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SUMMARY

We have developed a new crack tip element for the phantom node method. In this method, a crack
tip can be placed inside an element. Therefore cracks can propagate almost independent of the finite
element mesh. We developed two different formulations for the three-node triangular element and
four-node quadrilateral element, respectively. Although this method is well suited for the one-point
quadrature scheme, it can be used with other general quadrature schemes. We provide some numerical
examples for some static and dynamic problems. Copyright c© 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The extended finite element method (XFEM) [11, 35] is a powerful tool for analyzing
problems that involve strong and weak discontinuities such as cracks [15–17, 54], fluid-structure
interactions [28] or material interfaces e.g. in two-phase flow [19]. For crack problems, many
features are incorporated into the XFEM formulation such as cohesive cracks [1, 33], branching
and joining cracks [16, 53], cohesive cracks whose tip end in an element [52], and explicit time
integration for XFEM including an efficient and simple mass lumping scheme (based on spectral
analysis) [29, 30] just to name a few of them.

Recently, an alternative method to the XFEM has been proposed by Hansbo and Hansbo
[24]. The basic difference from the original XFEM is the way that the approximation space
is enriched. In the original XFEM, additional degrees of freedom are introduced into the
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2 T. RABCZUK ET AL.

Figure 1. The principle of the phantom node method in which the hatched area is integrated to build
the discrete momentum equation; the solid circles represent real nodes and the empty ones phantom

nodes.

variational formulation. These additional degrees of freedom solely determine the crack
kinematics, i.e. the jump in the displacement field. Hansbo and Hansbo [24] suggest a
method where the crack kinematics is obtained by overlapping elements instead of introducing
additional degrees of freedom. Though it has been shown by Song et al. [44] that the method of
Hansbo and Hansbo [24] is equivalent to the original XFEM, the formulation by Hansbo and
Hansbo [24] has particular advantages with respect to the implementation of the method. First,
since all degrees of freedom are physical, the mass matrix can be obtained by a standard row
sum procedure that is especially useful in explicit dynamic codes. Second, the idea of Hansbo
and Hansbo [24] is easier to implement into commercial finite element codes since no additional
degrees of freedom are introduced that increase in number when the crack grows [45]. While
Hansbo and Hansbo [24] has given a rather a theoretic framework, Mergheim et al. [31] have
implemented the idea of Hansbo and Hansbo [24] in a static setting in two dimensions and
also in three dimensions [32]. Song et al. [45] has introduced a two-dimensional phantom-node
method in two dimensions. This concept has also been used in a shell-framework in Areias
et al. [2].

We follow the phantom-node method in Song et al. [45] and extend their approach to model
crack tips within an element. In Song et al. [45], the crack has to cross an entire element.
We propose this idea for triangular and quadrilateral elements using reduced integrated finite
elements with hourglass control [10]. Thanks to the absence of an enrichment, it is simple to
incorporate concepts such as the enhanced assumed strain (EAS) into the new formulation.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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A NEW TIP ELEMENT FOR THE PHANTOM-NODE METHOD 3

Figure 2. The standard XFEM vs. phantom node method.

2. A REVIEW OF THE PHANTOM NODE METHOD

Consider a body that is cracked as shown in Fig. 1 and the corresponding finite element
discretization. Because of the crack, there are cracked elements cut by the crack. To have a set
of full interpolation bases, the part of the cracked elements which belongs in the real domain
Ω0 are extended to the phantom domain Ωp. Then the displacement in the real domain Ω0 can
be interpolated by using the degrees of freedom for the nodes in the phantom domain Ωp. The
nodes are called the phantom nodes and marked by empty circles in Fig. 1. The approximation
of the displacement field is then given by [45]:

uh(X, t) =
∑

I∈{W+

0
,W−

P
}

uI(t) NI(X)H(f(X)) +
∑

J∈{W−

0
,W+

P
}

uJ (t) NJ(X)H(−f(X)) (1)

where f(X) is the signed distance measured from the crack, W+
0 ,W−

0 ,W+
P and W−

P are nodes
belonging to Ω+

0 ,Ω−
0 ,Ω+

P and Ω−
P , respectively. H(x) is the Heaviside function. As can be seen

from Fig. 1, cracked elements have both real nodes and phantom nodes. The jump in the
displacement field is realized by simply integrating only over the area from the side of the real
nodes up to the crack, i.e. Ω+

