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ABSTRACT Aiming at the problems of a low convergence speed, low accuracy and poor generalization

ability of traditional power disturbance identification and classification methods, a new deep convolutional

network structure is presented, and a power quality disturbance identification and classification method

for microgrids based on the new network structure is proposed. The network consists of a five-layer

one-dimensional modified Inception-residual network (ResNet) (1D-MIR) and a three-layer full-connection

tier, which is a deep convolutional network. The idea of the method can be described as follows: First,

power disturbance signals are expressed by an n-dimensional unit vector, and a database of these power

disturbance signals is established. Second, the disturbance signals in the database are randomly sampled,

and the power quality disturbances are calibrated with the n-dimensional unit vector to form both data

and test sets. Finally, the gradient descent method and the adaptive moment estimation method (Adam)

are adopted to train and optimize the network, respectively, and the trained and optimized network is applied

to power quality disturbance identification and classification. A large number of experiments has been

conducted, and the obtained results show that the constructed network can quickly extract the characteristics

of the various disturbance signals, including single and composite disturbances, and identify and classify

them. A comparison of the results obtained by the proposed method with those obtained by several other

methods reveals that the proposed method attains a higher accuracy, higher convergence speed and stronger

generalization ability.

INDEX TERMS New network structure, power quality disturbance detection, deep convolution neural

network, deep learning.

I. INTRODUCTION

The application of a microgrid is an effective technical

approach for the large-scale application of distributed gen-

erations, an effective way to realize an active distribution

network, and an effective means to implement the transi-

tion from the traditional grid to the smart grid. However,

due to the utilization of a large number of power electronic

devices in amicrogrid, a large number of harmonic signals are

injected into the grid, resulting in power quality deterioration

problems such as voltage waveform distortion, fluctuation,

flickering and three-phase unbalance [1]. This will pose a

serious threat to the security, stability and economic operation
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of the power system, as well as to the surrounding electrical

environment. Therefore, microgrid disturbance signal identi-

fication and classification is of great significance.

In terms of identification, with the development of

computer simulation technology, many advanced signal char-

acteristic extraction methods, such as fast Fourier transform

(FFT), wavelet transform (WT) and Hilbert-Huang transform

(HHT), have emerged. However, there are certain respec-

tive shortcomings to all these methods that are difficult to

overcome. For example, FFT requires that the signal must

be a stationary periodic signal and must satisfy the sam-

pling theorem; otherwise, the analysis results will exhibit

spectrum aliasing and the fence effect, while WT suffers

from the difficulty in choosing the wavelet basis, and HHT

faces the problems of the endpoint flying wing and modal
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confusion [2]. Numerous studies have shown that the con-

volutional structures in convolutional neural networks have

strong characteristic learning and expression abilities. The

sharing of the convolutional kernel parameters in the hidden

layer and the interconnection sparsity between the layers

enable convolutional neural networks to learn grid-like topol-

ogy characteristics such as pixels and audio with less compu-

tational effort, and the learning effect is stable, while addi-

tional characteristic engineering for the data is unnecessary.

The structure has a strong self-learning ability and natural

adaptability to one-dimensional signals, which can overcome

the limitations of previous characteristic extraction meth-

ods. Against this background, scholars have pioneered the

application of convolutional neural networks with traditional

structures to the characteristic extraction of electric energy

disturbance signals [3]–[7]. However, the convolutional net-

work structure, which simply superimposes the convolution

layer and then connects one or more fully connected layers,

has a poor learning ability. As a result, the convergence speed

of the network is slow, and the generalization ability is poor.

Many scholars have found that increasing the depth of the

network structure is the most effective method for enhancing

the network learning ability at present. However, this will

lead to an excessive computation amount and overfitting for

traditional convolution network structures, such as LeNet and

AlexNet. In many convolutional network models, the direct

connection of the residual network (ResNet) enables it to

considerably increase the depth without an excessive com-

putational effort, thus improving the accuracy. In the internal

residual block, the problem of gradient disappearance due to

the increased depth in the deep neural network is relieved

by a jump connection, which has the advantage of easy opti-

mization, while the inception structure has the advantage of a

more efficient use of the computing resources, and regarding

the structure, more characteristics can be extracted for the

same computation amount, and the training effect can be

improved. A method based on the combination of these two

network structures has been previously proposed for image

classification, and good results have been achieved [8]–[11].

In terms of classification, with the improvement of the

computing power, power quality classificationmethods based

on pattern recognition are constantly proposed, e.g., meth-

ods based on neural networks [12], random forest net-

works [13], wavelet neural networks [14], support vector

machines [15], [16], k-nearest neighbors [17], and deci-

sion trees. These methods have partly solved the problems

inherent to the previous methods such that the accuracy of

power quality disturbance classification has been consider-

ably improved. However, a large computation amount is still

required. Thus, there is still room for improvement of the

accuracy.

