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Abstract:

Consider a stationary spatio-temporal random process with a sample Our
object here is to estimate values at a given locations using the frequency
domain approach. To obtain an esti-

mator, we de fine a sequence of Discrete Fourier transforms at the
Fourier frequencies using the time series observed at the locations si; (i =
1; 2; 3:::m), and use these complex random variables

as our observations.

Assuming the complex valued process satisfi es a complex stochastic
partial dixerential equation of the Laplacian type, and using the properties
of Fourier transforms of stationary processes, we

obtain an expression for the spatio-temporal covariance function and

for the spectral density function. The covariance function of the Dis-

crete Fourier transforms has shown to be a

function of the Euclidean distance and the temporal frequency and

its second order spectrum corresponds to non separable class of ran-

dom process. We show further that the model defi ned here includes as
special cases the spatio-temporal models de ned by Jones and Zhang
[1997], Lindgren et al. [2011] and Sigrist et al. [2015]. The estimation

of the parameters of the spatio-temporal covariance function has also
been considered. The data considered is Air Pollution

data (Particulate Matter PM2:5).
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g? Abstract

28 Consider a stationary spatio-temporal random process {Y:(s)|s € R%, ¢ € Z} and let {Yi(s;)|i =

29 1,2,..m; t =1,...,n } be a sample from the random process {Y; (s) }. Our object here is to predict

30 {Y:(so)} for all ¢ at the location s, given a sample {Y:(s;)| ¢ = 1,2,..m; t = 1,...,n}. To obtain

31 the predictors, we define a sequence of Discrete Fourier transforms {Js,(w;); ¢ = 1,2,...m} using

32 the time series observed at the locations s; (1 = 1,2,3...m). We use these complex valued random

33 variables as a sample from the complex valued random process {Js(w)}. The Fourier transforms are

34 now functions of the spatial coordinates only. Assuming that the Discrete Fourier Transforms satisfy
a complex stochastic partial differential equation (CSPDE) of the Laplacian type with a scaling

35 function which is a polynomial in the temporal spectral frequency w, we obtain, in a close form,

36 expressions for the spatio-temporal covariance function and for the spectral density function. These

37 expressions are used in obtaining the optimal predictors. The spectral density function obtained

38 corresponds to a non-separable random process. The optimal predictor of the DFT Js_(w) is in terms

39 of the covariance function of the DFT’s. The covariance function of the Discrete Fourier transforms

40 at two distinct locations,under isototropy condition, has been shown to be a function of the Euclidean

41 distance||h|| and the temporal frequency w. We show further that the CSPDE model defined here

42 includes as special case the spatio-temporal models defined by Jones and Zhang [1997], Lindgren

43 et al. [2011] and Sigrist et al. [2015]. The estimation of the parameters of the spatio-temporal

44 covariance function has also been considered. The method of estimation is based on Frequency

45 Variogram(FV) approach recently introduced and the method does not involve inversion of large

46 dimensional matrices and also found to be robust against departure from Gaussianity. The Discrete

47 Fourier Transforms, can be evaluated using Fast Fourier Transform algorithms, and, therefore, the

48 estimation methods are quick compared to other methods. The methods are illustrated with a real

49 data. The data considered is Air Pollution data (Particulate Matter PMjy 5) recorded at 15 locations

50 in New York city observed over a period of 9 months. The frequency domain methods given above
for prediction and estimation can be extended to situations where the observations are corrupted by

g; independent white noise process.

53 Keywords: Complex Stochastic Partial Differential Equations, Covariance Functions, Discrete

54 Fourier Transforms, Measurement Errors, Spatio-Temporal Processes, Prediction (Kriging), Fre-

55 quency Variogram.

56

57 .

58 1 Introduction and Summary

59

60 In recent years it has become necessary to develop statistical methods for the analysis of data coming

from diverse areas such as, environment, marine biology, agriculture, finance etc. The data which comes
from these areas, are usually, functions of both space and time. Any statistical method developed must
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take into account both spatial dependence, temporal dependence and any interaction between space
and time. There is a vast literature on statistical analysis of stationary spatial data (for example refer
to the books of Cressie [1993], Stein [1999]) but not to the same extent in the case of stationary
spatio-temporal data. The inclusion of an extra temporal dimension, which cannot be embedded into
spatial dimension gives raise to many problems. Omne such problem is finding a suitable covariance
function which is positive semi-definite and depends on spatial lag difference and temporal lag. In
recent years several authors (see Cressie and Huang [1999], Gneiting [2002], Diggle and Ribeiro [2007],
Stein [2005a], Craigmile and Guttorp [2011], Jones and Zhang [1997], Ma [2002], Ma [2003], Lindgren
et al. [2011], and Sigrist et al. [2015]) have proposed various covariance functions, and majority of them
are Matern type of functions. Jones and Zhang [1997], Lindgren et al. [2011] and Sigrist et al. [2015]
have considered transport-diffusion Stochastic Partial Differential (SPDE) equations for modelling of
stationary spatio-temporal random process. The models defined by these authors are stochastic versions
of the classical Heat equation, which is in fact a dynamic form of the Laplace equation, and the temporal
correlation is explained by the inclusion of a first order time derivative in the operator. Lindgren et al.
[2011] considered the approximation of Gaussian Field (GF) models by the Gaussian Markov Random
Field (GMRF) models and considered modelling the data by GMRF models. Sigrist et al. [2015] have
approximated the solution of the SPDE models by a linear combination of deterministic spatial functions
(Fourier functions in terms of spatial wave numbers) with random coefficients that evolve dynamically
and requires discretization in time for application to discrete time series.

Though for the processes defined by the above SPDE models one can obtain explicit expressions for
the space-time spectrum, no such expressions in a closed form for the space-time covariance function
are available (see Sigrist et al. [2015]).Such expressions are required for prediction. An alternative to
the covariance based approach for prediction is to model the spatio-temporal processes dynamically and
use Bayesian methodology for obtaining the predictive distribution. Such models are called Hierarchical
Dynamic Spatio-temporal (HDST) models (see Cressie and Wikle [2011]). In Hierarchical modelling,
models are specified at various levels together with parameters along with their prior distributions, and
using these stated distributions one obtains the predictive distribution (see Banerjee et al. [2014]). This
method requires evaluation of multiple integrals, analytic evaluation of such integrals are not feasible.
Therefore, often MCMC techniques are used in such evaluations.

The novel features of our present paper are as follows. We consider the discrete Fourier transforms
of the given spatio-temporal data and treat these complex Gaussian variables as our data. We define
the Fourier transforms which are complex valued through a stochastic partial differential equation in
spatial coordinates of the Laplacian type with a scaling function which is a polynomial in the temporal
frequency. By defining in this way and operating on the Fourier transforms, the dependency of the
operator on time is removed. By analyzing the DFTs and using the defined Complex Stochastic Partial
Differential Equations (CSPDE), we are reducing the number of computations required for evaluating
the predictors, the estimation of the parameters of the covariance function etc. Under the assumption
of isotropy, we obtain an expression for the covariance of the Discrete Fourier Transforms at different
locations, and it is shown to be in terms of the modified Bessel function (Matern Class). The expression
for the covariance function given here is fundamentally different from the other covariance functions
defined and used by other authors. We further show that the second order spectral density function
of the spatio-temporal random process defined here through the above operator on the discrete Fourier
transforms includes all the second order spectra of the processes so far defined through the stochastic
versions of the Laplace equation such as, Heat equation (transport-diffusion equation of Jones and Zhang
[1997], Lindgren et al. [2011] and Sigrist et al. [2015]), Wave equation and Helmholtz equation as special
cases. The second order spectral density function obtained here belongs to nonseparable random process.

We summarize the contents of each section. In section 2, the notation and the spectral representation
of the spatio-temporal random process are introduced. The properties of the Discrete Fourier transforms
of second order stationary processes are discussed in the appendix 2 given at the end. Expressions for
the spatio-temporal covariance function and for the spectral density function when the Discrete Fourier
Transforms satisfy a Complex Stochastic Partial Differential equation (CSPDE) are obtained in section 3.
We also show in this section that the second order spectra of the processes satisfying the models defined
by Jones and Zhang [1997], and Sigrist et al. [2015] can be obtained as special cases of the CSPDE model
defined here. The main results related to the process satisfying CSPDE are stated in theorems 1 and
2. The prediction of the entire data at a known location given the data in the neighborhood using the
Discrete Fourier transforms is considered in section 4. The estimation of the parameters, using Frequency
Variogram method, of the spatio-temporal covariance function of the DFT’s is considered in section 4.
1. In section 5, prediction and estimation of the parameters when the observations are corrupted by
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white noise are considered. In section 6,we give an algorithm for generating a spatio-temporal time series
with a given second order space-time spectral density and also discuss estimation and prediction for the
simulated data.In section 7, the analysis of the Air Pollution data (Particulate Matter PMy 5) collected
at 15 locations in New York City is considered. In section 8 (appendix) some well known results related
to Discrete Fourier Transforms are included.

2 Notation and Preliminaries

Let Y; (s), where {s eRet e Z}, denote the spatio-temporal random process. We assume that the
random process is spatially and temporally second order stationary, i. e.

E[Yi (s)] = p,
Var[Y; (s)] = 02 < oo,
Cov[Y;(s),Yipu(s+h)]=c(hu), heR ueZ.

We note that ¢(h,0) and ¢(0,u) correspond to the purely spatial and purely temporal covariances of
the process respectively. A further common stronger assumption that is often made is that the process
is isotropic. The assumption of isotropy is a stronger assumption. The process is said to be isotropic if

c(hvu):c(”hnvu)v ”hH >0,u€Z,

where ||h]| is the Euclidean distance. Without loss of generality, we set p equal to zero. As in the case
of spatial process, one can define the spatio-temporal variogram for {Y; (s)} as

2y (h,u) = Var [Yiu (s + h) =Y (s)]. (1)
If the random process {Y; (s)} is spatially and temporally stationary, then we can rewrite the above as
2y (h,u) =2[c(0,0) — c(h,u)], (2)

and for an isotropic process, v (h,u) = v (|||, u). We note that v (h, u) is defined as the semi-variogram.
In view of our assumption that the zero mean random process {Y; (s)} is second order spatially and
temporally stationary, we have the spectral representation

Y, (s) = 7 / eEA a7y (M w), (3)

—00 —T
d oo

where s- A = > s;\; and f represents d—fold multiple integral. We note that Zy (A, w) is a zero mean
i=1 —00

complex valued random process with orthogonal increments with

EldZy (A, w)] =0,

EldZy (A w)* = dFy (Aw), (4)
where dFy (\,w) is a spectral measure. If we assume further that dF (A, w) is absolutely continuous with
respect to Lebesgue measure then dF (A, w) = f (A,w) dAdw. Here f (A, w) which is strictly positive and
real valued, is defined as the spatio-temporal spectral density function of the random process {Y; (s)},

and —00 < A1, A9y ..., Ay <00, -1 < w < 7. In view of the orthogonality of the function Zy (\,w),
we can show that the positive definite covariance function ¢ (h,u) has the representation

c¢(h,u) = / / etAtuw) £ () ) dA dw, (5)

—00 —T

and by Fourier inversion, we have

1 r i(h-A4uw
f (A, W) == W ;_4 e_ (h A"F )C(h’ U,) dh7 (6)
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d
where dh = [] dh;. From equation (5) we obtain
i=1

c(0,u) = 7 / ¢ f (A w) dAdw = / ¢ gy (w) dw,

—00 —T —T

where go (w) = [ f (A, w) dX is the temporal spectrum of the spatio-temporal random process {Y; (s)}.
In view of our assumption of spatial stationarity go (w) is same for all s. It may be pointed out here
that a study of the properties of the second order temporal spectrum in the spatio-temporal context
can be of considerable interest in several scientific fields, for example in neurosciences as shown by
Ombao et al. [2008]. Ombao et al. [2008] considered the estimation of temporal spectrum at a given
location assuming that spatio-temporal process is slowly spatially changing using a methodology similar
to Priestley [1965] for estimating the evolutionary spectra Here, we consider the estimation of go (w)
assuming that the process is spatially and temporally stationary. From the above relation, we obtain
by inverting go (w) = % Y e "we(0,u). We further note that if the process is fully symmetric (see
Gueiting [2002]) then ¢ (h,u) = ¢(=h,—u) and f (A w) = f(-A,—w) and f(A,w) > 0 for all A and
w. Here ) is the frequency associated with spatial coordinates (usually called the wave number) and w
is the temporal frequency. In the following we define the discrete Fourier Transforms of the stationary
process and summarise in the Appendix their well known properties which will be used (for details refer
to Brillinger [2001], Giraitis et al. [2012]).