0 and Ω−
0 . The shape functions for a one-dimensional overlapped

phantom-node element are shown in Fig. 2 and compared to the original XFEM method. We
note that there are certain similarities to the visibility method used originally in meshfree
methods, [12–14, 36].

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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4 T. RABCZUK ET AL.

Figure 3. Zi and Belytschko [52]’s enriched displacement field.

3. THE NEW TIP ELEMENT

3.1. Three-node triangular element

In the cohesive crack model, the crack opening displacement [[u]] should vanish at the crack
tip without the stress singularity found in linear elastic fracture mechanics (LEFM). In the
classical extended finite element method, the condition was fulfilled by using a nonsingular
branch enrichment [34]. Recently, Zi and Belytschko [52] showed that the condition could be
fulfilled with only the step enrichment for triangular elements. They used a different shape
function for the enrichment field from the continuous displacement approximation so that the
crack opening displacement vanished at the edge Γk of the enriched shape function; see Fig. 3.

A simple crack tip element for the phantom node method can be devised easily in the
extension line of Zi and Belytschko [52]’s method. First, expand the small triangle representing
the enriched displacement in Fig. 4 to obtain a new triangle. The new triangular element 1∗2 3∗

is shown in Fig. 4a. Node 2 is shared by the two elements. The difference in the displacement
of the two elements vanishes at Γk.

Integrating area A1 in element 1 2 3 and A2 in element 1∗2 3∗, we then have the same
displacement field as in Fig. 3. It is trivial that the sum of A1 and A2 is equal to the area
of element 1 2 3. Note that there are only three physical nodes which are the solid circles in
Fig. 4a. The nodal values of the extra degrees of freedom, marked by the empty circles in Fig.
4a should be determined from a kinematical constraint. For the case illustrated in Fig. 4a,b,c,
displacement u

∗ is given by

ξ1P(u∗
1 − u1) + (1 − ξ1P)(u∗

3 − u3) = 0 (2)

(u∗
2 − u2) = 0 (3)

in which (ξ1P, 0) is the intersection point of Γk and edge 31 in the parent coordinate of the
element; see Fig. 4b,c.

There can be another case as in Fig. 4d such that node 3 is shared. The displacement u
∗ is

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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Page 4 of 27

http://mc.manuscriptcentral.com/nme

International Journal for Numerical Methods in Engineering



P
eer R

eview
 O

nly

A NEW TIP ELEMENT FOR THE PHANTOM-NODE METHOD 5

Figure 4. (a) A three-node tip element for the phantom node method in which solid circles represent
physical nodes and empty symbols the extra degrees of freedom to be determined by a kinematical

constraint, (b) and (c) the areas to be integrated and (d) another case of crack development.

given by

ξ1P(u∗
1 − u1) + ξ2P(u∗

2 − u2) = 0 (4)

(u∗
3 − u3) = 0 (5)

in which (ξ1P, ξ2P) is the intersection point of Γk and edge 12 in the parent coordinate of
the element; see Fig. 4d. When the position of the crack tip is close to edge 12, this would
produce a well-suited Γk. If the crack is too close to an element side or node, there is no need
to close the crack within an element and the crack is closed as in the conventional phantom
node method.

The approach mentioned above is not the only way. There is an alternative where three
elements may be used; see Fig. 5. Again, the difference in the displacement of those elements
vanishes at Γk. The sum of A1, A2 and A3 is equal to the area of the triangle. The value of

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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6 T. RABCZUK ET AL.