In this paper, a new method for power quality disturbance

identification and classification is proposed by constructing

a new deep convolutional network structure. The database

established according to the power disturbance signal cali-

brated by an n-dimensional unit vector is first adopted to train

TABLE 1. Power quality standard signal and disturbance signal model.

the deep convolution network consisting of a five-layer 1D-

MIR structure and a three-layer full-connection layer. Then,

the network trained and optimized by the gradient descent

method and adaptive moment estimation method (Adam)

is applied to power quality disturbance identification and

classification, thus improving the classification accuracy and

speed.

The remainder of this paper is organized as follows.

Section II provides a detailed description of the construction

method and process of the proposed new convolutional

network structure and its application in power quality

disturbance identification and classification, where the estab-

lishment of the database is contained in Section II. A.

The construction of the deep convolutional network with a

1D-MIR structure is expounded in Section II. B, and the

training process is described in Section II. C. In Section III,

the simulation results obtained with the proposed method

are reported. In Section IV, representative practical cases

of single and composite disturbances are analyzed, which

illustrates the validity of the classification method. Finally,

the Conclusion Section summarizes the main outcomes of

this paper.

II. DESCRIPTION OF THE METHOD

A. ESTABLISHMENT OF THE DATABASE

According to IEEE standards, seven mathematical models of

a single power quality voltage disturbance signal are estab-

lished: harmonics (X1), transient oscillation (X2), transient

swell (X3), transient sag (X4), interruption (X5), transient

pulse (X6) and fluctuation (X7). As indicated in TABLE 1,

the fundamental wave frequency f0 is 50 Hz, where T is the

power frequency period, u(t) is the unit step function, and U

is the voltage amplitude. According to the actual situation of

the power grid, considering harmonics below 30 times, the

frequency range of the transient oscillation is 800∼1800 Hz.

Python is adopted to generate the disturbance signals listed

in TABLE 1, where the sampling frequency is fs = 10 kHz,

and 25 fundamental wave cycles, namely, at 500 ms, are

realized, with 5000 sampling points. The waveforms corre-

sponding to TABLE 1 are shown in Fig. 1.

B. BUILDING OF THE DEEP CONVOLUTIONAL NETWORK

WITH A 1D-MIR STRUCTURE

The convolutional network consists of three parts, which

are used for the extraction of the characteristics, clas-

sification of the characteristics and optimization of the
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FIGURE 1. Eight kinds of waveforms.

output, and contains eight layers altogether. The building

of the deep convolutional network can be described as

follows:

The extraction of the characteristics relies on five 1D-MIR

modules. Each of them consists of four branches, three of

which consist of a subnetwork with two convolution layers in

each branch, and the remaining branch is a shortcut, as shown

in Fig. 2.

The three branches are named Branch_0, Branch_1

and Branch_2. Their functions are to extract the subtle

characteristics of signals and reduce the computational load

of the network. Among them, all the first convolution layers

are convolution layers with 1 × 1 convolution cores and

1 channel, and the second layers are convolution layers with a

1×3 convolution core and 32 channels, 1×5 convolution core

and 16 channels, and 1×7 convolution core and 8 channels for

Branch_0, Branch_1 and Branch_2, respectively, as indicated

in TABLE 2. Because the dimensions of the output tensors of

the three branches are inconsistent, the output of each branch

should be filled symmetrically.
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FIGURE 2. Modified Inception-ResNet (1D-MIR) structure.

TABLE 2. 1D-MIR module specification parameters.

First, the outputs of the three branches are jointed to form a

characteristic vector, and the vector is then made to multiply

the output of the directly connected channel (also called the

shortcut), while the multiplication results are then input to the

next layer. The shortcut directly passes the input information

to the output and protects the integrity of the information.

The classification part consists of three layers comprising

the full-connection layer and the three layers of the dropout

layer, which are alternately connected.

First, in all the fully connected layers, each node is

connected with a node of the last layer. Next, the local

information with category discrimination is integrated into

a new characteristic vector. Finally, a new dropout layer

is connected, and the weights at the nodes with less local

characteristic information are set to 0, as shown in Fig. 3.

The optimization part of the output consists of an output

layer and an optimization layer. In the output layer, the soft-

max function (also called the normalized exponential func-

tion) is utilized as the loss function. First, the probabilities

of the output types in the classification part are individually

calculated by the loss function. Next, the types of the power

FIGURE 3. The structure of the classification part.

disturbance signals are determined according to the proba-

bilities and are compared to the labels calibrated in advance

to determine the ratio of the incorrect samples to the overall

samples. Thereafter, the loss is output. In the optimization

layer, the Adam function is first utilized to conduct first-

and second-order moment estimations of the loss function of

the output layer. Finally, the learning speed is dynamically

adjusted according to the estimation results, thus regulating

the learning steps of the back propagation process and opti-

mizing the loss. The final built network structure is shown

in Fig. 4.

