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Abstract. Shape memory alloys (SMA) are more and more integrated in engi-
neering applications. These materials with their shape memory effect permit to
simplify mechanism and to reduce the size of actuators. SMA parts can easily
be activated by Joule effect but their modelling and consequently their control
remains difficult, it is principally due to their hysteretic thermomechanical be-
haviour. Another difficulty is that the characteristics of the material are time-
varying, especially during cyclic loadings. So, most of successful control strategy
applied to SMA actuator are particularly heavy and used the Preisach model
or neural networks to model the hysteretic behaviour of these material but this
kind of models are difficult to identify and to use in real time. That is why this
study deals with an application of the new framework of model-free control and
restricted model control applied to a SMA spring based actuator. This control
strategy is based on new results on fast derivative s estimation of noisy signals,
its main advantages are: its simplicity, its robustness and the fact that it is easy
to compute. Experimental results and comparisons with PID control are exposed
that demonstrate the efficiency of this new control strategy despite thermal per-
turbations.

1 Introduction

Shape memory alloys (SMA) offer the possibility to recover a known shape after a thermome-
chanical cycle. This property, known as the “shape memory effect”, is due to the transition
between the two crystallographic phases in their composition. This variation of shape, con-
trolled by temperature variation, may be used in the development of actuators (see e.g., [1]
and [2]). SMA can easily be heated by Joule effect, but their control is not completely solved
and it is principally due to their hysteretic behaviour (see [3]). Another difficulty is that the
characteristics of the material are time-varying, especially during cyclic loadings. Phases kinetic
transformations and 3-dimensional models are proposed in [4], [5], [6] and [7]. These complex
models can render very subtle properties of SMA, but often need to compute a finite element
code, what is not suitable for real time control. On the opposite side, Robotics research have
been done on SMA actuator by using simpler model and classical control method. A lot of
control strategies have been applied to SMA actuators, classical PID loop are used in [8], [9]
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and [10]. A feedforward path is added in [11]; the feedforward command is obtain by using a
Preisach model for the hysteretic effect. In [12] feedforward scheme is also used but the hys-
teretic behaviour is described by a Duhem differential hysteresis model. In [13,14] a feedforward
loop is combined with sliding mode control to obtain robustness, the feedforward path is re-
spectively given by neural network and by a physical model. An H∞ loop based on physics
modelling is design in [15]. Passivity property of the system is used in [16] to prove stability
of a proposed proportional law. Nonlinear control techniques based on the Lie algebra are also
used in [17]. Even if their model are quite good enough, using a dynamic model for computing
the control law, need firstly to identify the model parameter. As we have already mention the
model parameter of SMA vary during cycling, then a classical model based control is ineffective
or particularly complex. We report our experience, where industrial partners still explain that
in order to realise the process control, the part of process modelling represents 90% of project
global time. Indeed, to define the physical model structure, to identify unknowns parameters,
to collect experimental data, to valid the model are never simple. However, how is it possible
to control a complex process without any model?

In this paper, a solution to this difficult problem is proposed. The proposition is based on
some new results in the framework of “Model-free control” (see [18–21]). The approach uses
a derivative estimation (see [22–24]) which provides good results even if signals are corrupted
by noise. Thus a non-physical model valid a very short part of time is estimated and permits
classical control design.

The present work constitutes an extension of a previous paper [25], in which only simulations
have already highlighted the advantages of the proposed method in the area of SMA actuators.

The paper is organised as follows: The next Section is a short review and introduction to the
new “Model-free control”and explains the design of a control law within this new framework;
Sec. 3 develops the model-free control of a shape memory alloys actuator and gives experimental
results. Sec. 4 concludes the paper and raises some perspectives.

2 Model free control

Model free control is a very recent approach to nonlinear control that has been introduced
in [26], (See [18] for a thorough presentation). A first industrial and convincing application is
reported in [21].

2.1 Derivatives of noisy signals

Firstly, we recall basic of derivative estimation. Interested reader might refer to [22] for a
complete presentation. We consider a signal y that is available through a measurement ym

corrupted by some additive noise �, i.e. ym = y + �. The objective is to estimate time
derivatives of signal y(t), up to a finite order, from its measurement ym.

The Taylor expansion of y around 0 reads:

y(τ) =

∞∑
n=0

y(n)(0)
τn

n!