Figure 5. An alternative three-node tip element for the phantom node method in which solid circles
represent physical nodes and empty symbols, the extra degrees of freedom to be determined by a

kinematical constraint.

the extra degrees of freedom can be determined in a similar way as Eqs. (2) to (5).

To accurately integrate the hatched area in Fig. 4 or 5, it is inevitable to project internal
variables stored in a set of quadrature points to another for general quadrature rules. The
subtriangulation of a cracked element is commonly used for the numerical integration [34].
The standard quadrature scheme without the subtriangulation is also possible, in which there
is no projection of internal variables [23, 48]. In that case, the use of a sufficiently high order
quadrature is necessary for the reduction of the integration error due to the crack. If the one
point quadrature is used, there is no need for the projection. The integration of the hatched
area is carried out by, simply, the product of the area fraction A1/A or A2/A and the integration
for the original triangle, in which A is the area of the original triangle 1 2 3.

The conventional phantom node method is used if the crack tip is too close to an edge or a
node. A similar technique is employed in the standard XFEM techniques, Dolbow et al. [20].

3.2. Four-node quadrilateral element

The method developed with three-node triangular elements can be applied for four-node
quadrilateral elements with a slight difference. The standard displacement field of a four-node
quadrilateral element is bilinear. Therefore if we overlap two quadrilateral elements together,
similar to the case with the three-node triangular elements, the intersection Γk is not always a
line. The only case in which Γk is a line is when the intersection is parallel to one of the axes
of the parent coordinates.

Let a crack always grow to the element from edge 41; see Fig. 6. Consider four phantom
nodes 3∗, 4∗, 1∗∗ and 2∗∗, and three rectangles 1 2 3 4, 1 2 3∗4∗ and 1∗∗2∗∗3 4. The only case
that there is a single line intersection Γk is that Γk is parallel to the axis of ξ2. The intersection
between Γk and edge 34 or 12 is point (ξ1P,−1) or (ξ1P, 1).

From the condition that the difference of the displacement must be equal to zero along Γk,
we can devise a kinematical constraint corresponding to the configuration discussed above us

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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Figure 6. (a) A four-node tip element for the phantom node method in which solid circles represent
physical nodes and empty symbols, the extra degrees of freedom to be determined by a kinematical

constraint, and (b) and (c) the areas to be integrated.

given by

u
∗
3 = u3 − kc(u

∗
4 − u4) (6)

u
∗∗
2 = u2 − kc(u

∗∗
1 − u1) (7)

in which kc = (1 + ξ1P)/(1 − ξ1P ). Note u
∗
4 and u

∗∗
1 are determined from the continuity

condition with the adjacent elements. If Belytschko and Bindemann [10]’s element is used as
the base element, the one point quadrature can be adopted for the four-node quadrilateral
element.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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8 T. RABCZUK ET AL.

4. DESCRIPTION OF CRACKS

A crack can be described by piecewise linear line segments. The level set method is frequently
used within the XFEM [see 46, 47, 52] and XEFG [40, 49, 50]. A level set function defines the
surface of a discontinuity by a function of position X measured from the discontinuity. Note
that this function does not necessarily have to be the signed distance function given by

fJ(X) = sign [n · (X − XJ)] min ||X − XJ || with XJ ∈ Γc (8)

We do not explain the detailed crack tracing procedure with level sets in more detail but
instead, refer the interested readers to the literature.

The jump in the displacement is given by

[[u(X)]] =
∑

I∈{W+

0
,W−

P
}

NI(X) uI −
∑

J∈{W−

0
,W+

P
}

NJ(X) uJ (9)

where Wp is the set of nodes in phantom domain Ωp. The normal part δn, i.e. the crack opening
and the tangential part [[u(X)]]τ , the crack sliding is given by

δn = n · [[u(X)]] (10)

δt = ‖[[u(X)]] − nδn‖ (11)

More details are given in Belytschko et al. [15]. If not mentioned otherwise, we only consider
normal forces and neglect any mode II effect.