C. TRAINING PROCESS

The training process of the 1D-MIR deep convolutional net-

work on the power quality disturbance signal database is

divided into two processes: the forward propagation process

and back propagation process.

1) FORWARD PROPAGATION PROCESS

Step 1:

Python was adopted to generate the disturbance signals

as listed in TABLE 1. Two thousand random samples are

generated for each of the fundamental wave signals and the

seven types of disturbance signals, totaling 16000 samples.

For each type of disturbance, 1600 samples are selected to

form the training set and 400 samples to form the test set.

To ensure that the simulation signal is as close as possible

to the actual power system disturbance signals, the begin-end

times to each type of disturbance and random variation ampli-

tude are set within a certain range. To improve the general-

ization ability of the network, data augmentation is required,

which is achieved by randomly scrambling the different kinds

of samples in the process for intercepting the disturbance

signals [18].

To facilitate training, each disturbance type mentioned

above is represented by a vector. That is, X0 is repre-

sented by [1,0,0,0,0,0,0,0,0], X1 by [0,1,0,0,0,0,0,0], X2

by [0,0,1,0,0,0,0,0], X3 by [0,0,0,1,0,0,0,0,0], X4 by [0,0,

0,0,1,0,0], X5 by [0,0,0,0,0,1,0,0], X6 by [0,0,0,0,0,0,0,1,0],

and X7 by [0,0,0,0,0,0,0,1].
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FIGURE 4. Overall structure of the modified Inception-ResNet (1D-MIR)
deep convolution network.

The 16000 samples and corresponding labels are divided

into 100 batches, and the batch size is 160, while the size of

the sample labels is 1× the class number ×1, where the class

number is 8. The sample is written as a vector, as defined in

Eq. (1):

Xi = [xi0, xi1, . . . . . . xim]
T (1)

In Eq. (1), i = 1, 2, . . . , n, where n is the batch number of the

samples, and m is the length of the signals collected.

The sample size of each batch is expressed as:

Xbatch_size = [X1,X2, . . . . . .Xn] (2)

At the same time, at the moment the program starts, each

network node is initialized, and the weights and biases are

randomly assigned.

Step 2:

An input constructor (next batch) is constructed by calling

the iterator of Python’s bottom implementation. The samples

and labels are fed into the network in batches to train the

weights and biases of the characteristic extraction part.

A total of i characteristic vectors are obtained from the

batch samples intercepted by the iterator under the action of

the 5 1D-MIR modules.

The characteristic vector is output by the n-th 1D-MIR

module:

y(n) =
l

∑

1

f {f {. . . f {Xbatchsize ×
(

kna0 ∗ kna1

+knb0 ∗ knb1 + knc0 ∗ knc1
)

∗ kn × Xbatchsize}}} (3)

In Eq. (3), y(n) is the characteristic vector of the output of the

n-th layer; knan , knbn and kncn are the convolution kernels of

the three branches of the n-th layer; kn is the downsampling

convolution kernel of the n-th layer; and ‘‘∗’’ is the convolu-
tion operation, n ∈[0,1,2,3,4].
Step 3:

The output of the characteristic extraction part is input

to the classification part to train the weights of the full-

connection layer. The specific operation is as follows:

i. All the weights are aggregated into a weight matrix (W )

in the order of the hidden units:

W = {w[1],w[2],w[3], . . . . . . ,w[q]} (4)

The same is true for the biases B:

B = {b[1], b[2], b[3], . . . . . . b[q]} (5)

where q is the length of the input vector, i.e., the number of

data points input into the full-connection layer.

Then, the weight matrix W and bias matrix B are initial-

ized. The initialization process is as follows: the matrices are

assigned by the random variables generated by the Gaussian

process and then multiplied by
√

2
q(l−1) .

ii. Each characteristic vector in each batch is input into the

full-connection layer in the form of a vector space, and then,

under the action of the full-connection layer, it is transformed

into a simple characteristic vector, which can be expressed as:

z(1) =
∑

ynw
(1)
i + b(1) (6)
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iii. The outputs of the full-connection layer are input into

the dropout layer, where the inactivation rate is in the range

of [0,1], and the rate is set to 0.8. Then, a sparse vector is

obtained by the weights of the partial nodes:

r
(2)
i ∼ Bernoulli (p) (7)

z̃(2) = r
(2)
i ∗ z(1) (8)

where r
(2)
n is the inactivation factor randomly extracted from

the Bernoulli distribution, z(1) is the output of the first fully

connected layer, and z̃(2) is the final sparse vector. The fol-

lowing relationship can be obtained by repeating the same

process three times.

xso = f (w
(6)
i z̃(6)) (9)

The above is the final characteristic vector of the power

disturbance signals.

Step 4:

The final characteristic vector is input into the softmax

layer, and the vector is normalized with the softmax function.