Approximate y(t) in the interval [0, T ], T > 0, by the polynomial yN (τ) =
∑N

n=0 y(n)(0) τn

n! of

degree N . The operational1 analogue (see [27]) YN (s) of yN (τ) is given by:

YN (s) =
y(0)

s
+

ẏ(0)

s2
+ · · · +

y(N)(0)

sN+1

1 Reader not familiar with operational calculus can just think in terms of Laplace transform to
understand the development of the derivatives estimators.
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It is possible to isolate each coefficient y(i)(0) appearing in the previous expression by
applying a convenient operator to YN (s) (see [22] for details2). Indeed:

∀i = 0, . . . , N,
y(i)(0)

s2N+1
=

(−1)i

N !(N − i)!
·

1

sN+1
·

di

dsi
·
1

s
·

dN−i

dsN−i

(
sN+1YN (s)

)
(1)

Having in mind that the operator 1
sα corresponds to the function t �→ tα−1

(α−1)! , that the

operator d
ds

corresponds to the multiplication in the time domain by −t and using the Cauchy
formulae to transform a multiple integral in a simple one:

∫ T

0

∫ τα−1

0

· · ·

∫ τ1

0

f(μ)dμ dτ1 . . . dτα−1 =

∫ T

0

(T − μ)α−1

(α − 1)!
f(μ)dμ (2)

One obtain in the time domain the expression of y(i)(0) as:

y(i)(0) =

∫ T

0

P (μ; T )yN(μ)dμ (3)

where P (μ; T ) is polynomial in μ and T . Notice that (3) gives the calculation of y(i)(0) from

an integral on the time interval [0, T ] for a given small T > 0. As diy(t−μ)
dμi |μ=0= (−1)iy(i)(t)

it is possible to express y(i)(t) as an integral which evolves values of yN on the time interval
[t − T, t]:

y(i)(t) = (−1)i

∫ T

0

P (μ; T )yN (t − μ)dμ (4)

A simple estimator of the derivative y(i)(t) is then obtained from the noisy signal ym by:

[
y(i)(t)

]
e

= (−1)i

∫ T

0

P (μ; T )ym(t − μ)dμ (5)

which is deduced from (3) by replacing yN by ym in (4). Note that the integral operation plays
the role of low-pass filter and reduced the noise that corrupts ym The choice of T results in a
trade-off: the larger is T , the smaller is the effect of the noise ( the larger is T the better is
integrals low pass filtering) and the larger is the error due to truncation.

In practise, (5) is evaluated at each sample time t = k.Ts, k = 0, 1, . . . as a discrete sum
using basic trapezoidal method or Simpson method to calculate integrals:

[
y(i)(kTs)

]
e

=

ns∑
i=0

w(i)P (iTs; nsTs)ym((k − i)Ts) (6)

with ns the number of samples used in the time window and nsTs = T .

2.2 Model-free control design

Assume we have a plant whose we do not know any model. For the sake of simplicity of the
presentation we assume that this plant is single-input and single-output. The control input is
denoted by u and the output is denoted as y. As seen in the previous section, we are able to
estimate on-line some derivatives of y and u. Model-free control consist in trying to estimate
via the input and the output measurements what can be compensated by control in order to

2 Note that those operators are not unique, we have chosen here to use the ones with the least order
of integration for the sake of simplicity of the presentation.
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achieve a good output trajectory tracking. This implies the construction of a purely numerical
model of the plant that can be written as:

y(ν) = F + αu (7)

where α ∈ R is a non-physical constant3 design parameter; F ∈ R represents all what is
unknown on the system and can be compensated from the knowledge of the input-output
behaviour of the system; the order ν ∈ N of the numerical model (7) is also a design parameter
that can be arbitrarily chosen.

Eqn. (7) should not be confused with a “black-box” identified model. In the present ap-
proach, (7) is update at each sampling time from the knowledge of the input-output behaviour
of the unmodeled plant. At sampling time k (i.e. t = kTs, where Ts denotes the sampling
period), the estimation of F reads:

[F (k)]e = [y(ν)(k)]e − αu(k − 1) (8)

where [y(ν)(k)]e is the estimation of the ν-st derivative of the output that can be laid at time k
and u(k− 1) is the control input that has be applied to the plant during the previous sampling
period.

