque dq̇d can’t be compensated by the torque

of the stiffness kqd because of requirement of energy supply.

Even though the vanishment can’t be realized in the case of

the nonlinear dynamics, we can define an optimal stiffness k∗
that minimizes maximum of the value |Iq̈d+k∗qd+g sin qd|.
This means that the inertial and the elastic torque to generate

the desired motion Iq̈d + g sin qd are compensated by the

torque of the optimal stiffness k∗qd as much as possible.

This concept is similar to a resonance of linear systems.

D. Controller

1) Torque of Actuator τ : The torque of the actuator τ is

designed using feedback of tracking errors with a viscosity

compensation.

τ = d̂q̇d − kv∆q̇ − kp∆q (3)

where d̂ is an estimated value of the viscosity d, kp, kv are

error feedback gains of the angle and the angular velocity

respectively, and ∆q = q−qd is a tracking error of the angle.

The estimation of the viscosity is done by the adaptive

technique.

˙̂
d = −γdq̇d(∆q̇ + c∆q) (4)

where γd is an adaptive gain, and c is a constant selected to

satisfy the inequality d + kv > cI .

2) Adjustment Law of Stiffness k: To reduce the actuator’s

torque, an adjustment law of the stiffness is designed like

this.

k̇ = γkq(∆q̇ + c∆q) (5)

where γk is an adaptive gain.

Similar adjustment law was proposed in our previous work

for linear systems [5]. In the case of the linear systems,

controlled systems become in a resonant condition by the

stiffness adjustment, and an amplitude of actuator’s torque

is minimized in a steady state.

E. Stability

Stability of the proposed controller is proved by using a

candidate of a Lyapnov function V .

2V = I∆q̇2 + (kp + k∗ + ckv + cd)∆q2

+2cI∆q̇∆q + γ−1
d ∆d2 + γ−1

k ∆k2 (6)

V̇ = −(d + kv − cI)∆q̇2 − c(kp + k∗)∆q2

+b(k)(∆q̇ + c∆q) (7)

≤ −b1(b)∆q̇2 − b2(b)∆q2 + b3b
2 (8)

b = −g sin q − k∗qd − Iq̈d (9)

where ∆d = d̂ − d, ∆k = k − k∗, b1(b) = kv − cI − α1b
2,

b2(b) = c(kp + k∗ − α2b
2), b3 = 1

α1
+ c

α2
, and α1, α2 are

positive constants introduced to prove the stability. Because

the desired trajectory is a sinusoid and the gravitational

torque g sin q is bounded |g sin q| < g, there exists a

constant bm that satisfy the equation bm = max |b|. Then,

the parameters b1(bm), b2(bm) can be positive by adequate

choices of the parameters α1, α2. Therefore, V̇ is negative

and V decreases while the following inequality is satisfied.

b1(bm)∆q̇2 + b2(bm)∆q2 > b3b
2
m (10)
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This means that the tracking errors ∆q̇2, ∆q2 decreases

together with decrease of V until the inequality (10) is

not satisfied. Therefore, the tracking errors converge to

vicinity of a certain region b1(bm)∆q̇2 +b2(bm)∆q2 ≤ b3b
2
m

when t → ∞. To avoid complex discussion, an accurate

guaranteed region of the tracking errors is not shown in this

paper, but the accurate region becomes smaller if the region

b1(bm)∆q̇2 + b2(bm)∆q2 ≤ b3b
2
m becomes smaller.

Using similar discussion to the paper [11], the region of

tracking errors can be reduced by choices of larger error feed-

back gains kp, kv , because the parameters b1(bm), b2(bm)
becomes larger by the choices of larger gains kp, kv .

Therefore, the system is stabilized by the proposed con-

troller (3), (4), (5).

F. Effect of Stiffness Adjustment

The purpose of the stiffness adjustment is to reduce the

torque of actuator (3) while achieving the tracking control.

The term d̂q̇d of the actuator’s torque (3) compensates

the viscous torque, and this term is needed to generate

the desired motion as stated in the section II-C. Hence,

the feedback terms of the controller (3) compensate the

inertial and the gravitational torque to generate the desired

motion. If the tracking errors ∆q̇, ∆q become smaller by

the stiffness adjustment, the feedback terms become smaller.

This means that the inertial and the elastic torque are largely

compensated by the elastic torque of the adjusted stiffness

kq. Therefore, the tracking errors are discussed here in detail

to show the effect of the stiffness adjustment.