Then, the vector is mapped to the interval of (0,1), and an

eight-dimensional probability vector is obtained. The esti-

mated probability value of sample x for each category i is

denoted as p(i|x), which can be expressed as:

p(i|x) =



























ex
[0]
os

∑

i xso

ex
[1]
os

∑

i xso
...

ex
[8]
os

∑

i xso



























(10)

where i is the index of vector xso. At the corresponding posi-

tions of the eight vector elements, the closer the element value

approaches 1, the more likely it belongs to the perturbation

type of the corresponding position of the value. The network

classifies the sample as the one with the highest probability.

Step 5:

The error rate is calculated by comparing the judgment

result of the network to the corresponding label. At the same

time, the difference between the output and the sample label,

which is called the loss value, is calculated node by node via

the loss function, as expressed in Eq. (11):

L(a[L], y) = −[ylog10(a) + (1 − y)log10(1 − a)] (11)

where a is the input of each layer, and y is the basic truth label

value of the sample.

Then, the cost function is calculated according to Eq. (12):

J (w, b) =
1

m

m
∑

i=1

L(a[i], y[i]) (12)

2) BACK PROPAGATION PROCESS

Step 1:

The derivatives of the weight (w) and bias (b) are deter-

mined for the loss functions obtained in the forward propaga-

tion process:

d

dw
J

(

a[i], y[i]
)

=
1

m

m
∑

i=1

d

dw
L

(

a[i], y[i]
)

(13)

d

db
J

(

a[i], y[i]
)

=
1

m

m
∑

i=1

d

db
L

(

a[i], y[i]
)

(14)

Step 2:

According to the chain rule, the derivatives of the loss

function with respect to the weights and biases of the layer

are determined for the output y[i] of each level to calculate

the minimum value of the loss function. The vectored back

propagation equation can be expressed as follows:

dZ [l] = da[l] ∗ g[l]′(Z [l]) (15)

dw[l] = dZ [l] ∗ a[l−1] (16)

db[l] = dZ [l] (17)

da[l−1] = w[l]T ∗ dZ [l] (18)

dZ [l] = w[l+1]T dZ [l+1] ∗ g[l]′(Z [l]) (19)

In the iteration process, the Adam optimization algorithm is

adopted to reduce the calculation amount.

3) CONFIGURATIONS OF THE PARAMETERS AND

ENVIRONMENT IN THE TRAINING PROCESS

i. The configuration of the parameters: First, the initial

learning rate, the exponential decay rate of the first-order

moment estimation β1, and the exponential decay rate of the

second-order moment estimation β2 are set to 0.01, 0.9, and

0.999, respectively.

ii. The configuration of the hardware environment:

Intel (R) Core (TM) i7-8759 CPU @ 2.20-2.21 GHz, 8 GB

memory; Nvidia Quadro M4000 GPU, 8 GB memory.

iii. The configuration of the software environment: Win-

dows 10 64-bit, CUDA Toolkit 9.0, CUDNN V9.0, Python

3.7.2, Tensor-GPU 1.13.1. model. The training and testing of

the network are accelerated by the GPU.

III. RESULTS AND ANALYSIS

The key performance indicators mainly include the classifi-

cation accuracy, computation cost, convergence speed, etc.

for evaluating the quality (good and bad) of an algorithm

for the identification and classification of the power quality

disturbance. In this paper, these indicators are also adopted.

The classification accuracy is defined as the ratio of the

correct number of samples to the total number of samples and

is calculated according to Eq. (20).

accuracy =
Correct number of classification

Total number of samples
(20)

The parameter quantity of the network to be trained (the

number of weights) is determined by the network structure

88806 VOLUME 8, 2020



R. Gong, T. Ruan: New Convolutional Network Structure for Power Quality Disturbance Identification and Classification

shown in Fig. 2 and calculated by Eq. (21).

pl = (K × G + 1) ×C (21)

where pl is the number of parameters in layer l, K×G is

the number of convolution kernels of the layer, and C is the

number of convolution kernels or channels.

The calculation quantity is also determined by the network

structure and calculated by Eq. (22).

c = O × (C − 1) × C ×
(

H − K + Ph

S
+ 1

)

×
(

W − G+ PW

S
+ 1

)

× pl (22)

where O is the number of output characteristic graphs, H and

K are the height and width of the input characteristic graphs,

respectively, S is the step length, and Ph and Pw are the pixels

filled along the height and width directions, respectively.

According to Eqs. (20), (21) and (22), the relationships

between the loss value and accuracy of the network and the

number of iterations on the training and testing sets can be

determined, which are shown in Figs. 5, 6, 7 and 8.

FIGURE 5. Loss value vs. the number of iterations on the training set. for
data set I.

FIGURE 6. Accuracy vs. the number of iterations on the training set for
data set I.