Let {Y; (s;)|i=1,2,...m; t=1,...,n} be a sample from the zero mean spatio-temporal stationary
process {Y; (s)}. Consider the time series data {Y; (s;)| t =1,...,n} at the location s;, and define the
Discrete Fourier transform (DFT)

1 < ;
Js, (wr) = > Yilsi)e ", (7)
V2mn =
where wy = %, k=0, £1, ..., £ [g] In practice one uses Fast Fourier Transform algorithm to

compute the DFT. From the above, by inversion we get

Vi) = /o / Jo (@) € du. ®)

The above integral representation shows that the process can be decomposed into various sine and cosine
terms and complex valued DFT’s as the amplitudes. We also see from the above that there is a one to
one correspondence between the DFT’s and the data, a property we use later for prediction.

We may point out that one may define the mn dimensional vector Y, = (Y; (s1),Ys (82),...Y: (5m)),
(for t = 1,2,...n) and analyze the data by using the classical multivariate time series methodology.
The usual assumption here is that the elements of the vector temporally jointly stationary. The spatial
dependence is not taken into account if analyzed in this way. Also,modelling this way may lead to
over parametrisation (see Antunes and Subba Rao [2006]). In view of this, Pfeifer and Deutrch [1980]
suggested Space Time ARMA (STARMA)models as an alternative to the multivariate ARMA models
where known weighing matrices with elements which are functions of spatial dependence (for example
Euclidean distances) are included as coefficients. The choice of weights, definition of neighborhood
are arbitrary in this approach.We refer to Stein [2005a], Stein [2005b] for further discussion on the
advantages of modelling spatio-temporal data compared to modelling using the classical multivariate
time series approach.

3 A Complex Stochastic Partial Differential Equation (CSPDE)
and an Expression for the Spectrum g, (w)

In the following we consider the spatial model proposed by Whittle [1954], spatio-temporal models
proposed by Jones and Zhang [1997], Lindgren et al. [2011], and Sigrist et al. [2015] and derive the spectral
properties of the processes satisfying these models. Our object here is to define an alternative frequency
domain based complex stochastic partial differential equation for the discrete Fourier transforms and
derive expressions for the spectrum and the covariance function of the process satisfying the CSPDE
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model. We show that the spectra obtained from the stochastic partial differential equations defined by
Whittle [1954], Jones and Zhang [1997], Lindgren et al. [2011], Sigrist et al. [2015] can be derived as
special cases of the CSPDE model defined here.

It is well known that to study turbulence, dissipation of heat or fluid, equations such as Laplace
equation, Heat equation, Wave equation and Helmholtz equation are often used. Laplace equation is
used to describe the static behavior of the material (say fluid) where as Heat and Wave equations are
used to describe the dynamic behavior and are usually called Diffusion equations. Stochastic version
of the Laplace equation was used by Whittle [1954] to study the correlation pattern of soil fertility
in agricultural uniformity trials at different locations and by studying the solution of the Stochastic
Laplace equation, Whittle [1954] has shown that the correlation of the yields at points at ’s’ units apart
falls off as a power of "s~!’, a property observed by agricultural scientists. We briefly discuss the models
proposed by the above researchers.

3.1 Stochastic version of the Laplace Equation
(Whittle [1954])

For illustration purposes, let us assume d = 2. Let Y (s) (here the spatial coordinates are denoted by
s = (s1, s2)) denote the stationary spatial random field. In the case of the example considered by Whittle

[1954], Y (s) denotes the yield at the location s. Let 7 = g—; + g—; be the Laplace operator. Whittle
1 2

[1954] defined the model (7 —72)Y (s) = e(s), where e(s) is defined as spatial Gaussian white noise and
v is a scale parameter. We can obtain an expression for the spectrum of the process satisfying the above
model by considering the spectral representation of the process given by Y (s) = [ ™2 dZ,()), where
Zy () is an orthogonal function with E(dZy (\)) = 0, and E|dZy (\)|> = fy (A)d)A. Here A = (A1, A2)
corresponds to the spatial frequency (known as wave number), fy () is defined as the spatial spectrum.
We can define a similar spectral representation for Gaussian white noise process e(s) with Z.(A) denoting
the orthogonal random set function of the process. By substituting the spectral representations for Y (s)
and e(s) and equating the integrands and taking expectations of the modulus squares both sides, we
can show that the spectral density function of Y'(s) is given by fy (A) oc 1/(A\2 + A3 + +2)%.

If the process is isotropic (see Stein and Weiss [1971], Ch. IV. Theorem 1. 1), we can show by
inversion,that the corresponding spatial covariance function at Euclidean distance ||h|| is given by
(II]/7) K1 (v||h|]), where K;(.) is the modified Bessel function of the second kind of the first order.
The covariance function obtained belongs to Matern Class of covariance functions. The above model is
a static version of the dynamic model considered below.

3.2 Stochastic version of the Heat Equation (Jones and Zhang [1997])

Now consider the model [% + (v —7?)] Yi(s) = ei(s), where the white noise process {e;(s)} is defined
as above. The models considered by Lindgren et al. [2011] and recently by Sigrist et al. [2015] are
variations of the above diffusion model. If we set transport direction vector (see Sigrist et al. [2015])
zero and diffusion matrix to identity matrix in the models by Lindgren et al. [2011] and Sigrist et al.
[2015], we get the model defined by Jones and Zhang [1997]. By substituting the spectral representations
for the processes {Y;(s)} and {e;(s)} and equating the integrands, and after taking expectations we can
show that the spatio-temporal spectral density function of the process {Y;(s)} is given by fy (A, w)
o 1/[((A3 4+ 23 ++2)2 +w?]. We note that no closed form for the covariance function is available in this
case (see Sigrist et al. [2015]).

3.3 Stochastic version of the Wave Equation

This is a dynamic stochastic version of the classical Wave equation used to describe sound waves, water
waves, light waves arising in fields like acoustics, fluid dynamics etc. We are interested in the statistical
properties of the process. Consider the model [g—; +(V—7%)] Yi(s) = ei(s). By substituting the spectral
representations, and taking expectations, we can show that the spatio-temporal spectrum is given by
fy (A, w) o< 1/[(A2 + A2 ++2) + w?]2. As in the case of the Heat equation, no closed form for the space
time covariance function is available.
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3.4 CSPDE and an expression for the spectrum g (w)

We note that the above equations considered by Jones and Zhang [1997], Lindgren et al. [2011], and Sigrist
et al. [2015], include a first order time derivative % in the operators. This is equivalent to assuming that
the temporal dynamics in the spatio-temporal process can be explained by an autoregressive model of
order one and in a similar way the inclusion of the second order time derivative in the wave equation
is equivalent to assuming that the temporal dynamics can be explained by an autoregressive model of
order two. These specific assumptions can be unrealistic in some situations. In view of this, we propose
a model which includes a nonparametric function which is a polynomial in e~*, and by including this
function in our operator, we can derive the spectra defined by the processes satisfying the above models
as special cases. To arrive at the model, let us consider once again the Laplace operator (7 — 72)
operating on the process {Y;(s)}. We have shown (see equation (8),Section 2)

Y=o / Jo (@) €*d

Multiplying both sides of the above equation by the operator (7 — 72), we get

(V=) (s) = \/Z/ﬂ(v — ) Js (w) €™ duw.

This relation shows that operating on the process Y;(s) is equivalent to operating on the complex valued
DFT Js (w) at the fixed frequency w and then integrating over all the frequencies. In other words, just
like the interpretation we have for the spectral representation which is a frequency decomposition of
the process in terms of sine and cosine functions and the contribution of each frequency is measured by
the corresponding amplitude Js (w), the above frequency domain modelling is equivalent to modelling
the complex valued process (DFT) for each frequency w. Heuristically, one can interpret the Heat
equation and Wave equation etc. to describe what happens to the process locally in space during a
small time interval. In a similar way one can interpret the CSPDE to describe what happens to the
DFT in space during a small frequency interval. We see from the above, that the two representations are
mathematically equivalent. Later we will obtain an expression for the covariance function of the complex
valued process {Js (w)} satisfying CSPDE which will be in terms of the temporal spectrum go (w) and
the spatial distance ||h||. We will show this covariance function is useful for spatio-temporal prediction
considered in this paper (see section 4). In the course of the derivation of this result, we will also obtain
an expression for the second order spectrum which is a function of the spatial frequency (wave number)
and the temporal frequency. The obtained spectrum is strictly greater than zero implying that the
corresponding spatio-temporal covariance function is positive definite. Also the spectrum obtained is
non separable.

We now show that the above models can be considered as special cases of the following CSPDE
model.

Lemma 1 Let d=2. Consider the complex stochastic partial differential equation

02 0?

878% + 6783 =y (W)| Js (W) = Jse (W), 9)
where v (w) is a complex valued function. Let v (w) = c¢(w)+1i b(w). Then the spectral density function
of the process {Y; (s)} satisfying the above model is given by

1

fr (A w) (A3 + A3+ (W) 402 (w)]’

(10)

Proof. We can proceed as before to obtain the above expression and hence the proof is omitted. =
Let us now consider the following special cases.
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3.5 Special Cases:

1. Let ¢(w) = 72, b(w) = w. Substitute these in the equation fy (A, w) given above, we obtain
the spectrum of the process satisfying the Heat equation considered by Jones and Zhang [1997],
Lindgren et al. [2011] and Sigrist et al. [2015].

2. To obtain the spectrum of the Wave equation, let v (w) be real valued, and let v (w) = ¢(w) =
7% 4+ w?. Substitution of this gives us the spectrum corresponding to the Wave equation.

Through the above examples we have shown that by defining the stochastic version of the Laplacian
model in terms of the frequency dependent non-parametric function v (w), the second order properties
of the classical equations can be obtained as special cases.

We will now state the main model and derive expressions for the spectrum and for the covariance
function g (w) of the DFT’s at two different locations which are functions of the Euclidean distance
|lh|| and temporal spectral frequency w. We will state the results for d = 2 and later consider its
generalization for all d. Stein [2005a], Stein [2005b] defines the covariance function g (w) as spectral
in time but not in space.

Theorem 1 Let Js (w) be the discrete Fourier transform of the data {Y:(s)|t = 1, 2,...n} at the location
s. Letv > 0, and let {Js (w)} satisfy the model

e I e@P] hw) = k) )
st Os? ST TR

where Js (w) and Js (w) are given by (51) and (53). Then the second order spectral density function
fy (A, w) of the process{Y;(s)} is given by

0.2

fr A w) = 2 . (12)
' @) (3 + 33+ le@)?)’

If the stationary spatio-temporal process is isotropic, then the covariance function between the discrete
Fourier Transforms Js (w) and Jsin (w) is given by

o2 (Bl " Ko ()] [
e (2c<w>> r@) (13)

Im| (@) = Cov(Js (@), Jssn (w)) =

where ||h| = (h3 + h%)% and K, (x) is the modified Bessel function of the second kind of order v.