To discuss the tracking errors more precisely, we focus

on the elastic torque g sin q + k∗qd of the equation (9). The

elastic torque g sin q + k∗qd is merely treated as bounded

values in the section II-E. However, this torque seems to

contribute generation of sinusoidal motion partially, because

elastic torque usually generate periodical motion. Hence,

smaller region of the tracking errors may be calculated by

focusing on the elastic torque.

Based on the discussion of the section II-E, if the third

term of the (7) can be smaller, the guaranteed region of the

tracking errors can be smaller. The parameter b of this term

can be rewritten like b = g(sin q − sin qd) + (g sin qd −
k∗qd − Iq̈d). Hence, the third term b(∆q̇ + c∆q) can be

decomposed into the three terms −gc(sin q − sin qd)∆q,

−g(sin q − sin qd)∆q̇, (−g sin qd − kqd − Iq̈d)(∆q̇ + c∆q).
1) Terms of b(∆q̇ + c∆q): In the following discussion,

we consider a situation that the tracking error |∆q| is smaller

than ar. This situation can be realized easily by choices of

large feedback gains kp, kv as discussed in the section II-E.

The term −gc(sin q− sin qd)∆q is negative in the case of

ap = 0, because the sign of sin q − sin qd and ∆q are the

same in the situation |∆q| < ar and |qd| < π − ar. In the

case of ap = 1, this term becomes positive, and the inequality

−gc(sin q − sin qd)∆q ≤ g∆q2 is satisfied. Therefore, this

term can be calculated as −gc(sin q − sin qd)∆q ≤ apg∆q2

The term −g(sin q − sin qd)∆q̇ is calculated as a cross

term of the tracking errors ∆q2 and ∆q̇2 like this.

−2g(sin q − sin qd)∆q̇ ≤ g
(

α3∆q2 + α−1
3 ∆q̇2

)

(11)

where α3 is a constant introduced to prove the effect of the

stiffness adjustment.

On the other hand, if an elastic torque is linear like glq,

the value gl(q − qd)∆q̇ becomes a time derivative of the

storage function Vg = gl∆q2, where the gl is a stiffness.

The nonlinear stiffness g sin q have similar characteristic if

the angle q is small enough. Hence, a part of the term

−g(sin q − sin qd)∆q̇ is composed of the time derivative of

the storage function Vg , and the term −g(sin q − sin qd)∆q̇

can be calculated to reduce the effect of the term.

−2g(sin q − sin qd)∆q̇ + V̇g

≤ (g − gl)
(

α3∆q̇2 + α−1
3 ∆q2

)

(12)

where gl is a maximum constant satisfying the inequality

(12).

The term (−g sin qd − k∗qd − Iq̈d)(∆q̇ + c∆q) satisfies

the following inequality.

2(−g sin qd − k∗qd − Iq̈d)(∆q̇ + c∆q)

≤
{

α4∆q̇2 + α5c∆q2 +
(

α−1
4 + α−1

5 c
)

n2
1

}

(13)

where n1 is a constant that satisfies the equation n1 =
max | − g sin qd − k∗qd − Iq̈d|, and α4, α5 are constants

introduced to prove the effect of the stiffness adjustment.

2) Region of Tracking Errors: As the result of the above

discussion, the region of the tracking errors can be guaran-

teed as follows.

A candidate of a Lyapnov function V2 is defined like this.

V2 = V + Vg (14)

V̇2 ≤ −b5∆q̇2 − b6∆q2 + b7n
2
1 (15)

where b5 = d + kv − cI − α3(g−gl)
2 − α4

2 , b6 = c(kp + k∗)−

apg − (g−gl)
2α3

− α5c
2 , b7 = 1

2α4
+ c

2α5
.

Therefore, the tracking errors decrease until the inequality

b5∆q̇2+b6∆q2 > b7n
2
1 will not be satisfied, and the tracking

errors converge to the vicinity of the region b5∆q̇2+b6∆q2 ≤
b7n

2
1.

Then, the region of the tracking errors b5∆q̇2 + b6∆q2 ≤
b7n

2
1 are minimized, because k∗ minimizes the equation

n1 = |Iq̈d + k∗qd + g sin qd| as stated in the section II-C.

Therefore, the region of the torque of the actuator is

minimized by the stiffness adjustment. This means that the

inertial torque Iq̈d and the gravitational torque g sin qd to

generate the desired motion qd are largely compensated by

the torque of the stiffness kqd.