We use the Rankine criterion in order to initiate the crack, i.e. a crack is introduced once
the tensile strength is exceeded.

5. GOVERNING EQUATIONS

5.1. The momentum equations and the boundary conditions

The strong form of the momentum equation in the total Lagrangian description is given by

̺0 ü = ∇0 · P + ̺0 b in Ω0 \ Γc
0 (12)

with boundary conditions:

u(X, t) = ū(X, t) on Γu
0 (13)

n
0 · P (X, t) = t̄(X, t) on Γt

0 (14)

n0 · P
− = n0 · P

+ = tc0 on Γc
0 (15)

tc0 = tc0([[u]]) on Γc
0 (16)

where ̺0 is the initial mass density, ü is the acceleration, P denotes the nominal stress tensor,
b designates the body force, ū and t̄ are the prescribed displacement and traction, respectively,
n0 is the outward normal to the domain and Γu

0∪Γt
0∪Γc

0 = Γ0, (Γu
0∩Γt

0)∪(Γt
0∩Γc

0)∪(Γc
0∩Γu

0 ) =
∅. Moreover, we assume that the stresses P at the crack surface Γc

0 are bounded. Since the
stresses are not well defined in the crack, the crack surface Γc

0 is excluded from the domain Ω0

which is considered as an open set.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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Figure 7. The types of the cohesive laws frequently used in practice; (a) linear (or triangular), (b)
bilinear and (c) exponential cohesive laws.

5.2. Constitutive equations

We use Rankine type materials and the Johnson-Cook model [25]. The Johnson-Cook model
[25] is based on J2 plasticity but takes into account the strain rate and temperature effects.
The effective yield stress of the Johnson-Cook model is given by

σY = (A + Bγn) (1 + C ln ǫ̇∗) (1 − T ∗m) (17)

with ǫ̇∗ = γ̇/γ̇0 where γ is the effective plastic strain and γ̇0 is the reference strain rate taken
to be 1.0/s and

T ∗ =
T − Tr

Tm − Tr

(18)

where Tr is the reference temperature and Tm is the melting temperature. We assume that the
plastic deformation is completely transformed into heat, so β = 1 for the temperature update:

∆T =

∫ γ

0

β

̺cv

σY dγ (19)

Batra and Gummalla [4] pointed out that the initial negative slope of the effective plastic
stress-effective plastic strain curve highly determines the shear band initiation. They suggested
the following form of the effective yield stress that gave better results in his computations:

σY = max {(A + Bγn) (1 + C ln ǫ̇∗) [1 − δ exp ((T − T0)/κ0 − 1)] , 0} (20)

in which δ is a parameter which controls the thermal softening in the model and δ = 0.8 is
used. A crack is introduced or propagated when the stresses reaches a value of 2A as assumed
e.g. in Batra and coworkers’ [5–8].

5.3. Cohesive cracks

In the cohesive crack model, there is no stress singularity near the crack tip and the traction on
the crack surface is a function of the crack opening displacement. The cohesive crack models

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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that are most popularly used in practice are shown in Fig. 7. For simplicity of the problem,
the linear cohesive law is adopted in this study. Then the cohesive traction τ is given by

τ(δ) =

⎧

⎪

⎨

⎪

⎩

τf

(

1 − δ
δc

)

if δ ≤ δc

0 if δ > δc

(21)

in which δ is the crack opening displacement, δc is the critical crack opening displacement
beyond which the cohesive traction is reduced to zero and τf is the strength of the material.

If a potential for the cohesive crack is defined, the unidirectional relation of Eq. (21) can be
extended to general mixed mode problems, too [9, 18, 37, etc]. Here we consider only the mode
I crack separation. The computational implementation of Eq. (21) including the unloading and
reloading behaviors can be found in the literature [e.g. 16].

