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Abstract Discriminant validity assessment has become a

generally accepted prerequisite for analyzing relationships

between latent variables. For variance-based structural equa-

tion modeling, such as partial least squares, the Fornell-

Larcker criterion and the examination of cross-loadings are

the dominant approaches for evaluating discriminant validity.

By means of a simulation study, we show that these ap-

proaches do not reliably detect the lack of discriminant valid-

ity in common research situations. We therefore propose an

alternative approach, based on the multitrait-multimethod ma-

trix, to assess discriminant validity: the heterotrait-monotrait

ratio of correlations. We demonstrate its superior performance

by means of a Monte Carlo simulation study, in which we

compare the new approach to the Fornell-Larcker criterion

and the assessment of (partial) cross-loadings. Finally, we

provide guidelines on how to handle discriminant validity

issues in variance-based structural equation modeling.

Keywords Structural equationmodeling (SEM) . Partial least

squares (PLS) . Results evaluation .Measurement model

assessment .Discriminantvalidity .Fornell-Larcker criterion .
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Introduction

Variance-based structural equation modeling (SEM) is

growing in popularity, which the plethora of recent devel-

opments and discussions (e.g., Henseler et al. 2014;

Hwang et al. 2010; Lu et al. 2011; Rigdon 2014;

Tenenhaus and Tenenhaus 2011), as well as its frequent

application across different disciplines, demonstrate (e.g.,

Hair et al. 2012a, b; Lee et al. 2011; Peng and Lai 2012;

Ringle et al. 2012). Variance-based SEM methods—such

as partial least squares path modeling (PLS; Lohmöller

1989; Wold 1982), generalized structured component

analysis (GSCA; Henseler 2012; Hwang and Takane

2004), regularized generalized canonical correlation anal-

ysis (Tenenhaus and Tenenhaus 2011), and best fitting

proper indices (Dijkstra and Henseler 2011)—have in

common that they employ linear composites of observed

variables as proxies for latent variables, in order to esti-

mate model relationships. The estimated strength of these

relationships, most notably between the latent variables,

can only be meaningfully interpreted if construct validity

was established (Peter and Churchill 1986). Thereby, re-

searchers ensure that the measurement models in their

studies capture what they intend to measure (Campbell

and Fiske 1959). Threats to construct validity stem from

various sources. Consequently, researchers must employ

different construct validity subtypes to evaluate their re-

sults (e.g., convergent validity, discriminant validity, cri-

terion validity; Sarstedt and Mooi 2014).
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In this paper, we focus on examining discriminant validity

as one of the key building blocks of model evaluation

(e.g.,Bagozzi and Phillips 1982; Hair et al. 2010).

Discriminant validity ensures that a construct measure is

empirically unique and represents phenomena of interest that

other measures in a structural equation model do not capture

(Hair et al. 2010). Technically, discriminant validity requires

that “a test not correlate too highly with measures from which

it is supposed to differ” (Campbell 1960, p. 548). If discrim-

inant validity is not established, “constructs [have] an influ-

ence on the variation of more than just the observed

variables to which they are theoretically related” and,

as a consequence, “researchers cannot be certain results

confirming hypothesized structural paths are real or

whether they are a result of statistical discrepancies”

(Farrell 2010, p. 324). Against this background, discrim-

inant validity assessment has become common practice

in SEM studies (e.g., Shah and Goldstein 2006; Shook

et al. 2004).

Despite its obvious importance, researchers using variance-

based SEM usually rely on a very limited set of approaches to

establish discriminant validity. As shown in Table 1, tutorial

articles and introductory books on PLS almost solely

recommend using the Fornell and Larcker (1981) criterion

and cross-loadings (Chin 1998). Reviews of PLS use suggest

that these recommendations have been widely applied in

published research in the fields of management informa-

tion systems (Ringle et al. 2012), marketing (Hair et al.

2012a), and strategic management (Hair et al. 2012b).

For example, the marketing studies in Hair et al.'s

(2012a) review that engage in some type of discriminant

validity assessment use the Fornell-Larcker criterion

(72.08%), cross-loadings (7.79%), or both (26.13%).

Reviews in other disciplines paint a similar monotonous

picture. Very few studies report other means of

assessing discriminant validity. These alternatives in-

clude testing whether the latent variable correlations

are significantly different from one another (Milberg

et al. 2000) and running separate confirmatory factor

analyses prior to employing variance-based SEM

(Cording et al. 2008; Pavlou et al. 2007; Ravichandran

and Rai 2000) by using, for example, Anderson and

Gerbing's (1988) test as the standard.1

While marketing researchers routinely rely on the Fornell-

Larcker criterion and cross-loadings (Hair et al. 2012a), there

are very few empirical findings on the suitability of these

criteria for establishing discriminant validity. Recent research

suggests that the Fornell-Larcker criterion is not effective

under certain circumstances (Henseler et al. 2014; Rönkkö

and Evermann 2013), pointing to a potential weakness in the

most commonly used discriminant validity criterion.

However, these studies do not provide any systematic assess-

ment of the Fornell-Larcker criterion’s efficacy regarding

testing discriminant validity. Furthermore, while researchers

frequently note that cross-loadings are more liberal in terms of

indicating discriminant validity (i.e., the assessment of cross-

loadings will support discriminant validity when the Fornell-

Larcker criterion fails to do so; Hair et al. 2012a, b; Henseler

et al. 2009), prior research has not yet tested this notion.