Figs. 5 and 6 show that after fewer than 100 iterations,

the loss value and accuracy of the network structure are

0.1914 and 99.8%, respectively, on the training set. As the

FIGURE 7. Loss value vs. the number of iterations on the testing set for
data set I.

FIGURE 8. Accuracy vs. the number of iterations on the testing set for
data set I.

number of iterations increases, the gap between the classifica-

tion results and the predetermined results decreases, namely,

the loss value decreases, and the statistical accuracy gradually

increases.

As shown in Figs. 7 and 8, it is evident that the maximum

accuracy of the network on the testing set is as high as 99.8%,

and the loss value is further reduced to 0.1910. Through

evaluation of the neural network model via 10-fold cross-

validation, the average accuracy and loss value of the network

in the simulation experiment are obtained, which are 98.5%

and 0.1945, respectively.

The curve of the accuracy vs. the number of iterations is

almost flat, implying that the dependence of the accuracy on

the number of iterations is not notable. Therefore, the number

of iterations on the testing set can be decreased to reduce the

overall computation amount.

To examine the advantage of the network built over others,

a test of 3 technical indicators (training time (times), total

number of iterations, and number of iterations at conver-

gence) for characterizing the convergence speed of a network

is performed and 2 technical indicators (calculation quan-

tity (times) and the number of parameters) are calculated for

characterizing the computation cost by Eqs. (21) and (22),
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respectively, for several kinds of networks (including the

networks built in this paper and [3], [4], [19]) for the iden-

tification and classification of power quality disturbances.

The results obtained are summarized in TABLES 3 and 4.

TABLE 3 lists the testing results of the training time, the num-

ber of iterations, etc. TABLE 4 summarizes the testing results

of the calculation quantity and the number of parameters

trained.

TABLE 3. Comparison of convergence rate.

TABLE 4. Comparison of the training cost.

TABLES 3 and 4 indicate that the training cost of the

network built for the algorithm is much lower than that of the

others, and its convergence speed is also much higher than

that of the others.

To verify the generalization ability of the network, 64 types

of disturbance samples are considered, including 8 single

disturbances and 56 composite disturbances. The number of

samples is 32000, and they are divided into two training sets.

Figs. 6, 9 and 10 show the accuracy variation obtained

from the three training sets (data sets I, II and III, respec-

tively). The figures reveal that the generalization accuracies

of ID-MIR are 99.88%, 99.80% and 99.61% on the three data

sets (I, II and III, respectively) whose size and type are

different, but these values are very close.

Figs. 7 and 8 show the performance of the network on the

test set.

The generalization precisions obtained by the 4 different

kinds of networks for these 64 types of different disturbances

are listed and compared in TABLE 5, whose calculation

methods are the same as those used in [20], [21].

The classification accuracies for the 8 types of single dis-

turbances are summarized in TABLE 6, and those for the

56 types of composite disturbances are listed in TABLE 7,

where the accuracy rate is calculated with Eq. (20), and the

number of correct or incorrect number of samples is obtained

by screening the total samples.

In addition, the amount of data utilized in the network

training is smaller than that utilized in the other networks.

TABLE 5. Generalization precision contrast.

TABLE 6. Accuracy of the classification algorithm for a single
disturbances.

FIGURE 9. Accuracy vs. the number of iterations on the training set for
data set II.

All these findings fully prove that the network has a strong

generalization ability.

Moreover, to test the performance of the anti-interference

ability of the method, three Gaussian white noises with
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TABLE 7. Accuracy of the classification algorithm for the composite
disturbances.

signal-to-noise ratios (SNRs) of 30 dB, 40 dB and 50 dB

are added to the disturbance signals to simulate the actual

situation of noise pollution, and the classification accuracy

rates are also listed in TABLES 6 and 7. It can be observed

that they are still very high.

TABLE 8 lists the comparison results of the accuracy

obtained by the various types of commonly used classifi-

cation methods. The table indicates that compared to the

FIGURE 10. Accuracy vs. the number of iterations on the training set for
data set III.

TABLE 8. Comparison of the accuracy obtained by the various kinds of
commonly used classification methods.

commonmethods, the proposedmethod attains amuch higher

accuracy rate.

IV. ANALYSIS OF THE EXAMPLES

To verify the effectiveness of the method, a simulation of

the various single-disturbance types listed in TABLE 1 and

several composite disturbance types is performed by utilizing

Python, and an identification and classification is performed

by the method proposed in this paper. The results obtained

show that this method can clearly illustrate the start and end

times when disturbances occur and the various characteristic

information of the disturbances, thus realizing the identi-

fication and classification of the disturbance types. In the

following, examples of single and composite disturbances

are given, which illustrate the validity of the classification

method.