6. THE DISCRETIZED EQUATIONS6.1. The discrete governing equations

The weak form of the momentum equation is given by

δW = δWint + δWkin − δWext − δWcoh (22)

in which δWint, δWkin, δWext, δWcoh are the virtual works by the internal stress, the inertia
force, the external traction and the cohesive traction, respectively. They are given by

δWint =

∫

Ω0\Γc

0

(∇⊗ δu)
T

: P dΩ0 (23)

δWkin =

∫

Ω0\Γc

0

̺0 δu · ü dΩ0 (24)

δWext =

∫

Ω0\Γc

0

̺0 δu · b dΩ0 +

∫

Γt

0

δu · t̄0 dΓ0 (25)

δWcoh =

∫

Γc

0

[[δu]] · τ dΓ0 (26)

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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With the trial functions, Eq. (1) and the test functions, that have the same structure, and the
crack opening displacement [[u]] in Eq. (9), we obtain

δWint =
∑

I∈{W+

0
,W−

P
}

δuT
I

∫

Ω
+

0
\Γc

0

∇0NI(X)T : P dΩ

+
∑

J∈{W−

0
,W+

P
}

δuT
J

∫

Ω−
0
\Γc

0

∇0NJ(X)T : P dΩ (27)

δWkin =
∑

I∈{W+

0
,W−

P
}

δuT
I

∑

K∈{W+

0
,W−

P
}

∫

Ω
+

0
\Γc

0

̺0 NI(X)T · NK(X) dΩ üK

+
∑

I∈{W−

0
,W+

P
}

δuT
I

∑

L∈{W−

0
,W+

P
}

∫

Ω
−

0
\Γc

0

̺0 NI(X)T · NL(X) dΩ üL

+
∑

J∈{W+

0
,W−

P
}

δuT
J

∑

K∈{W+

0
,W−

P
}

∫

Ω
+

0
\Γc

0

̺0 NJ(X)T · NK(X) dΩ üK

+
∑

J∈{W−

0
,W+

P
}

δuT
J

∑

L∈{W−

0
,W+

P
}

∫

Ω
−

0
\Γc

0

̺0 NJ(X)T · NL(X) dΩ üL (28)

δWext =
∑

I∈{W+

0
,W−

P
}

δuT
I

[

∫

Ω
+

0
\Γc

0

̺0 NI(X)T · bdΩ + δuT
I

∫

Γt

0

NI(X)T · t̄0 dΓ

]

+
∑

J∈{W−

0
,W+

P
}

δuT
J

[

∫

Ω
−

0
\Γc

0

̺0 NJ(X)T · bdΩ +

∫

Γt

0

NJ(X)T · t̄0 dΓ

]

(29)

δWcoh =
∑

I∈{W+

0
,W−

P
}

δuT
I

∫

Γc

0

NI(X)T · t̄c dΓ

−
∑

J∈{W−

0
,W+

P
}

δuT
J

∫

Γc

0

NJ(X)T · t̄c dΓ (30)

Using the fundamental lemma of the variational principle, we obtain the discretized equation,
i.e.

M q̈ = fext + fcoh − fint (31)

where M is the consistent mass matrix, q are the generalized parameters, fext, fint and fcoh are
the discrete external, internal and cohesive force vectors, respectively. The expressions for M,

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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q, fext, fcoh and fcoh are given by

M =

∫

Ω0\Γc

0

̺0 N0 T
N0dΩ (32)

fint =

∫

Ω0\Γc

0

B0 T
PdΩ (33)

fext =

∫

Ω0\Γc

0

̺0 N0T
b dΩ +

∫

Γt

0

N0T
t̄0 dΓ (34)

fcoh =

∫

Γc

0

N0T
tc0 dΓ0 (35)

q = [ uI uJ ]T ∀ I ∈ {W+
0 ,W−

P } and J ∈ {W−
0 ,W+

P } (36)

N0 = [NI NJ ] ∀ I ∈ {W+
0 ,W−

P } and J ∈ {W−
0 ,W+

P } (37)

B0 = ∇0N
0 (38)

We used this approach in combination with the Belytschko and Bindemann [10]’s element for
quadrilateral elements.