G. Summary

For the system, which has the dynamics (1) including

the nonlinear gravitational torque, the controller (3), (4),

(5) guarantees the stability, and the stiffness adjustment (5)

realizes the effect of the stiffness optimization. This means

that the stiffness adjustment minimize the guaranteed region

of the tracking errors, and the inertial and the gravitational

torque to generate the desired motion are largely compen-

sated by the torque of the adjusted stiffness. The proposed

controller uses no dynamics models and no parameters of

the dynamics owing to the simple structure of the controller.
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III. SERIAL LINK SYSTEM

This section proposes a similar controller to that of the

section II for serial link systems like Fig.2.

A. Dynamics

Dynamics of the serial link systems having n joints is

described by the following equation.

R(q)q̈ +

{

1

2
Ṙ(q) + S(q, q̇) + D

}

q̇ + g(q)

= −Kq + τ (16)

where R(q, q̇) ∈ ℜn×n is a positive definite inertia ma-

trix, S(q, q̇) ∈ ℜn×n is a skew symmetric matrix, D =
diag(d1 · · · dn), d1 · · ·dn are viscosity, g(q) ∈ ℜn is a

vector of gravitational torque, K = diag(k1 · · ·kn) is a

stiffness matrix, k1 · · · kn are adjustable stiffness of elastic

elements installed in each joint, q = (q1 · · · qn)T is a vector

of joint angles, and τ = (τ1 · · · τ2)
T is a vector of torque of

actuators.

B. Controller

The controller is designed using similar strategy to that of

the section II.

τ = D̂q̇d − Kv∆q̇ − Kps(∆q) (17)

˙̂
d = −ΓdQ̇d(∆q̇ + C∆q) (18)

k̇ = ΓkQ {∆q̇ + Cs(∆q)} (19)

where D̂ = diag(d̂1 · · · d̂n) is an estimated matrix of D,

Kp = diag(kp1 · · ·kpn), Kv = diag(kv1 · · · kvn) are

matrixes of feedback gains, ∆q = (∆q1 · · ·∆qn)T = q−qd,

qd = (qd1 · · · qdn)T is a vector of desired trajectories,

s(∆q) = (s1(∆q1) · · · sn(∆qn))T , s1() · · · sn() ∈ ℜ are

saturated functions defined in a book [12], Γd ∈ ℜn×n is a

positive definite matrix of adaptive gains, d̂ = (d̂1 · · · d̂n)T ,

Qd = diag(qd1 · · · qdn), C = diag(c1 · · · cn), c1 · · · cn

are positive constants, k = (k1 · · · kn)T , Γk ∈ ℜn×n

is a positive definite matrix of adaptive gains, and Q =
diag(q1 · · · qn).

The desired motion is set to be qdi = ai sin(ωit +
φi) + apiπ (i = 1 · · ·n), where ai, ωi, φi are amplitudes,

angular frequencies, phases, and api are set to be 0 or 1.

In order for the links not to exceed the vertical direction

of gravitational force, the desired motion has to satisfy the

condition |
∑i

j=1 qdj | < π − ari (i = 1 · · ·n), where ari

are positive constants. Most walking motions satisfy this

condition.

C. Stability

The candidate of a Lyapnov function Vr can be defined

using passivity of error dynamics [12] and similar discussion

to the section II-F.

2Vr = ∆q̇T R(q)∆q̇ + ∆qT (K + CKv + CD + Gl)∆q

+s(∆q)T Kps(∆q) + 2s(∆q)T CR(q)∆q̇

+∆dT Γ−1
d ∆d + ∆kT Γ−1

k ∆k (20)

V̇r ≤ −b10||∆q̇|| − b11||s(∆q)|| + b12(k∗) (21)

where ∆d = d̂ − d, d = (d1 · · ·dn)T , ∆k = k − k∗,

k∗ = (k∗1 · · · k∗n) are constants, b8, b9, b10, b11, b12(k∗) are

positive constants, Gl = diag(gl1 · · · gln), and gl1 · · · gln are

constants playing the same role as the gl in the section II-F.1.

Therefore, the tracking errors ∆q̇, ∆q converges to a

vicinity of the region b10||∆q̇|| + b11||s(∆q)|| ≤ b12(k∗).

D. Effect of Stiffness Adjustment

An effect of the stiffness adjustment is also proved us-

ing similar discussion to the section II-F.2. We can define

the stiffness k∗ as a vector that minimizes the constant

b12(k∗). The optimal stiffness K∗ can be defined as a

matrix that minimizes maximum value of ||R(qd)q̈d +
{

1
2 Ṙ(qd) + S(qd, q̇d)

}

+ g(qd) + K∗qd||. This concept is

also similar to the resonance of linear systems. Therefore,

the proposed controller (17), (18), (19) minimizes the region

of the tracking errors as if the optimal stiffness is realized.