Later we will see the significance of inclusion of the frequency dependent function ¢ (w) in the above
model. We see that by defining the model(11) in terms of Discrete Fourier Transforms , we embedded one
component ,namely,c(w) which is related to the second order temporal spectrum of the process {Y;(s) }into
the Laplacian model. The model thus defined takes into acccount spatial correlation ,temporal correlation
and their interaction.

Proof. Substitute the spectral representations for Js (w) and Jg . (w) given by (51) and (53) respectively,
and taking the operators inside the integrands and equating the integrands both sides of the equation
(this is valid because of the uniqueness of the Fourier transforms), we obtain

(-2 =28 = le@)P) dzy (A w) = dZ. (A w), (14)

where A = (A1, A\2). Taking the modulus squares, and taking expectations both sides of the modulus
squares we obtain the spatio-temporal spectral density function of the spatio-temporal process Y; (s)
satisfying the above model (11) and it is given by

0.2

fr Qw) = . 2 (15)
' @) (M + 3+ e@)?)’

which is the stated result.
We note that the above spectral density is real and strictly positive, and this implies that the associated
spatio-temporal covariance function is positive definite. Further the spectral density function given above
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belongs to a nonseparable class of processes. Since the spectrum depends on the distance of the wave
numbers A\? + A3 its Fourier transform will depend on the distance between locations as well (see Stein
and Weiss [1971] Ch. IV. Theorem 1. 1.) , hence the process is isotropic. Now, to obtain the covariance
function gy (w), we need to take its inverse Fourier transform. We use the result used by Whittle [1954]
(equation (65) of the paper)

1 i(zwy+yws) 1 v K
i // e - dwrdun = — (L) ﬂ, (16)
(2m) (W} + w2 +a?)! 2r \2a/ T'(p+1)

1
where 7 = (2% 4+ y?)?, K, (z) is the modified Bessel function of the second kind of order y. We use the
above result to obtain the inverse transform of fy (A w), given by (15). Taking the inverse transform
over the wave number )\ only (for fixed temporal frequency w), we obtain

0_2 ei(h]k]-‘rhzkz)
gimi () = 5 6)3// v dhidae
™ (M + 23 +le @)

_ o (bl T K (e @)l b))
~@n)? (2|c<w>|> T (17)

]

The above interesting expression shows that the covariance function between two discrete Fourier
Transforms of the spatial process separated by the spatial distance ||h|| again can be written in terms
Matern - Whittle class of covariance functions.

However, the most important and fundamental difference between the above given expression and
the covariance expressions given by other authors mentioned before is that the argument of the Bessel
function derived above is not only a function of the spatial distance, but also a function of the frequency
dependent scaling function |c(w)| which is related to the second order temporal spectral density function.
This will be shown in the following lemma.

To see the significance of inclusion of |¢(w) | in the model (11), we consider the limiting behavior of
gjn| (W) as |[h|| — 0. We have noted earlier that Var (Js (w)), is proportional to the spectral density
function go (w) of the random process for all 5. So it is interesting to examine the behavior of gjn| (w)
when ||h|| — 0, as the limit must tend to the second order spectral density function go (w) of the process
{Y; (s)}. We state the result in the following Lemma.

Lemma 2 For the above isotropic process, and under the conditions stated above, as [[h| — 0, gjn| (w)

tends to )
g (@) = s . (18)
22m)° (le@)?)”  (@v-1)

Proof. It is well known that, for all v > 0,

lim — Ky ()

2—0 2V~ 1T (1) =L (19)

Therefore, if we take the limit of g (w) given by (17) as ||h|| — 0, we get the stated result (18). m

3.5.1 Special Case:
Let us consider the case v = 1. Then from the equation (17) we have
2

o2 (b
2 (s el mi), 0)

gin| (@) =

and from the equation (18) we have
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which implies that | (w)|” is proportional to g5 ' (w), which is defined as the inverse second order spectral
density function of the process. Let us assume that gy ' (w) is absolutely integrable, then g;* (w) can be

expanded in Fourier series
o0

1
—1 _
9o (w) = -

k=—o00

ci (k) cos kw, |w| <,

where we used the fact that gy ' (w) = gy ' (—w). The coefficients {ci (k)} are usually known as inverse
autocovariances, and sometimes are used to estimate the orders of the linear time series models. For
example, if the time series {Y; (s)} satisfies (for a given s) an autoregressive model of order p, say, then
it can easily be shown that ci (k) = 0 for all & > p. In view of this interesting property one can use
the inverse auto-covariances to determine the order of the linear AR models. We note further that the
covariance function g (w) given above is in terms of the modified Bessel function, the argument of
the Bessel function is a product of the spatial distance ||h| and the inverse temporal spectrum gy * (w).
Therefore the rate of convergence of the covariance function to tend to zero as ||h|| — oo depends on
the second order temporal spectrum of the process at the frequency w.

From (20) and (21) we can also obtain an expression for the auto-correlation function. We have the
auto-correlation function when d = 2, and for all v > 0,

_ 9jn) (@)
9o (w)
(I fe @)™~

= meA (le @) [hl]) - (22)

p (bl ,w)

It is interesting to note that p (||h||,w) is in fact the coherency coeflicient between two Discrete Fourier
Transforms separated by the spatial distance ||h|| at the frequency w. We now consider the generalization
of Theorem 1.

Theorem 2 Let v > 0 and d > 2. Let the Discrete Fourier Transform Js (w) satisfy the equation

v

[Z 952 e (W)l ] Js (W) = Js.e (), (23)
i=1 ?

Then the second order spectral density function is given by

2
1
Te . (24)

o™ (T2 4 @)

fY (Avw) =

If the process is isotropic then the covariance function is given by

o? I\~
i ) = Cone) Jegn) = e () Ky (e, @9
and the autocorrelation function is given by
L 2y g
ol w) = A2 _ WBle@D™ " e e ). (26)

go(w) 22511 (2 — 9)

Proof. See the Appendix 1. m
In the following we consider prediction of the data, and the optimal predictive function is given in
terms of the Discrete Fourier Transforms and the covariance function gy (w).

4 Spatio-temporal Prediction

Our object in this section is to obtain an optimal predictor for {Y; (s); t=1,2,...,n} at the location
So given the m spatial time series {Y;(s;)| i =1,2,...,m;t =1,2,...,n} from a spatio-temporal sta-
tionary, isotropic process {Y; (s)}. In other words, we are predicting the entire data set at the location
sg. Using the predicted data at the location sy, we can obtain the optimal predictors for the future
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values{Y; (s);t = n + v,v > 0} at the location sy. As in the case of the observed data {Y; (s;)}, we define
the discrete Fourier transform Jg, (w) of {Y;(sg)}, and predict the Fourier transform Jg, (w) for all w.
Using the inverse Fourier Transform, we compute the predicted values of Y; (sp) for all 1 < ¢ < n. We
pointed out earlier that there is a one to one correspondence between the discrete Fourier Transforms
and the data. We have shown that if

n

1 —itw
Jso (W) = m ;Yt (so)e ) (27)

Y: (s0) = \/E / T, () " dov. (28)

Consider the vector of the discrete Fourier transforms obtained from all m locations at the frequency
w?

then we have

(W) =[Js, W), Js, (W), Js,, (W)].

We note that

Page 10 of 34

E [im (w)] =0,
E L, (W) Ly, (w)] = F (w) (29)
where the real,m xm dimensional symmetric, positive definite square matrix Fy, (w) = (gHSi_sj | (W) 4,7 =1,2,... ,m),

and each element g|,, ;| (w) of the matrix F, (w) is given by (17). The complex random vector J,, (w)
has a multivariate complex Gaussian distribution with mean zero and variance covariance matrix F, (w).
Consider now the (m + 1) dimensional complex valued random vector,

Tnia W) = [Js, (@)L, (w)] -

It can be shown that the mean of the vector is zero, and the variance covariance matrix is given by

. _ LW I (W) B (Jg (w) L (w))
E [lerl (w) lm+1 (w)] - |: E (l (w) J* (OJ)) E(lm (W)l; (w))

where go (w) is the second order spectral density function of the spatial process {Y;(sg)} and the row
vector Gy (w) is given by

Gy (W) = E[Js, (w) Iy (w)]
= [gHSO—SlH (w) » 9||s0—s2|| (w) s 9)s0—sn| (w)];

and F,,, (w) is defined above. Therefore, the optimal linear least squares predictor of J, (w) given the
vector J,, (w), is given by the conditional expectation

EJs, (@) | Ly, ()] = Go () Ft (w) L, (W), (30)
and the minimum mean square prediction error is given by
T (W) = g0 (W) = G (W) F' (@) Gy (@) - (31)

To predict the data Y; (sg) for all ¢, we use the inverse transform (28). In computing the predictor
of Js, (w) using the expression (30) one usually replaces the elements of the matrices G, (w) and F, (w)
by their corresponding estimates and obtain

Titoo) = 3= [ G0 ) By @) L () 32

Tt is interesting to compare the formulae (30) and (31) with the corresponding expressions obtained
using the time domain approach (see Cressie and Wikle [2011], equations 6.49 and 6.50; Banerjee et al.

10
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[2014], equations 11.21 and 11.22). They are similar, but it is important to note that for evaluating the
expressions given in Cressie and Wikle [2011], Banerjee et al. [2014], one requires the inversion of matrices
of order mn x mn, where as the evaluation of (ref:eq.5.3) given above only requires the inversion of m xm
order matrices. Of course, if one assumes the spatio-temporal process is separable, the dimensions of
the variance covariance matrices reduce considerably in the time domain case. But the assumption of
separability can be a severe restriction and may not always be feasible. Further, we note that the
predictor of Jy, (w) given by (31) is optimal in view of the fact the DFT’s are asymptotically distributed
as complex Gaussian, where as the time domain predictors are optimal only under the assumption that
the process is Gaussian. We also note that to evaluate the predictor Y; (sq) ,we need an expression for the
covariance function g, s, (w) . Any valid expression can be used for the evaluation purposes. In section
3, we obtained such an expression when the process Y;(s) (or its DFT) satisfies a specific embedded

Laplacian model.

We note E(Y(sg)) =0 and Var(Y;(so)) ~ [ Gy (w) Fi7t (w) Go (w) dw. We can show by an appli-

—T

cation of Parseval’s Theorem

E (yt (s0) - Y, (so))2 =F ‘]—‘*1 (Jsa (w) — s, (w)> ‘2

—T

In practice, the above integrals are approximated by finite sums of the form

(s0) \/ﬁ > Gl 3) P! (03) I (). (34)

for all t = 1, 2,... n, where the estimates Qo (w;) and F,, (w) are substituted for G, (w) and F, (w)
respectively.  As noted earlier, the vector G, (w) and the matrix F,, (w) have covariance functions
9ljsi—s,| (w) as their elements. The covariance functions are functions of some unknown parameters which
are related to the spatial correlation and temporal correlation. From the expression of the covariance
function (17), we see that the parameters to be estimated are o2 (the variance of the white noise process
et(s)), and the parameters of the spatio-temporal spectrum g (w ( ). Let us denote the parameter vector
which characterizes go (w) by ¥; and the entire parameter vector by ¥ = (¢2,49;). The parameter v is
related to the smoothness of the process. In practice one considers several possible choices for v(> 0) a
priory. The widely used choice is v = 1. The estimation of the parameter vector 9 of the spatio-temporal
covariance function gy (w) is extremely important and this will be considered in the following section.
We now make some comments on computational aspects.