A. STEADY-STATE HARMONIC SIGNAL

Given a Voltage Signal:

v (t)

= 220
√
2 sin (ω0t)+56

√
2 sin (3ω0t)+45

√
2 sin (5ω0t)

+29
√
2 sin (7ω0t)+16

√
2 sin (11ω0t)+8

√
2 sin (13ω0t).

The waveform of the given signal is shown in Fig. 12, and

the characteristic waveform extracted by 1D-MIR is shown

in Fig. 11. The information in the figure shows that the steady-

state harmonic signal occurs in the interval t ∈ [0,500] ms,

which is consistent with the information contained in the
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FIGURE 11. The extracted characteristic waveform.

FIGURE 12. The signal waveform in the time domain.

given signal and reflects the characteristics of this type of

disturbance.

B. VOLTAGE SWELL

Given a Voltage Signal:

v (t) = 220
√
2 (1 + 0.8 (u (t − t1)

−u (−t2))) sin (ω0t) , (0.5T ≤ t2 − t1 ≤ 30T ).

The waveform of the given signal is shown in Fig. 14, and

the characteristic waveform extracted by 1D-MIR is shown

in Fig. 13. The information in the figure shows that voltage

swell occurs in the interval t ∈ [349,385] ms, which is con-

sistent with the information provided by the given signal and

reflects the characteristics of this type of disturbance.

FIGURE 13. The extracted characteristic waveform.

FIGURE 14. The signal waveform in the time domain.

C. VOLTAGE SAG

Given a Voltage Signal:

v (t) = 220
√
2 (1 − 0.4 (u (t − t1) − u (−t2))) sin (ω0t) ,

(0.5T ≤ t2 − t1 ≤ 30T ).

The waveform of the given signal is shown in Fig. 16, and

the characteristic waveform extracted by 1D-MIR is shown

in Fig. 15. The information in the figure shows that voltage

sag occurs in the interval t∈ [386,490]ms, which is consistent

with the information in the given signal and reflects the

characteristics of this type of disturbance.

FIGURE 15. The extracted characteristic waveform.

FIGURE 16. The signal waveform in the time domain.

D. VOLTAGE INTERRUPTION

Given a Voltage Signal:

v (t)=220
√
2 (1−(1−0.9) (u (t − t1)−u (−t2))) sin (ω0t) ,

(0.5T ≤ t2 − t1 ≤ 30T ).

The waveform of the given signal is shown in Fig. 18, and

the characteristic waveform extracted by 1D-MIR is shown

in Fig. 17. The information in the figure shows that voltage

interruption occurs in t ∈ [240,465] ms, which is consistent

with the information provided by the given signal and reflects

the characteristics of this type of disturbance.

FIGURE 17. The extracted characteristic waveform.
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FIGURE 18. The signal waveform in the time domain.

E. VOLTAGE SURGE + HARMONICS

Given a Voltage Signal:

v (t) = 220
√
2 sin (ω0t) + (1 + 0.8 (u (t − t1) − u (−t2)))

×220
√
2 sin (ω0t1) + 64

√
2 sin (5ω0t3)

+45
√
2 sin (7ω0t3) + 13

√
2 sin (9ω0t3).

where 0.5T ≤ t2 − t1 ≤ 30T and 50ms < t3 < 150ms.

The waveform of the given signal is shown in Fig. 20,

and the characteristic waveform extracted by 1D-MIR is

shown in Fig. 19. The figures demonstrate that the harmonics

occur in t ∈ [60,415] ms, and the voltage surge occurs in

t ∈ [415,465] ms, which is consistent with the information

contained in the given signal and reflects the characteristics

of this type of composite disturbance.

FIGURE 19. The extracted characteristic waveform.

FIGURE 20. The signal waveform in the time domain.

F. VOLTAGE INTERRUPTION + HARMONICS

Given a Voltage Signal:

v (t) = 220
√
2 sin (ω0t) + (1 − 0.1 × (u (t − t1) − u (−t2)))

×220
√
2 sin (ω0t) +64

√
2 sin (5ω0t3)

×45
√
2 sin (7ω0t3) + 13

√
2 sin (9ω0t3)

where 0.5T ≤ t2 − t1 ≤ 30T and 50ms < t3 < 300ms.

The waveform of the given signal is shown in Fig. 22, and

the characteristic waveform extracted by 1D-MIR is shown

in Fig. 21. As shown in the figures, the harmonics occur

in t ∈ [75,360] ms, and the voltage interruption occurs in

t ∈ [360,484] ms, which is consistent with the information

provided by the given signal and reflects the characteristics

of this type of composite disturbance.

FIGURE 21. The extracted characteristic waveform.

FIGURE 22. The signal waveform in the time domain.

G. HARMONIC + FLICKER + SAG

Given a voltage signal:

v (t)

= 220
√
2 [1 + a sin (bωt)] sin (ωt)

+ (1 − 0.8 (u (t − t1) − u (−t2))) 220
√
2 sin (ω0t1)

+64
√
2 sin (5ω0t)+45

√
2 sin (7ω0t)+13

√
2 sin (9ω0t),

(0.05 < a < 0.2, 0.1 < b < 0.5)

where 0.5T ≤ t2 − t1 ≤ 30T .