E. Simulation

We conducted a numerical simulation of a 2-link serial

link system as shown in Fig.4 to demonstrate validity of

the proposed controller. This model is similar to a simplest

walking model [2]. Hence, the q1 is assumed to be an angle

of an ankle joint, and the q2 is assumed to be an angle of a

hip joint.

The desired motion q
d

was set to represent a half cycle

of a walking motion like taking a step forward as shown

in Fig.5(a), Fig.5(b). The equation (16) was adopted as a

dynamics. The equations (17), (18), (19) were adopted as a

controller.

Fig.5(a), Fig.5(b), Fig.5(c), Fig.5(d) shows that angles and

angular velocities nearly converged to the desired ones. The

stiffness nearly converged to constant values with a little

oscillation as shown in Fig.5(e). The estimation of viscosity

were almost achieved as shown in Fig.5(f).

The necessary torque to generate the desired motion

without viscous torque τd1, τd2 were almost compensated by

the torque of the stiffness k1q1, k2q2 after the convergence

of the other variables as shown in Fig.5(g), Fig.5(h), where

(τd1τd2)
T = R(qd)q̈d +

{

1
2 Ṙ(qd) + S(qd, q̇d)

}

q̇d +

g(q
d
). Hence, the actuator’s torque τ1, τ2 were nearly nec-

essary to compensate the viscous torque to generate the

desired motion d1q̇d1, d2q̇d2, like the resonant condition of

linear systems as shown in Fig.5(i), Fig.5(j). Therefore, the

effect of the stiffness adjustment was verified through the

simulation results.

F. Summary

The controller (17), (18), (19) guarantees the convergence

of the tracking errors to the certain region for serial link

q1

q2k1

k2

τ1

τ2

Fig. 4. Controlled Object of Simulation
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Fig. 5. Simulation Results

systems as shown in Fig.4. Therefore, the torque of the

actuators converges to the certain region, and the stiffness

adjustment (19) minimizes the region. The proposed con-

troller uses no dynamics models and no parameters of the

dynamics. The effectiveness of the controller is demonstrated

by the simulation results.

IV. APPLICATION TO POWER ASSIST SYSTEM

This section shows an application of the control method

in this paper to power assist systems.

Walking motions of human have been studied a lot recently

[10], and some assistive systems are proposed utilizing

characteristics of the walking motion [5] [8] [3]. One of

the characteristics is that some parts of walking motions

and torque are composed of sinusoids [10] [3]. Hence, we

have proposed power assist systems that amplify sinusoidal

operator’s torque while generating sinusoidal motions by

minimum actuator’s torque utilizing stiffness adjustment [5]

[8]. Effectiveness of the power assist systems have been

verified through some simulations and experiments [9]. How-

ever, our previous method is restricted to linear systems

assisting 1 joint of its operator. The control method of this

paper extends our previous power assist systems to nonlinear

systems assisting some joints of its operator.

A. Dynamics

Dynamics of an exoskeleton type power assist system

with its operator having n joints is similar to the serial link

systems (16).

R(q)q̈ +

{

1

2
Ṙ(q) + S(q, q̇) + D

}

q̇ + g(q)

= −Kq + τ + τ h (22)

where τh is a vector of torque of the operator, and other

vectors and matrixes are the same as the section III-A.

B. Assumption

The torque of the operator assumed to be sinusoidal.

τ h = (τh1 · · · τhn)T

= (a1 sin(ω1t + φ1) · · · an sin(ωnt + φn))T (23)

where a1 · · · an, ω1 · · ·ωn, φ1 · · ·φn are amplitudes, angular

frequencies, phases of the torque of the operator τh,

In the case of the application to the power assist systems,

the dynamics model and the all parameters are assumed

to be known because of necessity of calculation of the

operator’s torque τh. However, to adapt change of pattern

of the operator’s torque τh, the amplitudes, the angular

frequencies, the phases ai, ωi, φi(i = 1, 2 · · ·n) are assumed

to be unknown. Therefore, the torque of the operator τh

can be calculated from the dynamics model (22), but the

calculated values can not be used directly as the torque of

the actuators τ in view of causality, because dimension of

the calculated values is torque.