As pointed out earlier,in this frequency domain approach described here, the evaluation of the con-
ditional expectation and the calculation of the minimum mean square error require inversion of m x m
dimensional matrices (where m corresponds to the number of locations)only, unlike in the case of time
domain approach for prediction where one needs to invert mn X mn dimensional matrices. In many real
data analysis usually the number of time points n will be very large (and m can be large too). Besides,
there is no data ordering problem involved here (see Cressie and Wikle [2011] p. 324). Once we have
an expression for the covariance function g (w), all the elements of the column vector G (w) and the
elements of F,,, (w) are known. By substituting the relevant expressions (or their estimates), we can
evaluate (30) and (31).

It may be pointed out that there are other approaches for obtaining predictors in the context of
spatio-temporal data. Sahu and Mardia [2005] used Bayesian approach based on MCMC, Ruiz-Medina
[2012] and Giraldo et al. [2010] based their methodology on the assumption that the spatio-temporal
data is of functional data type. Giraldo et al. [2010] assumed that the process can be expanded in terms
of some chosen deterministic basis functions with random coefficients and the predictor can also be
written as a linear combination of the same basis functions and the same number of terms. The solution
depends on inversion of matrices whose dimensions depend not only on the number of locations and also
on the number of Basis functions included in the expansion of the process and the estimator proposed. As
pointed out earlier, an alternative is to model the process dynamically. In the dynamic spatio-temporal
models approach,models are specified and the parameters are assumed to be either random with known
prior probability distributions or fixed but unknown. In the case of fixed parameters,the parameters
are estimated and substituted in the models, and the predictive distributions are obtained, and this

11
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approach is now known as Empirical Hierarchical modeling approach. For more details, we refer to
the books by Cressie and Wikle [2011], Banerjee et al. [2014] and Blangiardo and Cameletti [2015]. All
the above approaches are time domain approaches, and we refer to their papers and papers there in for
more details.

As pointed out earlier, the computation of the above predictor depends on the knowledge of G, (w)and
Fy (w)which in turn depends on the parameters of the covariance function g (w). The parameters
usually are unknown and has to be estimated efficiently. In the following section we will consider the
estimation of the parameters. The estimation is based on Frequency Variogram (FV) approach recently
proposed by Subba Rao et al. [2014]. In their paper, Subba Rao et al. [2014] considered the estimation
of the parameters of the covariance function, their asymptotic properties and their efficiency compared
to Gaussian likelihood approach. To avoid repetition, we refer to Subba Rao et al. [2014] for full details

4.1 Estimation of the Parameters of the Covariance function g, (w,?) by
Frequency Variogram (FV) Method.

Here we discuss briefly the FV methodology, and for details, we refer to Subba Rao et al. [2014]. We may
point out here that the FV method depends on taking the differences of DFTs (for a given frequency)
evaluated at two distinct locations spaced apart by ||h|| units and then considering the joint distribution
of these differences calculated for all frequencies. It is similar to the approaches proposed by Bevilacqua
et al. [2012], Hall and Keilegom [2003] and Bliznyuk et al. [2012] which are based on the differences of
the processes. The method here is based on the differences of DFTs.

Let gjn) (w) = Cov(Js (W), Jsyn(w)) be the covariance function and, for example, let gjp) (w) be
of the form given by (17). Assume the function gy (w) is characterized by the parameter vector .
For convenience, we denote this covariance function by gyn(w, ¥). Our object here is to estimate ¥.
We note that w is the temporal spectral frequency, and ||h|| is the spatial Euclidean distance. The
estimation of the parameters of the covariance function have also been considered by other authors (see
for example, Cressie and Huang [1999], Gneiting [2002], Ma [2002], Ma [2003], Stein et al. [2004], Stein
[2005b]), using either variogram method or likelihood method. All these methods can be described as
Time Domain based approaches.

We note that in the case of purely spatial processes, the parameters are estimated either by minimizing
the differences between the estimated variograms and the theoretical variograms evaluated for spatial
distances ||h|| (weighted least squares approach) or by maximizing the Gaussian likelihood function.
Because of the inclusion of temporal dimension, and if one uses time domain approach, the observations
vector to use will be of order mn x 1, and the variance covariance matrix of the observation vector will
be of dimension mn X mn. The number of computational operations required for inversion of such large
dimensional matrices can be formidable. For example, it is well known that the calculation of Gaussian
likelihood from such vectors requires (nm)? operations. In view of this, Stein et al. [2004], Stein [2005a],
Stein [2005b] suggested using the restricted likelihood approach, an extension of the method proposed
by Vecchia [1988] to reduce the number of computations. In FV approach proposed here, one does
not need inversion of such high dimensional matrices as the likelihood function calculated is based on
complex Gaussianity of Discrete Fourier Transforms evaluated at several distinct frequencies. It is well
known that at these distinct frequencies, the Discrete Fourier Transforms of a stationary process are
asymptotically uncorrelated and have complex Gaussian distribution (see Brillinger [2001], Theorem 4.
4. 1,see also Giraitis et al. [2012]). Under these assumptions on the frequencies, the variance covariance
matrix of the vector of DFT’s evaluated at distinct frequencies will be diagonal. Further, the Discrete
Fourier Transforms can be calculated using the Fast Fourier transform algorithms. It has been shown in
Subba Rao et al. [2014] that the FV estimates are robust against departure from Gaussianity and are
as efficient as Gaussian estimates, if the process happens to be Gaussian and require less computational
time. Briefly the details are as follows. We define a new spatio-temporal random process based on
differences of the observed process {Y; (s)}. Calculate the differences

Xij(t) =Yy (si) —Yi(sj), foreach t=1,2,...,n

and for all locations s;, s; where s; and s;, (i # j) are the pairs that belong to the set N(h;) =
{si,sj| lIsi —sjll = |||, I=1,2,...,L}. Define the Finite Fourier transform of the new time series
{Xi; (t)| i # j} at the frequencies wy(n) = 27sx(n)/n, k= 1, ..., K, where sp(n),k =1,2,... K are
set of integers and w;(n) + wk(n) # 0(mod 27) for 1< j < k < K (see Brillinger [2001], Giraitis et al.

[2012]). Let Jx,, (wi(n)) = \/(QLM) t; Xy (8) ek (M) = I (wg(n)) — J, (wg(n)). Let Ix,, (wi(n)) be

12
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the second order periodogram of the time series {X;; ()} given by

Ix,; (wi(n) = | Jx,, (w(n)]*. (35)

Let Gx,; (wk (n), ¥) = E(Ix,; (wx(n)). The function Gx,; (wx(n), ¥9) is defined as the Frequency
Variogram by Subba Rao et al. [2014]. It is very similar to the classical definition of spatio-temporal
variogram 2+ (h, u) defined in section 2 of the present paper (set u = 0) in (1). The usefulness of FV as
a measure of dissimilarity between two spatial processes and its further properties were discussed in a
recent paper by the authors (Subba Rao and Terdik [2016])

From (35), we obtain

B [Ix,; (wi(n))] = Gx,; (wi(n), 9)
= E I, (wg(n))] + E [Isj (wk(n))] —2 Real E [Isisj (wk(n))] , (36)

where I, (wr(n)) is the cross periodogram between the processes {Y; (s;)} and {Y; (s;)} and I, (wr(n))
is the periodogram of the series Y;(s;). For large n, it can be shown that for a stationary process

E I, (wg(n))]| = FE [Isj (wk(n))] = go(wg(n); ¥) and for a stationary and an isotropic process E [Isisj (wk(n))]

9lisi—s,| (Wk(n); ) which is real. Therefore, the expectation of (36) is given by
Gsi,s;) (Wi (n);9) = 2 [go(wk(n); U) — gjs;—s, | (wr(n);D)], (37)

It is interesting to compare G s, s,y (wk(n); ¥) with spatio-temporal variogram 2 (h,u) given by equation
(2). The similarity between these two functions shows that one can use the Frequency variogram which
is a frequency domain version of spatio-temporal variogram for estimating the effective range ||h||, and
also the parameters etc.

Now for the estimation of the parameter vector ¥ we proceed as in Subba Rao et al. [2014]. Consider
the K-dimensional complex valued random vector,

XHSi—SjH (w) = [JX“' (wl(n)), JXU (WQ(TL)), R JX” (wK(n))} ,

which is distributed asymptotically as complex normal with mean zero and with variance covariance
matrix with diagonal elements

[9)n) (Wi(n), ), gn) (w2(n), D), ..., gn| (WK (n),d)], where ||h]| = ||s; — s;]|. We note that because
of asymptotic independence of Fourier transforms at distinct frequencies chosen above, the off diagonal
elements of the variance covariance matrix of the complex Gaussian random vector Xjjn| (w) are zero.

Therefore, the minus of log likelihood function can be shown to be proportional to
K
1 IXi 1 (wk (n))
Q. 9= ——— E E {lnGsiSv wi(n);¥) + J . 38
’N(h)( ) |N (h)] (se, J)( o) 2) G(Si,sj) (wk(n); 9) (38)

(si,s;)EN(h) k=1

Here |N (h) | is the total number of all distinct pairs s; and s; such that N (h) = {(s;,s;) | ||s; —s;|| = [|h]|}.

The above criterion (38) is defined only for one distance ||h||. Suppose we now define L spatial distances
from the observed data. We can now define an over all criterion for the minimization

L
Qu ()= 73 Qu i) @), (39)
=1

We minimize (39) with respect to ¥ (for details refer to Subba Rao et al. [2014]). The asymptotic
normality of the estimator ¥ obtained by minimizing (39) has been proved in Theorem 2 of the paper of
Subba Rao et al. [2014]. To avoid repetition, we refer to their paper for details. We state the asymptotic
distribution of the estimates. It has been shown in Subba Rao et al. [2014] that under certain conditions,
and for large n,

D -
Vi (@, = 90) = N (0, (V2Qn (%)) ™" V (V2Qu (%))
where V = lim Var ﬁVQ" (190)} , VQn (¥p) is a vector of first order partial derivatives, V2Q,, (¥) is

n—oo

a matrix of second order partial derivatives.

We may point out here that Whittle approximation to the Gaussian likelihood of random processes
defined on d-dimensional lattices is well known (for example refer to Dahlhaus and Kiinsch [1987], Guyon
[1982], Guinness and Fuentes [2015]) . Here we have considered the spatio-temporal processes defined on
irregular space and observed at equally spaced time points and the likelihood is based on the DFT’s of
the differenced series The method of estimation proposed here is valid even under the weaker assumption
of intrinsic stationarity (for details to Subba Rao and Terdik [2016]).

13
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4.2 Spatio-Temporal Prediction and Estimation of the Parameters: Mea-
surement Errors Case.

In section 4, we considered the prediction of {Y; (sp)} under the assumption that the data we observe
{Y; (s)} has no measurement errors. This assumption may be unrealistic in some situations. In this
section we show how the methods given earlier can be modified when the observations are corrupted
by White noise. Instead of observing the true observations {Y; (s;)|i=1,2,...,m;t =1,2,...,n} we

assume that we observe the corrupted observations Y, (si)|1=1,2,...,m;t=1,2,... ,n} where for
each t and s;, (i =1,2,...,m) we have
Yi(si) =Yi(si) +me(s0);i=1,2,...,m;t =1,2,...,n. (40)

In the terminology used by Cressie and Wikle [2011], (chapter 6), the above model can be defined
as the Data model, which is written in terms of the process model for{Y; (s;)},the uncorrupted process.
In order to draw inference on the process {Y; (sg)},the process is further decomposed into various com-
ponents and the likelihood function is built using various components of the decomposition. In our
approach, we do not make any assumptions on the process and base our inference on DFT’s of the
process, which are asymptotically complex Gaussian.

We assume {Y;(s)} is a zero mean second order spatially, temporally stationary process and is
independent of the noise process n; (s). We assume further that the noise process n; (s) is spatially and
temporally a white noise process with

Eﬁt (S) = Oa
0 if t#£t
Cov (1 (si) ,ne (85)) = 0 if i
op if t=t,i=j

Cov (Y; (s:) ,m (s5)) =0, for all ¢,¢',¢ and j.