7. NUMERICAL EXAMPLES AND DISCUSSION

7.1. Edge crack

This example is to study the robustness of our element when the crack tip is very close to a
node or an element side. Consider the edge crack problem as shown in figure 8 with σ = 1,
Young’s modulus E = 100, Poisson’s ratio ν = 0.3 and the ratio a/W = 0.05. In the analytical
solution, the stress intensity factor for this problem is KI = 1.253. Since it is easier to control
the distance of the crack to a node or an edge for structured meshes, we study our 4-node
quadrilateral element. The results will be similar for the triangular elements.

Figure 9 shows the stress intensity factor with increasing mesh density for the triangular and
quadrilateral element. Here, the position of the crack tip within an element varies arbitrarily.
However, this does not influence the convergence rate. For approximately 18,000 elements, we
modified the position of the crack tip within the element by locally rearranging some elements,
figure 8 and table I. Note that if a crack is too close to an edge it will be closed at the element
side as stated earlier. Table I shows the influence of the stress intensity factors for different
positions of the crack tip in the element. The differences in the results are marginal, i.e. less
than 6% deviation.

7.2. Double-cantilever-beam test with diagonal loads

This example was chosen to demonstrate the advantages of our new element with respect to
the standard phantom-node element without tip enrichment. Therefore consider the double-
cantilever beam (DCB) with diagonal load as shown in Fig. 10. The diagonal load F2(t) is
increased up to a certain pseudo time proportional to the tensile load F1(t). Then, load F2 is
kept constant while F1 is still increased. More details can be found in Kobayashi et al. [27]. A
straight crack occurred in the experiment traveling in a 71◦ against the horizontal axis.
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δx

δy

σ

σ

Figure 8. The edge crack problem.

Table I. Normalized SIF values KI for different positions of the crack tip for a structured discretization
with 18,000 elements.

δx/h
δy/h

0.05 0.1 0.2 0.3

0.1 0.9184 0.9212 0.9254 0.927
0.2 0.9233 0.9255 0.926 0.9268
0.3 0.9222 0.926 0.926 0.9269

The material parameters are Young’s modulus E = 30,500 MPa, Poisson’s ratio ν = 0.2,
tensile strength ft =3 MPa and fracture energy Gf =100 N/m.

We have discretized the specimen with different meshes of different refinements, starting
with approximately 100 elements up to 7,000 elements, figure 11. We will show only results
for the unstructured meshes though the results for the structured meshes were similar.

Fig. 12 shows the load F1 crack opening plot, see Fig. 11d for the displacement plot and
for definitions. In the conventional phantom node method, the crack has to be propagated
through the entire element that leads to very rough load deflection curves and inaccurate
results for the coarse meshes. For our crack tip enrichment, we control the crack length mainly
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Figure 9. Normalized stress intensity factor for the edge crack problem for structured and unstructured
meshes with different mesh sizes.

crack

457 mm

273mm

76mm

108mm

Pseudo time

Force [kN]

3.78

a

b

a/b=0.6

F1(t)

F1(t)F1(t)

F2(t)

F2(t)

F2(t)

Figure 10. The tensile/shear beam from Kobayashi et al. [27].

for convergence reasons and keep for all simulations a constant crack length of 3 mm. The load
deflection curve for our tip element included in Fig. 12 does not show the rough behavior of
the conventional phantom-node method.