The waveform of the given signal is shown in Fig. 24, and

the characteristic waveform extracted by 1D-MIR is shown

in Fig. 23. The figures reveal that the harmonics occur in

t ∈ [0,500] ms, the voltage flicker occurs in t ∈ [0,500] ms,

FIGURE 23. The extracted characteristic waveform.
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FIGURE 24. The signal waveform in the time domain.

and the voltage sag occurs in t ∈ [150,290] ms, which is

consistent with the information in the given signal and reflects

the characteristics of this type of composite disturbance.

H. HARMONICS + SWELL + SAG + IMPACT

Given a voltage signal:

v (t) = (1 − 0.8 (u (t − t1) − u (−t2))) 220
√
2 sin (ω0t1)

+ (1 + 0.8 (u (t − t3) − u (−t4))) 220
√
2 sin (ω0t1)

+0.8 × [u (t5) − u (t6)] + 64
√
2 sin (5ω0t)

+45
√
2 sin (7ω0t) + 13

√
2 sin (9ω0t)

where 0.5T ≤ t2 − t1 ≤ 30T ; 0.5T ≤ t4 − t3 ≤ 30T ;

1ms ≤ t6 − t5 ≤ 3ms; 0.05 < a < 0.2; 0.1 < b < 0.5.

The waveform of the given signal is shown in Fig. 26, and

the characteristic waveform extracted by 1D-MIR is shown

in Fig. 25. As shown in the figures, the harmonics occur

in t ∈ [0,500] ms, the voltage sag occurs in t ∈ [210,500]

ms, the impact occurs in t ∈ [205, 209] ms and the voltage

swell occurs in t ∈ [0,205] ms, which is consistent with the

information contained in the given signal and reflects the

characteristics of this type of composite disturbance.

FIGURE 25. The extraced characteristic waveform.

FIGURE 26. The signal waveform in the time domain.

I. HARMONICS + SWELL + FLICKER + INTERRUPTION

Given a voltage signal:

v (t) = 220
√
2 [1 + a sin (bωt)] sin (ωt) + (1+0.8 (u (t−t1)

−u (−t2))) 220
√
2 sin (ω0t) + 220

√
2 (1−(1−0.9)

× (u (t − t3)−u (−t4))) sin (ω0t)+64
√
2 sin (5ω0t)

+45
√
2 sin (7ω0t) + 13

√
2 sin (9ω0t)

where 0.5T ≤ t2 − t1 ≤ 30T ; 0.5T ≤ t4 − t3 ≤ 30T ; 0.05 <

a < 0.2; 0.1 < b < 0.5.

The waveform of the given signal is shown in Fig. 28, and

the characteristic waveform extracted by 1D-MIR is shown

in Fig. 27. The figures show that the harmonics occur in t

∈ [0,500] ms, the voltage flicker occurs in t ∈ [0,500] ms,

the voltage interruption occurs in t ∈ [315, 475] ms and the

voltage swell occurs in t ∈ [475,500] ms, which is consistent

with the information in the given signal and reflects the

characteristics of this type of composite disturbance.

FIGURE 27. The extracted characteristic waveform.

FIGURE 28. The signal waveform in the time domain.

J. HARMONICS + SWELL + SAG + FLICKER

Given a voltage signal:

v (t) = 220
√
2 [1+a sin (bωt)] sin (ωt)+(1 − 0.8 (u (t − t1)

−u (−t2))) 220
√
2 sin (ω0t1) + (1 + 0.8 (u (t − t3)

−u (−t4))) 220
√
2 sin (ω0t1) + 64

√
2 sin (5ω0t)

+45
√
2 sin (7ω0t) + 13

√
2 sin (9ω0t)

where 0.5T ≤ t2 − t1 ≤ 30T ; 0.5T ≤ t4 − t3 ≤ 30T ; 0.05 <

a < 0.2; 0.1 < b < 0.5.

The waveform of the given signal is shown in Fig. 30, and

the characteristic waveform extracted by 1D-MIR is shown

in Fig. 29. As shown in the figures, the harmonics occur in

t ∈ [0,500] ms, the voltage flicker occurs in t ∈ [0,500] ms,

the voltage sag occurs in t ∈ [111,159] ms and the voltage
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FIGURE 29. The extracted characteristic waveform.

FIGURE 30. The signal waveform in the time domain.

FIGURE 31. The extracted characteristic waveform.

swell occurs in t ∈ [159,500] ms, which is consistent with

the information provided by the given signal and reflects the

characteristics of this type of composite disturbance.