Let Js (w), Js (w), Jp,s (w) be the Discrete Fourier Transforms calculated from the time series data
{)7,5 (si)}, {Y: (si)}, and {n: (s;)} respectively. Then from the relation (40), we have

Js (w) = Js (w) + Jp.s (w) . (41)
Let
&(hyu) = Cov [V (), Viru (s + )| = (Illu).
¢(,u) = Cov [Y; (s)  Yiru (s + )] = c(Bl] ).

0 if h#0u#0
ey (h,) = Cov e (8). e (5 B) =1 2 4 n 70 2 g
n P
We note that under the above assumptions, we have
Cov(Js (@), Joyn (w)) = Cov (Js (W), Jspn (@) + Cov (Jys (@), Ty st (@) (42)

and under isotropy condition,we have

Jinj (@) = Cov(J (W), Jorn (@)
_ Iiw (@) if B #0,
gin| (W) + 52 if h=0,

where

gin| (@) = Cov(Js (W), Jsn (w))
2
cou@@§(w)ﬂaﬁ+h(w))::gi,ﬁllzo,

—0ifh#0.
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Further, we note that ¢(||[h[|,u) = c(||h|[,u), if h # 0. We note that g (w) is the second order
temporal spectrum of the uncorrupted process {Y; (s)}, for all s.

Our object here is to predict the uncorrupted time series {Y; (sg)} given the corrupted spatio-temporal
data {fft(sz)\ 1=1,2,...,m;t = 1,2,...,71}.

As before we predict the Discrete Fourier Transform Jg, (w) of the true data {Y; (so)} for all w, given
the Discrete Fourier Transforms of the corrupted data and then invert the Discrete Fourier transform
Js, (w) using (34) to obtain the predicted values of the data {Y; (sp)} at ¢ = 1,2,...,n. We use the
predicted data thus obtained to predict the future values of Y, 4., (so), for all m > 0.

Consider the (m + 1) dimensional complex valued random vector

~ ~

T @) = [Je, (@), T, (@)]
where . _ _ _

T @) = [T @) Ty @) 0 s,y ()]
which has a complex Gaussian distribution with mean zero and and variance -covariance matrix
~ ~x/
. - E(J,, @) T2, @) B (Jo(w) I, @)

E [lm-s-l (@) Lyt (W)} = ~ . ~ ~x
(Lo @) T @) B (L @), ()

where

E |‘]So (w)‘Q =9 (w),

Go (@) = B (4, @) L, ()

= [9)1s0—s11l (@) s Gliso—s2 ]| (W) 5 Gllso—sn ]l (W]

B (20 1,9) = B = [ )]+ 5
= Fm (OJ) + ;il

and the matrix F,, (w) is defined earlier in section 4. We note that the (i,7) th element of the matrix
Frn (w) 18 g|js,—s,|| (W), which is the covariance between the DFT’s of the uncorrupted processes {Y; (si)
tand {Y; (s;)} evaluated under the spatial isotropy condition. In view of the complex Gaussianity of the
DFT’s, the optimal predictor of the Jg, (w) is given by the conditional expectation

~1 ~ ~

E [Jo, @) L, )] = Gy @) B! (@) I (), (43)
and the minimum mean square prediction error is given by

52, (@) = go(w) — Gy (w) Fip () Gy () - (44)

m

We can now obtain the predictors of Y; (sg) from the DFT using the relation (34). The methodology
is similar to the methodology described in Section 4, hence details are omitted.

4.3 Estimation of the parameters.

Here we briefly describe the estimation procedure in the measurement errors case. The computation of

the predictors given above depends on the knowledge of go (w), Fin (w), G, (w) and o7. and these in turn

depend on the parameters ¥ and also on the variance of the measurement errors 03]. Let U = (19, 072]).
Consider the differences, for s; # s;, for each ¢,

Xij () = Vi (s1) = Vi (85) = Xij (8) + 35 (1) (43)
where
Xij (t) =Y; (sz) -Y: (Sj) )
eij (t) = me (si) — e (s5)

15
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Let inj (W), Jx;; (wi) and J,

€ij

{X’ij (t)}, {Xi; (t)}, and {e;; (¢)} respectively. From (45), we have

(wg) be the Discrete Fourier Transforms of the time series data

inj (Wk) = JXU (wk) + Jeij (wk)’

where
JXij (UJ) = JSz‘ (UJ) - JSJ (OJ),
Jes; (wi) = Jy; (w) — I, w)
We note
E(J,, (@) =0,
- 2 5 5
E ’JX” (wk)‘ = B |Jx, @)’ + E|Je,, @]
where
2
E |JXi.7‘ (wk)| =2 [90 (w,?) - Gllsi—s;ll (w,z?)]
B|J.., ()] = %
€ij wk, - T .
Let

2
~ g,
Glas—sy ) (€, ) =2 [go (0, 9) = s s, (0, )] + .

Consider the frequencies wg(n), k = 1,2, ... K defined earlier and consider the K dimensional complex
valued random vector

X‘HSi*SjH (w) = |:in3' (w1 (n))a inj (W2(n))7 SRR inj (WK(n))}

which is distributed asymptotically as complex normal with mean zero and variance covariance matrix
with diagonal elements

|:éHsi—s]-H (wl (Tl), \I]) ) éHsi—st (LUQ(TL), \II) PR é“si—SjH (WK(n)7 \Ij):| )

The off diagonal elements of the matrix are zero. By proceeding as in Section 5, we arrive at the
minimisation criterion

L
O ()= 73 Gurim) (9),
=1

where
2 !

S 3 G e
nGs,_s;)) We(n); ¥) + =
W v i G(lsi—s,1) (wr(n); ¥)

Qn, N (T) =

The minimisation is done with respect to ¥ and 072].. Proceeding as in Subba Rao et al. [2014], we
can show that for large n,

Vit (B = Wo) 5 N (0.(V2Qu (20) ™ V (V2 (W) )

where V = lim Var [ﬁV@vn (190)], VQ/Z)n (¥9) is the matrix of second order partial derivatives.

n—oo

5 Simulation Study
In the following we briefly describe a method for generating a stationary spatio-temporal random process

{Yi(s;); i=1,2,...,m;t =1,2,...,n} at the locations {s; ;i = 1,2,3,...m} with a given second order
spatio-temporal spectral density function fy (A,w). Equivalently, we generate the DFT’s {Js,(w)} for
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i =1,2,...m; and for all |w| < 7 with the given covariance function g (w, ¥) and by inverting the
DFT’s we obtain the spatio-temporal time series with the specified spectrum.. For illustration purposes
we assume d = 2,v = 1 and the second order spectrum is given by (12), and gjn|(w, ), go(w, ¥) are
respectively given by (20) and (21). Let c¢; j(k) = g)|s,s,|| (W, V).

Several methods are now available for simulating stationary spatial data (see the books by Schaben-
berger and Gotway [2005]; Cressie [1993]), and as far as we are aware not many methods are available
for simulating stationary spatio-temporal data(Subba Rao et al ,2004). We describe below an algorithm
for simulating such data.using the Discrete Fourier Transforms.

We first simulate the Discrete Fourier Transforms {Js (wg), k = 0,1,...,n—1}, and then by inversion
we obtain the data. We briefly outline the steps.

1. The locations s;; ¢ =1,2,...,m are chosen randomly from the unit square.

2. Let n be even. Let go(w, ¥) = (02/ (2%)2) |9 (e727) [ipp (e727) ‘2, be the second order tem-

poral spectrum of an ARMA(p,q) model with innovation variance o2/2r. We set 02 = o2 for
our simulation purposes. Define the matrices Cp = (c; ;(k)) where ¢; ;(k) = g)js,—s,||(Wk; V),

k=0,1,...,5. Wenote gs,_s,||(wk, V) is given by (21) where |c(w)| = o/ (277\/290(0.), 19)) .

3. Generate a series of independent complex Gaussian, zero mean random vectors Uy each of order
mx 1, k=0,1,...,n/2, such that Var (Ug) = I, an identity matrix. We note that Uy and
U, /2 are real valued random vectors. Define the m dimensional complex valued column vector

J(wi) = [Js, (wr)]ie; = VCiUgp We note E(J (wg)) = 0, E(J (wg) IJ* (wg)) = Ci. The DFT’s
generated thus will have the given covariance function gHSi_st(wk, ).

We now consider a specific example.

4. We assume the spatio-temporal process Y;(s), for each s, satisfies an ARMA(2,1) model of the form
p2(B)Yi(s) = V1(B)es(s), where 0? = 4.

o (B) =1+4/17B +4/17B?,
91 (B) =1-2/3B.

5. The inverse Fourier transforms of J(wy) gives us the spatio-temporal realizations {Yi(s;)|i =
1...m} which has the required spatio-temporal covariance function.

5.1 Estimation of the parameters and the Prediction of }//\;(so)

We briefly describe the steps required to estimate the parameters ¥ and also the steps required for pre-
diction. We now assume that we have the spatio-temporal data {Y;(s;); i =1,2,...,m;t =1,2,... ,n}.
Here we have chosen m = 9.n = 2! .We considered the prediction of the data at the location sy = 10.
Let X;;(t) = Yi(s;) — Yi(s;) as defined in section 4. We compute the Discrete Fourier Transforms
of the differenced series X;;(¢) which is the difference of the DFT’s of the individual series {Y;(s;)} and
{Y:(s;)}. The parameters of the covariance function are now estimated by minimizing the criterion (38).

2

1. The parameters of the polynomials s (2), ¥ (2) and variance o are estimated as described in

section 4. The estimated value are found to be & = 2. 0744 and

?(2) =14 0.2404z + 0.235622,
9 (z) =1 — 0.64062.

2. We note from the above that the estimates of the coefficients of the ARMA (2,1) are very close
to the true values given above. The parameters are estimated using the spatio-temporal data
generated as described above. The matrices {Ci} and G, (wi) given in the formula above are
calculated using the estimated parameters.

3. The predicted values of {}?t(so)} are obtained using the relation (34) and the plots of the predicted
data and the true data are not given due to space considerations.
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6 Real Data Analysis

For our illustration, we consider the Air Pollution data analyzed by Sahu and Mardia [2005], and we
refer to their paper for full details. The data analyzed corresponds to atmospheric particulate matter
that is less than 2. 5 wm in size (usually known as PMs 5) which is one of six primary air pollutants
and is a mixture of fine particles and gaseous compounds such as sulphur dioxide (SO3) and nitrogen
oxides. The data was observed at 15 monitoring stations in New York city during the first 9 months
of the year 2002. The data was observed once in every 3 days, thus giving 91 equally spaced time series
for each monitoring station. The total number of observations are 1365 = 15 x 91. The data can be
obtained from the website  http://www. blackwellpublishing. com/rss. We use the data given at the
15 locations along with their spatial coordinates. The spatial coordinates of 625 nearby locations are
also known and can be found at the website..

Out of 1365 data points, 126 were missing and the majority of values which are missing are at the
location 11 (with coordinates: latitude —73. 84, longitude 40. 77). We note that our predictor depends
on the DFT’s of the data and these can be computed even when the data is missing and we note that the
time series data with missing values can be considered as time series observed at unequally spaced time
points (see Scargle [1989]). Let X (s;,t) (1 =1, 2, ...15;t =1, 2, ...91) denote the PM3 5 observation
at the location s; and at time t. We have chosen to estimate all 91 observations at this location 11 using
the data from the other 14 locations.