C. Control Objective

Under above the dynamics and the assumptions, control

objective is to amplify the torque of the operator τh by the

torque of the actuators τ and to reduce the torque of the

actuators τ by adjustment of the stiffness K .

D. Controller

1) Torque of Actuators: To amplify the torque of the

operator τh by factors of amplification gains kpa1 · · · kpan,

the torque of the actuators are designed using estimated

values of operator’s torque τ̂h.

τ = Kpaτ̂h − Kv∆q̇ − Kps(∆q) (24)

qd = (E + Kpa)D−1τ̂hi (25)

where ∆q = q − qd, Kpa = diag(kpa1 · · · kpan), E =

diag(1 · · · 1) ∈ ℜn×n, τ̂hi =
∫ t

0 τ̂hdt and the others are

the same as the equation (17). The desired trajectories q
d

are assumed to be satisfied the condition of the section III-

B.
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If the estimated values τ̂h converges to the true values

τh, the first term of the controller (24) becomes amplified

torque of the operator’s torque τh.

2) Estimation of Operator’s Torque: Estimation of the

operator’s torque is done using the adaptive observer [9].

τ̂h = −Ko∆τh − Θτ̂hi (26)

where the matrix Ko > 0 is a matrix of observer gains,

∆τh = τ̂h − τh, Θ = diag(θ1 · · · θn), and θ1 · · · θn are

estimated values of ω2
1 · · ·ω

2
n.

The estimation of the θ1 · · · θn is done by the update law.

θ̇ = ΓθT̂h∆τh (27)

where θ = (θ1 · · · θn)T , Γθ are adaptive gains, and T̂h =
diag(τ̂h1 · · · τ̂hn). Therefore, the torque of the actuators (24)

don’t include signals whose dimension is torque, and the

proposed controller satisfy causality. Detail of the adaptive

observer is written in our previous paper [9].

3) Adjustment Law of Stiffness: The same adjustment law

of the stiffness described in (19) is adopted for the power

assist systems.

E. Convergence of Torque Estimation

Convergence of the estimation (26) is proved using a

candidate of a Lyapnov function Ve.

2Ve = ∆τT
h∆τh + ∆τT

hiW∆τhi + ∆θ
T Γ−1

θ ∆θ (28)

V̇e = −∆τT
h
Ko∆τh (29)

where τhi = τ̂hi −
∫ t

0 τhdt, W = diag(ω2
1 · · ·ω

2
n). Using

LaSalle’s invariance theorem, τ̂h → τh, θi → ω2
i (i =

1 · · ·n) are guaranteed when t → ∞. Therefore, the torque

Kpaτ̂h converges to amplified torque of the operator Kpaτh,

and the torque amplification is realize by the controller (24).

F. Stability

Stability is guaranteed by a candidate of a Lyapnov

function Vpa = Ve + Vr composed of Ve and Vr of the

section III-C.

G. Effect of Stiffness Adjustment

Discussion of an effect of the stiffness adjustment is

almost the same as that of the section II-F. Therefore, the

inertial and the elastic torque are largely compensated by the

torque of the adjusted stiffness.

H. Summary

For the power assist system, which has the nonlinear

dynamics (22), the controller (24) (26) (27) (19) realize

the amplification of its sinusoidal operator’s torque and the

stiffness adjustment under some assumptions of the section

IV-B. Therefore, the inertial and the gravitational torque to

generate the desired motions are largely compensated by the

torque of the adjusted stiffness. The proposed controller uses

the dynamics model and all the parameters of the dynamics

owing to calculation of the operator’s torque. However, the

amplitudes, the frequencies, the phases of the operator’s

torque can be unknown to adapt change of torque pattern

of the operator.

V. CONCLUSION

This paper has presented a control method utilizing stiff-

ness adjustment of mechanical elastic elements for serial link

systems. The proposed controller guarantees convergence

of tracking errors to a certain region, and minimizes a

region of actuator torque by the stiffness adjustment. Thus,

inertial and gravitational torque to generate desired motions

is largely compensated by torque of the adjusted stiffness.

The controller uses neither dynamics models nor parameters

of the controlled objects owing to simplicity of the controller.

An application of the control method to power assist

systems was also presented. In this case, a controller was

proposed to amplify sinusoidal torque of its operator, and

to adjust stiffness to compensate inertial and gravitational

torque by torque of the adjusted stiffness. The controller

of the application uses information of dynamics model and

all parameters of the dynamics, but amplitudes, frequencies,

phases of the operator’s torque can be unknown in order to

adapt changes of torque pattern of its operator.
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