K. HARMONICS + VOLTAGE SWELL + VOLTAGE SAG +

FLICKER + VOLTAGE INTERRUPTION

Given a voltage signal:

v (t) = 220
√
2 [1 + a sin (bωt)] sin (ωt) + (1−0.8 (u (t−t1)

−u (−t2))) 220
√
2 sin (ω0t1) + (1 + 0.8 (u (t − t3)

−u (−t4))) 220
√
2 sin (ω0t1) + 220

√
2(1−(1−0.9)

×(u (t − t5) − u(−t6)))sin(ω0t) + 64
√
2 sin (5ω0t)

+45
√
2 sin (7ω0t) + 13

√
2 sin (9ω0t)

where 0.5T ≤ t2 − t1 ≤ 30T ; 0.5T ≤ t4 − t3 ≤ 30T ;

0.5T ≤ t6 − t5 ≤ 30T ; 0.05 < a < 0.2; 0.1 < b < 0.5.

The waveform of the given signal is shown in Fig. 32, and

the characteristic waveform extracted by 1D-MIR is shown

in Fig. 31. The figures show that the harmonics occur in t

∈ [0,500] ms, the voltage flicker occurs in t ∈ [0,500] ms,

the voltage sag occurs in t ∈ [0,211] ms, the voltage swell

occurs in t ∈ [211,249] ms, and the voltage interruption

occurs in t ∈ [249,500] ms, which is consistent with the

information in the given signal and reflects the characteristics

of this type of composite disturbance.

FIGURE 32. The signal waveform in the time domain.

L. HARMONICS + VOLTAGE SWELL + VOLTAGE SAG +

FLICKER + IMPACT

Given a voltage signal:
v (t)

= 220
√
2 [1 + a sin (bωt)] sin (ωt) + (1 − 0.8 (u (t−t1)

−u (−t2))) 220
√
2 sin (ω0t1) + (1 + 0.8 (u (t − t3)

−u (−t4))) 220
√
2 sin (ω0t1) +0.8× [u (t5) −u (t6)]

+64
√
2 sin (5ω0t) + 45

√
2 sin (7ω0t) + 13

√
2 sin (9ω0t)

where 0.5T ≤ t2 − t1 ≤ 30T ; 0.5T ≤ t4 − t3 ≤ 30T ;

0.5T ≤ t6 − t5 ≤ 30T ; 0.05 < a < 0.2; 0.1 < b < 0.5.

The waveform of the given signal is shown in Fig. 34, and

the characteristic waveform extracted by 1D-MIR is shown

in Fig. 33. As shown in the figures, the harmonics occur

in t ∈ [0,500] ms, the voltage flicker occurs in t ∈ [0,500]

ms, the voltage sag occurs in t ∈ [0,170] ms, the impact

occurs in t ∈ [170,173] ms, and the voltage swell occurs in

t ∈ [173,500] ms, which is consistent with the information

contained in the given signal and reflects the characteristics

of this type of composite disturbance.

FIGURE 33. The extracted characteristic waveform.

FIGURE 34. The signal waveform in the time domain.

Figs. 11 to 34 show the signal waveforms in the time

domain and the extracted characteristic waveforms of the

4 single disturbances, 2 two-composite disturbances, 1 three-

composite disturbance, 3 four-composite disturbances, and

2 five-composite disturbances. The figures reveal that in the

characteristic extraction part of the network, not only can the

characteristics of the network be extracted but the difference

in characteristics can also be magnified to sufficiently char-

acterize the characteristics of the corresponding disturbance
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types such that the classification link can clearly distinguish

the basic disturbance types contained in the given signal from

the extracted characteristic waveforms to quickly localize

the time when the disturbance occurs, thus identifying the

disturbance type.

V. CONCLUSIONS

Aiming at the problems of a low convergence speed, low

accuracy and poor generalization ability of the available tra-

ditional power disturbance identification and classification

methods, this paper proposes a new deep convolutional net-

work structure and a power quality disturbance identification

and classification method for microgrids based on this new

network structure. The large number of simulation experi-

ments verify that the constructed network can quickly and

accurately extract the characteristics of the various distur-

bance signals, including single and composite disturbances,

and identify and classify them. Compared to the available

power disturbance identification and classification methods,

the proposed method attains a higher classification accuracy

(as high as 99.1%), higher convergence speed and stronger

generalization ability. The measured classification precision

of the network on the data sets for the different sample types

are 99.88%, 99.80% and 99.61%, the average classification

precision of the network is 99.1%, and the network training

time is only approximately 6 minutes.

In conclusion, the built network and proposed method in

this paper for power quality disturbance identification and

classification are feasible and effective, which provides a

new approach for power quality disturbance identification

and classification. However, they are not perfect. The main

disadvantage is that they still cannot be used to detect certain

components of disturbance signals, such as the amplitude of

the disturbances. Next, we will improve them such that they

can be applied to more fields of power quality governance.
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