We used the first differences {Y; (s) = A;X (s,t) : s € R?, t € Z} to remove the linear trend
as suggested by Sahu and Mardia [2005], and used the detrended data for our analysis. We use the
detrended data only for the entire analysis including estimation and prediction. The Preliminary
time series analysis carried out on all theld time series suggests that AR(1) model may be adequate to
explain the temporal dependence. The second order spectrum for a AR(1) process is given by go (w, ) =
o2/ |1 + pz|* where z = exp(iw) and the vector of the parameters to be estimated using the entire spatio
temporal detrended data are ¥ = (02,¢) and these are estimated by minimizing the criterion (39) with
L = 91. We note that we scaled the equation (11) such that o2 = o2, see (21). We may point out
here that one can do correlation analysis and model fitting when the data is missing and there is a huge
literature on time series analysis with missing values, and we refer to Dunsmuir [1983], Dunsmuir and
Robinson [1981] and also the proceedings edited by Parzen [1984].

The final estimates obtained by minimizing the criterion (38) for the AR(1) parameters are found to
be = 0. 4659; 7 = 5. 9264. Using these estimated values, all the elements of the vector Gy (w) and the
elements of the square matrix F},, (w) (which is of order 14 x 14) are evaluated. The vectors Jy (w) at the
Fourier frequencies wy = 27k/2% are estimated using the equation Q:) (wi) Ft (wi) o, (wg). The data
at the location 11 is predicted using the equation (34). The plot of the 91 predicted values (with (+)
sign), plot of the first 23 given observations (with o sign), corresponding 95% confidence bands using (46)
are given in Figure 2. We see a good agreement between the predicted values and the observed values,
suggesting that the prediction method given here is useful. Also we find that strong spatial correlation
and the temporal correlation present in the data can satisfactorily be explained by the spatio-temporal
covariance function defined here..

In order to check the overall performance, we computed the leave-one-out cross-validation (Giraldo
et al. [2010]) criterion. Here we estimated the data at one location, taken one at a time, using the data
given at other 13 locations. The Mean Square Error calculated for all the 14 locations is

MSSE = SSE (j) /(14 % 91) = 15.3050,

where
91

~ 2
SSE() =Y (Ye(si) ~ Vilsilse #5))
t=1

and Y, (sjlsk # s;) is the estimator of the data at time ¢ at location s; conditional on the data at the
locations {si,ss,... Sj—1,Sj41,--- s13}. We have also estimated the prediction error variance using the
equation (31) for each location.

We estimated the PMs 5 values for all ¢ = 1,2,...91 and for all the 625 locations (including 14
locations where the data is available). The plot of the these predicted values at ¢ = 22 are given in
Figure 3 (the black dots correspond to the locations where we have observed data)..

In our analysis of the pollution data, we considered the prediction of entire data (all the 91 observa-
tions) at the location 11 using the other 13 locations. We repeated the procedure at other locations as

18
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Figure 1: Time Series Data at the 14 locations with their spatial coordinates
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Figure 2: Location 11. Plot of the observed values (denoted by + sign), predicted values (denoted by ’o’
sign), 95% prediction intervals (denoted by — sign)

well. It is also possible to predict the future values at a given location using the data we have at that
location and other locations as well.

For our illustration purposes we consider the prediction at the location #8. We considered the
data, t = 1,2,...83 as given and predicted the rest of the values (84,83,...91) using the AR(1) model
fitted. We note that AR(1) model fitted using the time series data at all 14 locations. The forecasting
methodology is well known, and therefore, we briefly summarise the method (details can be found in any
time series book). We note that we are illustrating only for AR(1) model, and the method can be used
for any linear or nonlinear time series models (see for example the book by Brockwell and Davis [1987]).
In practice the parameters are unknown, and the estimates are substituted for the true values.

Let

~

Yoin (solt=1,2,... ;58555 =1,2,...m) = E (Yoqn (s0) [Yi (sj):t =1,2,...n,5 =1,2,...m)

For the AR(1) model considered here, we have

~ ~

Yn+h (SO‘t: 1727'-'nasj;j = 1,2,771) = C)OhYn (SO)a

hence .
Yan (80) = Yaer (s0) = @ (Yo (50) = Y (s0)) + D " e (s0),
k=1

where Y, (s¢) denotes the spatial prediction and &, (sg) is the innovation error at so and at time t.
Therefore, we obtain

—~ 2 2
E (Yn+h (50) — Vs (so)) — W E (Yn (s0) — Vi (so)) +o2Y T2
_ @%/gfn (@) dwo + 02 ¢

—T

(46)
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We note that usually the parameters ¢ and o2 are unknown and the estimates are substituted. We
note that since we are considering embedded Laplacian models for describing the spatio-temporal data
, and used ARMA spectrum inside the operator , we can measure the efficiency of the models by the
minimum mean square prediction errors computed from the ARMA models

7 Discussion:

Prediction of time series data at a known location sy given the time series at other locations {s;;i =
1,2,...m} is one of our objectives in this paper. Instead of predicting the data, we consider the prediction
of its DFT, and then inversion of the DFT to obtain predictions of the data. The minimum mean square
error predictor is in terms of the covariances of the DFT’s g, (w), where ||h]| = [|s; — s;||. Any valid
space-time covariance function c(||h|[,n) can be used to obtain g)(w). In this paper we propose an
embedded Laplacian model for the DFT’s which we used to derive expressions for the covariances. The
embedded Laplacian model proposed here takes into account both spatial correlation and temporal
correlation .An analytic expression for g (w) is derived. The space-time spectrum derived from this
model using the proposed model is non-separable. Since the predictor depends on the covariances of the
DFT’s, one need to invert m x m dimensional matrices only and not mn x mn dimensional matrices as
required in time domain approaches. Further, to evaluate the DFT’s, one can use Fast Fourier Transform
(FFT) Algorithms and it is well known that these require less number of computational operations.
Besides the computational convenience, we may also note that DFT’s are asymptotically uncorrelated
and are asymptotically distributed as complex Gaussian. This property has been exploited in the
estimation of the parameters of g5 |(w). The method of estimation proposed is based on the evaluation
of the likelihood function of DFT’s obtained from the differences of the spatial time series. The method is
valid even when the original spatio-temporal data is not spatially, temporally stationary. The estimation
methodology proposed here is still valid under the weaker assumption of Intrinsic stationarity (see Subba
Rao and Terdik [2016]) We have shown that the methods proposed can also be used in situations when
the data is corrupted by white noise. No distributional assumption of the process is necessary. Also it
may be pointed out that the assumption here is that the time series data we observe is equally spaced
and there are no missing values. It will be interesting to see how these methods can be modified in
situations where such assumptions cannot be made..

Appendix

1. Proof of Theorem 2.

By proceeding as in Theorem 1, we can show that the spectral density function is given by
o? 1

f (A,w): v 1 2v
' 0™ (S22 e @)

To obtain the inverse transform we proceed as follows. Let p = ||A||. We have,

o2 e—thA
Iim| (@) = 57 / 502
@I (121 + le @)?)

2 0 d—1
_ 0'ed+1/ 4 2,// e—ithHcosadep7
A0 (02 o)) Foe

where Sq_1 is the unit sphere in R? and € is Lebesgue element of surface area on Sg_1.
We know further

. d _d
[ ermiesean - enf (o) 7, (o)),
d—1
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where Ja_; denotes the Bessel function of the first kind, see Stein and Weiss [1971], p. 176. Now we
use Hankel-Nicholson Type Integral, see Abramowitz and Stegun [1992], 11. 4. 44, if d < 4v + 3, then

< Ja_q(rp) a4 vt i
/o 2 — 2 5y P2 dp = - 22u—cl(1“w()21/) Ky o, (rle@))).
(p + e (w)] )

v—

Using the above integrals and noting K%72D =K,
to be

4, for all d, the covariance function can be shown
2

: (L )MK (Il e @)
v—4g )

(2m) %! 92v=17 (21) \lc(@)] =g

and the auto-correlation function is

d
giny (@) _ (Ib[|[e(@))**
p(Ib]|,w) = =22 = ;
go(w) 225717 (20 — 9)

ag

gn|) (W) =

Ky, g ([hflfe(@)]),

since
P 9)

2
(27r)%+1 2% (|c(w)|2)2u_§ I'@v)

go (w) =

2. Discrete Fourier Transforms and their properties

Let us assume that we have time series data from m locations spatially distributed.

Let {Y;(s;)|[i=1,2,...m; t=1,...,n}, be a sample from the zero mean spatio-temporal stationary
process {Y; (s)}. Consider the time series data {Y; (s;) [t =1,...,n} at the location s;, and define the
Discrete Fourier transform (DFT)

1 :
T, (wp) = A I 47
i (wk) \/% ; t (S ) € ( )

where wy = %, k=20, £1, ..., £ [%] In practice one uses Fast Fourier Transform algorithm to
compute the DFT. It is well known that the number of operations required to calculate n discrete Fourier
transforms from n dimensional data is of order nlogn. The corresponding second order periodogram
is defined as

I, (wk) = |JS1 (wk)|27
and the cross periodogram between the time series {Y; (s;)} and {Y;(s;)} is given by I, (wr) =
Is, (i) Jg, (wi)-

It is well known that the periodogram is asymptotically an unbiased estimator of the second order
spectral density function, but it is not mean square consistent and hence to obtain a consistent estimate
the periodograms are smoothed using various kernels (see Priestley [1981]). It is well known that (see
for example Priestley [1981])

Var (Js; (w)) = E(Is; (@) = gs, (@) = g0 (W) , (48)

where go (w) is the second order spectral density function of the random process. We further note that
2 _
o3 = [ go (w) dw.

In the following propositions we summarise the well known properties of the Fourier Transforms of
stationary process. For details refer to Brillinger [2001], Giraitis et al. [2012], Priestley [1981], Dwivedi
and Subba Rao [2011]. We refer to Lahiri [2003b], Yajima [1989], Robinson [1995] for further results
regarding the DFTs.

Proposition 1 Let Js, (wr) and Js; (wi) be the discrete Fourier Transforms of the spatio-temporal sta-
tionary processes {Y: (s;)}, {Yi (s;)} respectively. For large n,

Cov (‘]Sq (wk) ) JSa‘, (wk')) ~ 0, k 7é k/;
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Cov( (wr), Js; (wk)) =F [Isisj (wk)]
N 1
~or

oo

Z c(s; —sj,n)e” "™ = gq, . (W), (49)

n=-—oo

where g(s, —s;) (w) is defined as the cross spectrum between the two processes and it is usually a complex
valued function. If the process is isotropic, then

c(si —sj,n) = c(lsi = sjll,n) = c(llsi =sll, —n).

and under the isotropy assumption the cross spectrum gs, s, (w) between the two processes reduces to

o0

9imy (@ Z (In][,n)e=™, o] <, (50)

and the spectral function gy (w), where ||| = [|s; —s;|, is real and symmetric in w.

Proof. The above results are well known and hence details are omitted. m
Consider the DFTs { Js, (wi(n))}, where wg(n)=2nsi(n)/n,k =1,2,... K are distinct and{ sx(n)}
are integers, and as n — 00, wi(n) — wg,. Let w;(n) £ wg(n) # 0 (mod 27) for 1 < j <k < K.

Proposition 2 Under the above conditions of the frequencies, The DFT’s { Js, (wr(n)); k =1,2,3.... K}
are asymptotically independent and has a multivariate Complexr Gaussian distribution.

Proof. For Proof, we refer to Brillinger [2001], Lahiri [2003a], Robinson [1995], Giraitis et al. [2012],
Yajima [1989]. m

As pointed out earlier the second order periodogram I, (w) defined above is always real, where as
the cross periodogram I, s, (wy) defined above between the spatial processes {Y; (s;)} and {Y; (s;)} is
usually a complex valued function. Under the isotropy assumption, however, the cross spectrum is a
function of the Euclidean distance |h| = ||s; —s;|| and the temporal frequency w (i. e., spectral in
time, but not in space) and, therefore, it is real. It is interesting to see the similarity between the above
function and the spectral density functions defined by Cressie and Huang [1999] and Stein [2005a], Stein
[2005b], which are spectral in time but not in space.