7.3. Arrea-Ingraffea beam

Consider the Arrea and Ingraffea [3] beam that fails in a combined tensile-shear mode. The
beam is loaded at points A and B according to Fig. 13. The Young’s modulus is 28,000 MPa,
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(a) (b)

(c) (d)

Figure 11. Different meshes for the DCB problem and crack pattern at the end of the computation

tensile strength is 2.8 MPa and Poisson’s ration ν = 0.18. We consider a Rankine material with
linear decaying cohesive law and a fracture energy Gf = 100 N/m. We tested different mesh
refinements starting from 400 elements up to 12,000 elements and compared our results to the
original phantom node method where the crack is introduced through the entire element.

The final crack path is shown in Fig. 14, exemplarily for 2,800 triangular elements, as well
as certain stress distributions in the beam. As can be seen, the crack curves nicely that is also
observed experimentally. The crack pattern for the quadrilateral meshes are similar. The load
displacement curve (crack mouth sliding right of the notch) is shown in Fig. 15a,b for different
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(a) conventional phantom node method (b) tip enriched phantom node method

Figure 12. Load-displacement (CMOD) curve for the DCB problem for the conventional phantom-node
method and with tip enriched phantom-node method
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Figure 13. The tensile/shear beam from Arrea Ingraffea

meshes† and lies in the experimental scatter. The results of the conventional phantom node
method is shown in figure 15c for the same unstructured discretizations and the load deflection
curves are rougher especially for the coarse meshes.

7.4. Crack branching

Let us consider a rectangular prenotched specimen as shown in Fig. 16. The length of the
specimen is 0.1 m and the width 0.04 m. Plane strain conditions are assumed. There is a
horizontal initial-crack from the left edge to the center of the plate over the entire thickness.
On the top and bottom edges, tensile traction of 1 MPa is applied.

We used the Rankine criterion and an exponential decaying cohesive law (Fig. 7)c. The
material parameters were Young’s modulus E = 32 MPa, Poisson’s ratio ν = 0.2 and density

†triangular versus quadrilateral and also different refinements
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(a) (b)

(c) (d)

(e) (f)

Figure 14. The crack pattern and stress distribution for the Arrea-Ingraffea beam at different load
steps; (a,c,e) principal tensile stress and (e,f,g) shear stress.

̺ = 2, 450 kg/m3. Two dimensional computations of this problem had previously been reported
by Belytschko et al. [16], Falk et al. [21], Rabczuk and Belytschko [38], Xu and Needleman [51];
and three dimensional computations e.g. by Rabczuk and Belytschko [39]. Experimental data
is available; see Fineberg et al. [22], Ravi-Chandar [42], Sharon and Fineberg [43].

We carried out simulations with both the quadrilateral elements and the triangular elements.
We tested meshes consisting of 1,000 and 16,000 of the quadrilateral elements and 2,000 and
10,000 of the triangular elements. The crack pattern of the specimen at different times in the
deformed configuration is shown in Fig. 17. Note that the deformations are shown magnified.
Stress distributions in the specimen at different time steps are shown in Fig. 18.

The time history of the crack speed is shown in Fig. 19. The crack starts to propagate at
about 0.012 ms. As expected, the crack speed is highest at the time of crack branching. In
order to model crack branching, we used the conventional phantom node method since the
point of branching cannot be described by our proposed method. At the first branching, the
crack speed almost reaches the theoretical Rayleigh wave speed. Afterwards, the crack speed
decreases and the crack speed of the upper branch is shown. The crack speed of the lower
branch is very similar as Fig. 19 might indicate.