Based on the numerical knowledge of F the control for sampling period k is calculated on (7)
as a simple cancellation of the non-linear terms F plus a closed loop tracking of a reference
trajectory t �→ y∗(t):

u(k) = −
[F (k)]e

α︸ ︷︷ ︸
NL Cancellation

+
[y∗(ν)(k)]e + Δ(ε(k))

α︸ ︷︷ ︸
Closed loop tracking

(9)

where ε(k) = y(k)− y∗(k) is the tracking error and Δ(ε(k)) is a closed-loop feedback controller

base on the tracking error. Note that the term − [F (k)]e
α

+ [y∗(ν)(k)]e
α

is also the “nominal control”
in the “flatness-based” control of (7) (see e.g., [28–30]). When the closed loop controller is of
“PID” type, Model free control can be named as “intelligent PID” (i-PID) (see [18]).

This control scheme is summarised in Fig. 1

Unmodeled plant

Estimator
(8)

Feedback
control (9)

�

� �

�

� �

�u yy∗

[F ]e

Fig. 1. Model free control

3 Note that this parameter could also be chosen time varying for some applications.
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3 Prototype of SMA Actuator

A simple prototype of SMA spring actuator has been built, a picture of the actuator is given in
Fig. 2. The upper extremity of a Ni-Ti spring is electrically isolated and fixed to rigid structure
and the lower extremity is attached to a 450 g mass. The mechanism of this kind of actuator
is decomposed into three steps. Firstly, when the temperature is constant and lower than the
austenite start temperature As, the SMA spring is purely martensitic and the tensile force
provided by the mass deforms the SMA spring to an initial deflection. Secondly the spring is
heated, when its temperature goes past As, the martensite begins to change into austenite, so
the spring tries to achieve its high temperature shape consequently the mass goes up. Finally
during cooling austenite changes into martensite so the force provided by the mass permit the
mass to go down.

For this actuator, the spring is heated by joule effect and cooled by free convection. The
electric current crossing the spring is measured using a shunt resistance and a voltage amplifier,
we also measure electric voltage with a voltage amplifier and the position of the mass using a
laser sensor. We use an input output board connected to a computer with RTAI/Linux coupled
with an electric power generator to acquire and generate real time control signals.

Fig. 2. Prototype of a SMA spring based actuator.

3.1 Position control development

For this application the very simple first-order local numerical model

ẏ = F + αu (10)

is considered. The control input u corresponds the electric power crossing the SMA spring and
the output y is the measured vertical position of the mass. According to section 2.2, the control
is given by:

u =
1

α
(−[F ]e + ẏ� + Kp(y − y�))

where Kp is a positive constant. Note that as (10) is here first order, a simple proportional
controller is enough to ensure convergence of the error to zero. This controller is called an i-P
controller.
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3.2 Experimental results

The previous control law was applied to our SMA actuator. The performances in closed loop
are compared with the performances obtained with a PI controller4 for two scenarios.

Scenario 1 (Fig. 3 ):
We present classical closed loop step response with thermal disturbance. In this scenario the
mass has to reach a reference position of 70mm. when the actuator is control with i-P controller,
we can observe that the mass reaches the reference position in approximately 8 seconds without
overshoot whereas a 17mm overshoot and 34 s time response are observed when the actuator
is control by a PI controller. This overshoot should be reduced (reducing the integral gain)
nevertheless rejecting perturbations would be bad. At time t = 56 s a thermal perturbations is
applied using a fan. We can observe that the perturbation is rejected faster by the i-P controller
than the PI one.

Scenario 2 (Figs. 4 and 5 ):
We present classical tracking. We can observe that tracking is very good when the actuator is
controlled by an i-P (see Fig 3) whereas it is unsatisfactory for the PI (see Fig 4). A A first
solution would be to increase the gains of the PI controller but for this experiments the choice
of gains level results in a trade-off because the larger are the gains the better are performances
in transient however high level gains degrade performances in steady-state.

Fig. 3. Step response of the actuator with thermal disturbance (PI and i-P)

4 Conclusion

This paper presents a convincing application of the new model-free control in the area of SMA
actuators control, a field in which control-model is especially difficult to obtain. Experimental
results on a SMA spring based actuators show that the robustness towards thermal pertur-
bations and tracking performances of this controller are better than the PI ones, whereas the
design of the two controller needs the same numbers of tuning parameters. Finally, we are very

4 The Classical control involves an integral terms in order to avoid static error.
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Fig. 4. Classical tracking when the actuator is controlled with an i-P controller.

Fig. 5. Classical tracking when the actuator is controlled with a PI controller.

confident to be able to efficiently control SMA micro actuators as micro servomotors in a very
short time.
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27. J. Mikusiński. Operational calculus. 2nd edn. (PWN & Oxford University Press, 1983)
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