In the following proposition we show that the Discrete Fourier Transform of Y; (s) can be written in
terms of orthogonal set function Zy (A, w).

Proposition 3 Let Js(w) be the Discrete Fourier Transform of {Y:(s)} and let the spectral represen-

tation Of )/t(‘S) be given by (3) Then
LL)) >~ /67;*8*)\ 7dZy ()\ (.L)) (51)
27 ’ '

Proof. Substitute the spectral representation (3) for Y; (s) in (47), and after some simplification, we

obtain
_ //ezga [ei(nﬂ)%pg (@] dZy (\,w), (52)

where ¢ = i — w, [ is a d dimensional multiple integral, (see Priestley [1981], p. 419) and in obtaining
the above, we used the result

Ze“*p = i) % {Smnw } = ()59 F2 (),
— sin £

where the Fejér kernel F), () is given by

1 sin?n%
Fo(p)=— =
n () 27mn sin? £

It is well known that the Fejér kernel behaves like a Dirac Delta function as n — oo and as ¢ — 0,

1
F,(p) = O(n). As pointed out by Priestley [1981], p. 419), that F? (¢) does not strictly tend to
a Dirac Delta d—function as n — oo, nevertheless, behaves in a similar manner to a d—function. In
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particular as n — oo and for all ¢ # 0, Fn% (¢) — 0, and as ¢ — 0, F2 — +/n/2mw. Therefore, as

1
n — 00, 37 (p) vanishes everywhere except at the origin. In view of this, for large n, we have the result

w) ~ /eiﬁ% / %dZy (A, w).

We note that the above integral is over the wave number space A only. =

Proposition 4 Let {et Js e Rt € Z} be a white noise process in space and time, that is, it is a
generalized process with constant spectrum, (see Yaglom [1987], 24, p. 411) it satisfies the following
conditions.

E (e (s))) =0,
Var(e; (s)) = 02, does not depend on s or t,

Cov er (8)) ey () = 028 (s — ).

where § (s —s') denotes the Dirac Delta function and

Vift =1
Jt—t’{ f : )

0 otherwise.

is the Kronecker delta. Then the Discrete Fourier transform of the white noise process, formally

JSP (w)

- Z ef e itw ,

Joo )= [ [ az, . (53)

where the orthogonal random process Z, (\,w) satisfies

can be approrimated by

EdZ. (Aw)=0
2
EldZ. A\ w)]* = o )d+1dAdw

Proof. It is similar to Proposition 3 and hence omitted. m

Acknowledgement. The visit of Subba Rao to the CRRAO AIMSCS was supported by a grant
from the Department of Science and Technology, Government of India, grant number SR/S4/516/07. The
authors are thankful to the editor, co-editor and the referees for their valuable comments and suggestions.
They are also thankful to Professor L. Giraitis, Queen Mary University, London and Dr Suhasini Subba
Rao, Texas A6M University, USA for their suggestions for improvement of the paper.

References

M. Abramowitz and I. A. Stegun. Handbook of mathematical functions with formulas, graphs, and
mathematical tables. Dover Publications Inc., New York, 1992. ISBN 0-486-61272-4. Reprint of the
1972 edition.

A. M. C Antunes and T. Subba Rao. On hypotheses testing for the selection of spatio-temporal models.
Journal of Time Series Analysis, 27(5):767-791, 2006.

S. Banerjee, B. P Carlin, and A. E Gelfand. Hierarchical modeling and analysis for spatial data. Crc
Press, 2014.

M. Bevilacqua, C. Gaetan, J. Mateu, and E. Porcu. Estimating space and space-time covariance functions
for large data sets: a weighted composite likelihood approach. Journal of the American Statistical
Association, 107(497):268-280, 2012.

25



©CoO~NOUTA,WNPE

Journal of Time Series Analysis

M Blangiardo and M. Cameletti. Spatial and spatio-temporal Bayesian models with R-INLA. John Wiley
& Sons, 2015.

N. Bliznyuk, R. J Carroll, M. G Genton, and Y. Wang. Variogram estimation in the presence of trend.
Statistics and its interface, 5(2):159, 2012.

D. R. Brillinger. Time Series; Data Analysis and Theory. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, 2001. ISBN 0-89871-501-6. Reprint of the 1981 edition.

P. J. Brockwell and R. A. Davis. Time Series: Theory and Methods. Springer-Verlag, New York, 1987.

P. F. Craigmile and P. Guttorp. Space-time modelling of trends in temperature series. Journal of Time
Series Analysis, 32(4):378-395, 2011.

N. Cressie. Statistics for Spatial Data. Wiley Series in Probability & Mathematical Statistics, 1993.

N. Cressie and H.-C. Huang. Classes of nonseparable, spatio-temporal stationary covariance functions.
Journal of the American Statistical Association, 94(448):1330-1339, 1999.

N. Cressie and C. K. Wikle. Statistics for Spatio-Temporal Data. Wiley Series in Probability and
Statistics, 2011.

R Dahlhaus and H Kiinsch. Edge effects and efficient parameter estimation for stationary random fields.
Biometrika, 74(4):877-882, 1987.

P. J. Diggle and P. J. Ribeiro. Model-based geostatistics. Springer, 2007.

W. Dunsmuir. A central limit theorem for estimation in gaussian stationary time series observed at
unequally spaced times. Stochastic Processes and their Applications, 14(3):279-295, 1983.

W. Dunsmuir and P. M. Robinson. Asymptotic theory for time series containing missing and amplitude
modulated observations. Sankhya: The Indian Journal of Statistics, Series A, pages 260-281, 1981.

Y. Dwivedi and S. Subba Rao. A test for second-order stationarity of a time series based on the discrete
fourier transform. Journal of Time Series Analysis, 32(1):68-91, 2011.

L. Giraitis, H. L. Koul, and D. Surgailis. Large sample inference for long memory processes, volume 201/
2. World Scientific, 2012.

R. Giraldo, P. Delicado, and J. Mateu. Continuous time-varying kriging for spatial prediction of func-
tional data: An environmental application. Journal of agricultural, biological, and environmental
statistics, 15(1):66-82, 2010.

T. Gneiting. Nonseparable, stationary covariance functions for space—time data. Journal of the American
Statistical Association, 97(458):590-600, 2002.

J. Guinness and M. Fuentes. Likelihood approximations for big nonstationary spatial temporal lattice
data. Statistica Sinica, 25(1):329-349, 2015.

Xavier Guyon. Parameter estimation for a stationary process on a d-dimensional lattice. Biometrika, 69
(1):95-105, 1982.

P. Hall and I. V. Keilegom. Using difference-based methods for inference in nonparametric regression
with time series errors. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 65
(2):443-456, 2003.

R. H. Jones and Y. Zhang. Models for continuous stationary space-time processes. In Modelling longi-
tudinal and spatially correlated data, pages 289-298. Springer, 1997.

S. N. Lahiri. Central limit theorems for weighted sums of a spatial process under a class of stochastic
and fixed designs. Sankhya: The Indian Journal of Statistics, pages 356388, 2003a.

SN Lahiri. A necessary and sufficient condition for asymptotic independence of discrete fourier transforms
under short-and long-range dependence. Annals of Statistics, pages 613-641, 2003b.

26

Page 26 of 34



Page 27 of 34

©CoO~NOUTA,WNPE

Journal of Time Series Analysis

F. Lindgren, H. Rue, and J. Lindstréom. An explicit link between gaussian fields and gaussian markov
random fields: the stochastic partial differential equation approach. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 73(4):423-498, 2011.

C. Ma. Spatio-temporal covariance functions generated by mixtures. Mathematical geology, 34(8):965—
975, 2002.

C. Ma. Spatio-temporal stationary covariance models. Journal of Multivariate Analysis, 86(1):97-107,
2003.

H. Ombao, X. Shao, E. Rykhlevskaia, M. Fabiani, and G. Gratton. Spatio-spectral analysis of brain
signals. Statistica Sinica, 18(4):1465, 2008.

E. Parzen, editor. Time Series Analysis of Irregularly Observed Data: Proceedings of a Symposium Held
at Texas a and M University, College Station, February 10-13, 1983, 1984. Springer-Verlag.

Phillip E Pfeifer and Stuart Jay Deutrch. A three-stage iterative procedure for space-time modeling
phillip. Technometrics, 22(1):35-47, 1980.

M. B. Priestley. Evolutionary spectra and non-stationary processes. Journal of the Royal Statistical
Society. Series B (Methodological), pages 204-237, 1965.

M. B. Priestley. Spectral Analysis and Time Series. Academic Press, New York, 1981.

P. M. Robinson. Log-periodogram regression of time series with long range dependence. The Annals of
Statistics, 23(3):1048 — 1072, 1995. URL http://www. jstor.org/stable/2242436.

M. D. Ruiz-Medina. New challenges in spatial and spatiotemporal functional statistics for high-
dimensional data. Spatial Statistics, 1:82-91, 2012.

S. K. Sahu and K. V. Mardia. A bayesian kriged kalman model for short-term forecasting of air pollution
levels. Journal of the Royal Statistical Society: Series C (Applied Statistics), 54(1):223-244, 2005.

J. D. Scargle. Studies in astronomical time series analysis III. fourier transforms, autocorrelation func-
tions, and cross-correlation functions of unevenly spaced data. The Astrophysical Journal, 343:874-887,
1989.

O. Schabenberger and C. A. Gotway. Statistical methods for spatial data analysis. CRC Press, 2005.

F. Sigrist, H. R Kiinsch, and W. A Stahel. Stochastic partial differential equation based modelling of
large space-time data sets. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
77(1):3-33, 2015.

E. M. Stein and G. Weiss. Introduction to Fourier analysis on FEuclidean spaces. Princeton University
Press, Princeton, N.J., 1971. Princeton Mathematical Series, No. 32.

M. L. Stein. Interpolation of spatial data: some theory for kriging. Springer, 1999.

M. L. Stein. Space—time covariance functions. Journal of the American Statistical Association, 100(469):
310-321, 2005a.

M. L. Stein. Statistical methods for regular monitoring data. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 67(5):667-687, 2005b.

M. L. Stein, Z. Chi, and L. J. Welty. Approximating likelihoods for large spatial data sets. Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 66(2):275-296, 2004.

T. Subba Rao and Gy. Terdik. On the frequency variogram and on frequency domain methods for
the analysis of spatio-temporal data. ArXiv e-prints, 1610.05891 [math.ST], 2016. (submited for
publication).

T. Subba Rao, S. Das, and G. Boshnakov. A frequency domain approach for the estimation of parameters
of spatio-temporal random processes. Journal of Time Series Analysis, 35:357-377, 2014.

A. V. Vecchia. Estimation and model identification for continuous spatial processes. Journal of the Royal
Statistical Society. Series B (Methodological), 50:297-312, 1988.

27



©CoO~NOUTA,WNPE

Journal of Time Series Analysis

P. Whittle. On stationary processes in the plane. Biometrika, 41(3/4):434-449, 1954.

A. M. Yaglom. Correlation Theory of Stationary Related Random Functions,, volume I. Springer-Verlag,
New York, 1987.

Y. Yajima. A central limit theorem of fourier transforms of strongly dependent stationary processes.
Journal of time series analysis, 10(4):375-383, 1989.

28

Page 28 of 34



Page 29 of 34

©CoO~NOUTA,WNPE

Journal of Time Series Analysis

JTSA 3963 R3
Reviewer 1.

Dear Reviewer,

Thank you for your comments. We are sorry that you still feel that things
are not clear. Below, we describe briefly the steps involved which may help.