7.5. Kalthoff and Winkler [26]’s experiment

Kalthoff and Winkler [26] performed a series of experiments in which a steel plate was hit by a
projectile with different impact velocities as shown in Fig. 20. They discovered different failure
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a) b)

c)

Figure 15. Load-deflection curve of the tensile/shear beam from [3] for (a) structured tip-enriched
phantom node discretization, (b) unstructured tip-enriched phantom node discretization and (c)

unstructured conventional phantom node discretization

phenomena for different impact velocities. Up to an impact velocity of about vc = 20 m/s,
the steel plate fails brittle and a crack develops in a 70◦ against the axis parallel to the flight
direction of the projectile. For larger impact velocities, a ductile failure pattern was observed
and a shear band develops from the onset of the notch in a much flatter angle of the opposite
direction. We also note that the transition from brittle to ductile failure depends on the size
and shape of the notch. We focus on the brittle failure pattern and an impact velocity of 17
m/s. The simulation of this problem had been reported by Belytschko et al. [16], Menouillard
et al. [29], Rabczuk et al. [41], Xu and Needleman [51], etc.

We used structured and unstructured discretizations with three different mesh-refinements,
for the structured case between approximately 2,000 and 16,000 elements and for the
unstructured case between 1,000 and 10,000 elements. The Johnson Cook model [25] was
used with material parameters: A = 792 MPa, B = 509 MPa, C = 0.014, n = 0.26, m = 0.55,
ρ = 7, 800 kg/m3, T0 = 293 K, K = 157 GPa, G = 76 GPa, cv = 477 J/kg◦C, Tr = 296
K, Tm = 1, 033 K, γ0 = 1.3 × 10−13 s−1 and κ0 = 500 K. An exponential cohesive law was
used. We exploited the symmetry and modeled only half of the specimen. The crack pattern
and the stress distribution at two different time steps is shown in Fig. 21. The crack speed for
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Figure 16. A plate with an edge crack loaded by uniform traction on the top and bottom edges.

(a) (b)

(c) (d)

Figure 17. The crack configuration in the deformed configuration of the crack branching problem at
different times

different simulations is illustrated in Fig. 22. The crack path agrees well with the experimental
observation.
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(a) (b)

(c) (d)

(e) (f)

Figure 18. The crack pattern and stress distribution for the branching problem at different load steps;
(a,c,e) principal tensile stress and (e,f,g) shear stress.

(a) (b)

Figure 19. The crack speed time history of the crack branching problem for different mesh refinements;
(a) the quadrilateral elements and (b) the triangular elements.
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100 mm
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Figure 20. The Kalthoff problem: test setup

8. CONCLUSIONS

1. We presented an extension of the phantom node method [44] by allowing crack tips to be
placed within a finite element. Therefore the crack growth in the phantom node method
became almost independent of the finite element mesh.

2. The formulation for the crack tip was developed for a three node triangular element and
a four node quadrilateral element. It may be possible to extend this approach to a three
dimensional element such as a four node tetrahedron element.

3. Due to the lack of an enrichment, techniques such as EAS can easily be implemented
into the formulation.

4. For a simple example with available analytical solution, we have studied the method for
several positions of the crack tip within an element in order to study the reliability and
accuracy of the method and found the method robust. The conventional phantom node
method is used if the crack tip is too close to an edge or a node.

5. This method was especially useful for dynamic fracture problems when it was used with
the one point quadrature rule.

6. Cohesive zone models were used in the postlocalization region to guarantee the well-
posedness of the IBVP. We employed this method to several quasi-static and dynamic
crack problems and compared our results to experimental data or other numerical results
in the literature and found good agreement.

7. We have described the crack segments explicitly by piecewise linear segments and mostly
controlled the crack length. However, when level sets are used for the representation of the
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(a) σxx (b) σxy

(c) σyy (d) σ1

Figure 21. The stress distribution and crack pattern in the Kalthoff experiment at different times

crack, the crack speed and hence the crack length can be obtained via the Hamiltonian
Jacobi equation solving with respect to the crack speed as shown in Belytschko et al. [16].
For that case, the opportunity to close the crack within a finite element is advantageous.

8. We employed the method to several quasi-static and dynamic crack problems and
compared our results to experimental data or other numerical results in the literature
and found good agreement.
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(a) (b)

Figure 22. The crack speed for the Kalthoff problems for different mesh refinements for (a) the
quadrilateral elements and (b) the triangular elements
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