GENERAL METHODOLOGY

1. Instead of considering the data {Y; (s;); }t = 1,2,.n;i = 1,2,..m} we
consider their DFt’s { Js,(w);¢ = 1,2...m}.as our data. We note that there is a
one-to-one correspondence between the DATA and the DFT’s. It is well known
that DFT’s for a stationary process are asymptotically uncorrelated (over dis-
tinct frequencies) and Gaussian. (The properties are briefly discussed in the
Appendix of the paper).Therefore the periodograms (properly scaled) are ap-
proximately distributed as Chi squares with two degrees of freedom(ie exponen-
tial) at all frequencies except at w # 0,+x This property is used to obtain the
likelihood function based on DFT’s and used for the estimation purposes in
section 4.1(Pl. see Brillinger’s book for full discussion on asymptotic properties
of DFT’s).

2. Since we consider the DFT’s as our data, we predict the DFT of the
original data at the location spgiven the DFT’s at other locations. By inversion
of the DFT’s we can obtain the data.

3. The optimal predictor of the DFT at sg.depends on the covariance be-
tween the DFTs at various locations. In order to evaluate this predictor, we
can substitute any valid space-time covariance function. We note that various
covariance functions have been suggested. in the literature No close form for
the covariance functions are available if we assume that the random process
satisfies the standard diffusion models such as described by Jones and Zhang
(1997), Sigrist et al (2015), Lindgren et al (2011) etc, even though one can ob-
tain space time spectrum. This can be considered as a serious set back if one
wants to follow a covariance based approach for prediction. If one wants to
use these models the covariance functions need to be evaluated by numerical
integration.

4. In view of this we defined a new set of models (11) and (23) (see Th 1 for
d =2.Th 2 ford > 2 ) for the DFT’s which are of Laplacian type with scaling
function |c(w)]|?.

5. We have shown that this scaling function, which is a polynomial in tempo-
ral frequency, is in fact related to the Inverse second order temporal spectrum.
In other words the temporal spectrum is embedded into Laplacian model, result-
ing in a covariance function of Matern-Whitle type covariance function which
takes into account temporal dependence, spatial dependence and their interac-
tion, if any. The spectral density function of the process corresponding to the
model defined is non-separable.

6. For the embedded model defined above, we obtained a close form for the
covariance function which we used in obtaining the optimal predictors. The
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methods proposed are extended to situations where the observations are cor-
rupted by noise.

7. The covariance function defined here depends on various parameters and
the scaling function |c(w)|? which is shown to be proportional inverse spectrum,
and this needs to be estimated from the data.

8. We assumed that the second order spectral density function can be
modelled by an ARMA (p,q) spectrum

9. The ARMA parameters and the other parameters associated with spa-
tial dependence are estimated using the ”entire” sample. We considered the
Frequency variogram approach( defined in earlier papers) for the estimation.

10. The efficiency of the Embedded model defined can be assessed by the
predictive performance of the ARMA (p,q) model. using the existing forecasting
techniques ( see the books of Box and Jenkins, Brockwell and Davis for details).
We choose that order p and q for which the mean square error is minimum.
For the real data we considered, we found AR(1) is appropriate, and using the
estimated model, we predicted the data at the location 11(see Fig 2), and at the
location 8, we considered forecasting of the data corresponding to t=84,85...91.

we believe the method described can be used for analysing any spatio-
temporal data

GENERAL COMMENTS OF THE REVIEWER 1

1.we are sorry that you find the simulation study difficult to understand. we
explain below the purpose behind simulation study.

At the suggestion of the Reviewer of the previous submissions, we added
a section on Simulation of spatio-Temporal data( pl. see section 5). We have
rewritten this section and divided the section into two separate parts. We
thank the reviewer for his/her comments which helped us to rewrite. Generating
time series data with a known spectral density function is interesting and such
generated data are often used for testing any new methodology.

There are several methods available for simulating spatial data with a
given covariance function,. for example one can refer to Cressie (1993) and
Schabenberger and Gotway (2005) for details. As far as we are aware not many
such methods are available for generating spatio-temporal data with a given
space-time covariance function or equivalently space-time spectrum. In this pa-
per we present a method(section 5, please see the steps described in the paper)
for simulating the DFT’s and then generating the data from the DFT’s. We de-
scribed the method for generating the spatio-temporal data (when d=2,m=9,
n=2'1). We assumed that the time series model at each location can be de-
scribed by an ARMA (2,1) model and thus the ARMA spectrum g, (w) is related
to|c(w)|? in the model defined in Theorems land 2. Using the simulated data
and the method described in section 4.1 we estimated the parameters of ARMA
(2,1)model and also considered the prediction of the data at the location s,.We
included this numerical illustration to high light the steps to help the readers. .

2. About our Data Analysis :. Our object here is to illustrate the method-
ology with some real data. We apologise to the reviewer if he/she thinks the
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data is not interesting and exciting. We are sure that the reviewer knows that
it is quite common amongst time series analysts and spatial analysts to use
repeatedly the same data for different purposes. For example the two sets of
data, Canadian Lynx data, Wolfer’s annual sunspot numbers have been used
several times ( the authors of this paper used several time series mentioned.
Very likely the reviewers too) by time series analysts and Irish Wind data (first
analysed by Haslett and Raftery) is now widely analysed by spatio-temporal
analysts. We are only illustrating our methods of prediction and estimation.
Since we are analysing the data by the classical time series methods, accuracy
of the forecasts are assessed by Prediction intervals and prediction bands and
these are shown in Fig 2. We are not claiming the analysis is exhaustive.

SPECIFIC COMMENTS OF THE REVIEWER 1

1.We included a reference to the paper by Fuentes and Guinness(2015).
We added one para at the end of section 4.1. Please note that we approached
the problem of estimation somewhat differently. We considered the likelihood
function of the DFT’s of the intrinsic stationary process, and then maximized
likelihood obtained from the dFT’s from the differences of the processes for a
given distance ||hy;||,then pooled all likelihoods over all possible distances. The
efficiency of the method and sampling properties of the estimates were discussed
in an earlier by Subba Rao et al (2014) and hence details are omitted to avoid
repetition and to save space.

2. We included a ’ Discussion’ section as requested by the Reviewer

3. We removed some Figures and as suggested we made legends more clear.
We also pointed out that we considered through out detrended series only. We
considered the prediction of PMj sat all the 625 locations on a specific day t=22
(pl. see Fig 3). The observed data at 14 locations are shown in bold circles.
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REVIEWER 2.
Dear Reviewer,

We sincerely apologise to you for giving the impression that we are wearing
you down. It was never our intention to criticize other authors or wear you down.
Our intentions are very simple. We are proposing an alternative approach us-
ing DFT’s instead of the original data. Because the DFT’s are complex valued,
related to the periodogram (thus the spectrum), we modified the model consid-
ered (Th 1 and Th2) and prediction in terms of DFT’s. The likelihood function
of the DFT’s of the intrinsic processes is considered for prediction.

GENERAL METHODOLOGY.

Below we summarise the methods suggested which we hope will make things
clear.

1. Instead of considering the data {Y; (s;); }t = 1,2,.n;4 = 1,2,...m} we
consider their DFt’s { Js, (w); i = 1,2...m}.as our data. We note that there is a
one-to-one correspondence between the DATA and the DFT’s. It is well known
that DFT’s for a stationary process are asymptotically uncorrelated (over dis-
tinct frequencies) and Gaussian. (The properties are briefly discussed in the
Appendix of the paper).Therefore the periodograms (properly scaled) are ap-
proximately distributed as Chi squares with two degrees of freedom(ie exponen-
tial) at all frequencies except at w # 0,47 This property is used to obtain the
likelihood function based on DFT’s and used for the estimation purposes in
section 4.1(P1l. see Brillinger’s book for full discussion on asymptotic properties
of DFT’s).

2. Since we consider the DFT’s as our data, we predict the DFT of the
original data at the location spgiven the DFT’s at other locations. By inversion
of the DFT’s we can obtain the data.

3. The optimal predictor of the DFT at sg.depends on the covariance be-
tween the DFTs at various locations. In order to evaluate this predictor, we
can substitute any valid space-time covariance function. We note that various
covariance functions have been suggested. in the literature No close form for
the covariance functions are available if we assume that the random process
satisfies the standard diffusion models such as described by Jones and Zhang
(1997), Sigrist et al (2015), Lindgren et al (2011) etc, even though one can ob-
tain space time spectrum. This can be considered as a serious set back if one
wants to follow a covariance based approach for prediction. If one wants to
use these models the covariance functions need to be evaluated by numerical
integration.

4. In view of this we defined a new set of models (11) and (23) (see Th 1 for
d =2.Th 2 ford > 2 ) for the DFT’s which are of Laplacian type with scaling
function |c(w)]?
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5. We have shown that this scaling function, which is a polynomial in tempo-
ral frequency, is in fact related to the Inverse second order temporal spectrum.
In other words the temporal spectrum is embedded into Laplacian model, result-
ing in a covariance function of Matern-Whitle type covariance function which
takes into account temporal dependence, spatial dependence and their interac-
tion, if any. The spectral density function of the process corresponding to the
model defined is non-separable.

6. For the embedded model defined above, we obtained a close form for the
covariance function which we used in obtaining the optimal predictors. The
methods proposed are extended to situations where the observations are cor-
rupted by noise.

7. The covariance function defined here depends on various parameters and
the scaling function |c(w)|? which is shown to be proportional inverse spectrum,
and this needs to be estimated from the data.

8. We assumed that the second order spectral density function can be
modelled by an ARMA (p,q) spectrum

9. The ARMA parameters and the other parameters associated with spa-
tial dependence are estimated using the ”entire” sample. We considered the
Frequency variogram approach( defined in earlier papers) for the estimation.

10. The efficiency of the Embedded model defined can be assessed by the
predictive performance of the ARMA (p,q) model. using the existing forecasting
techniques ( see the books of Box and Jenkins, Brockwell and Davis for details).
We choose that order p and q for which the mean square error is minimum.
For the real data we considered, we found AR(1) is appropriate, and using the
estimated model, we predicted the data at the location 11(see Fig 2), and at the
location 8, we considered forecasting of the data corresponding to t=84,85...91.

GENERAL COMMENTS of REVIEWER 2

1. The reviewer 2 commented on our lack of understanding the implications
of MV AR(1) and spatio-temmporal modelling. We are sorry that the Reviewer
felt this way. We added a paragraph ( last paragraph) of section 2 pointing out
the differences between MV AR modelling and space time modelling. We refer
to the paper by Antunes and Subba Rao (2006) where the authors examined
the differences between MV AR models and STARMA models. Also we refer to
Stein (2005b) section 1, where he devoted one whole section on the advantages
of space time modelling compared to Multivariate modelling where the spatial
correlation is not taken into account. We hope this is what the reviewer 2
wants.

2. We cannot comment on the reviewer 2’s subjective opinion that the
method would not have much utility in real world spatio-temporal problems
where the number of spatial locations can be huge. We can only request the
co- editor and the editor to give the methods proposed a chance and only time
will tell. We believe that the practitioners should have several techniques at
their disposable and they can choose what they want. It is like a Free market
economy in a democratic world. We are not forecasting at the moment.

3. We included a ’Discussion’ section.
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4. We included a reference to the paper by Fuentes and Guinness(2015).
We added one para at the end of section 4.1. Please note that we approached
the problem of estimation somewhat differently. We considered the likelihood
function of the DFT’s of the intrinsic stationary process, and then maximized
likelihood obtained from the dFT’s from the differences of the processes for a
given distance ||h;||, then pooled all likelihoods over all possible distances. The
efficiency of the method and sampling properties of the estimates were discussed
in an earlier by Subba Rao et al (2014) and hence details are omitted to avoid
repetition and to save space

SPECIFIC COMMENT
.About Simulation. Please see the Reply to the Reviewer 1.above.,

Thank you

T Subba Rao
Gy.Terdik
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