In this research, we present three major contributions to

variance-based SEM literature on marketing that are rele-

vant for the social sciences disciplines in general. First,

we show that neither the Fornell-Larcker criterion nor the

assessment of the cross-loadings allows users of variance-

based SEM to determine the discriminant validity of their

measures. Second, as a solution for this critical issue, we

propose the heterotrait-monotrait ratio of correlations

(HTMT) as a new approach to assess discriminant validity

in variance-based SEM. Third, we demonstrate the effica-

cy of HTMT by means of a Monte Carlo simulation, in

which we compare its performance with that of the

Fornell-Larcker criterion and with the assessment of the

cross-loadings. Based on our findings, we provide re-

searchers with recommendations on when and how to

use the approach. Moreover, we offer guidelines for

treating discriminant validity problems. The findings of

this research are relevant for both researchers and practi-

tioners in marketing and other social sciences disciplines,

since we establish a new standard means of assessing

discriminant validity as part of measurement model eval-

uation in variance-based SEM.

Traditional discriminant validity assessment methods

Comparing average communality and shared variance

In their widely cited article on tests to evaluate structural

equation models, Fornell and Larcker (1981) suggest that

discriminant validity is established if a latent variable

accounts for more variance in its associated indicator

variables than it shares with other constructs in the same

model. To satisfy this requirement, each construct’s av-

erage variance extracted (AVE) must be compared with

its squared correlations with other constructs in the mod-

el. According to Gefen and Straub (2005, p. 94), “[t]his

comparison harkens back to the tests of correlations in

multi-trait multi-method matrices [Campbell and Fiske,

1959], and, indeed, the logic is quite similar.”

The AVE represents the average amount of variance that a

construct explains in its indicator variables relative to the

1 It is important to note that studies may have used different ways to

assess discriminant validity assessment, but did not include these in the

main texts or appendices (e.g., due to page restrictions). We would like to

thank an anonymous reviewer for this remark.
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overall variance of its indicators. The AVE for construct ξj is

defined as follows:

AVEξ j ¼

XK j

k¼1

λ
2
jk

XK j

k¼1

λ
2
jk þΘ jk

; ð1Þ

where λjk is the indicator loading and Θjk the error variance

of the kth indicator (k = 1,…,Kj) of construct ξj.Kj is the number

of indicators of construct ξj. If all the indicators are standardized

(i.e., have a mean of 0 and a variance of 1), Eq. 1 simplifies to

AVEξ j ¼
1

K j

∑
K j

k¼1

λ
2
jk : ð2Þ

The AVE thus equals the average squared standardized

loading, and it is equivalent to the mean value of the indicator

reliabilities. Now, let rij be the correlation coefficient between

the construct scores of constructs ξi and ξj The squared inter-

construct correlation rij
2 indicates the proportion of the vari-

ance that constructs ξi and ξj share. The Fornell-Larcker crite-

rion then indicates that discriminant validity is established if

the following condition holds:

AVEξ j > maxr2i j ∀i≠ j: ð3Þ

Since it is common to report inter-construct correlations in

publications, a different notation can be found in most reports

on discriminant validity:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

AVEξ j

q

> maxjri jj ∀i≠ j: ð4Þ

From a conceptual perspective, the application of the

Fornell-Larcker criterion is not without limitations. For exam-

ple, it is well known that variance-based SEMmethods tend to

overestimate indicator loadings (e.g., Hui and Wold 1982;

Lohmöller 1989). The origin of this characteristic lies in the

methods’ treatment of constructs. Variance-based SEM

methods, such as PLS or GSCA, use composites of indicator

variables as substitutes for the underlying constructs (Henseler

et al. 2014). The loading of each indicator on the composite

represents a relationship between the indicator and the com-

posite of which the indicator is part. As a result, the degree of

overlap between each indicator and composite will be high,

yielding inflated loading estimates, especially if the number of

indicators per construct (composite) is small (Aguirre-Urreta

et al. 2013).2 Furthermore, each indicator’s error variance is

also included in the composite (e.g., Bollen and Lennox

1991), which increases the validity gap between the construct

and the composite (Rigdon 2014) and, ultimately, compounds

the inflation in the loading estimates. Similar to the loadings,

variance-based SEM methods generally underestimate struc-

tural model relationships (e.g., Reinartz et al. 2009;

Marcoulides, Chin, and Saunders 2012). While these devia-

tions are usually relatively small (i.e., less than 0.05; Reinartz

Table 1 Recommendations for

establishing discriminant validity

in prior research

Other prominent introductory

texts on PLS (e.g., Falk andMiller

1992; Haenlein and Kaplan 2004;

Lohmöller 1989; Tenenhaus et al.

2005; Wold 1982) do not offer

recommendations for assessing

discriminant validity

Reference Recommendation

Fornell-Larcker criterion Cross-loadings

Barclay, Higgins, and Thompson (1995) ✓ ✓

Chin (1998, 2010) ✓ ✓

Fornell and Cha (1994) ✓

Gefen and Straub (2005) ✓ ✓

Gefen, Straub, and Boudreau (2000) ✓ ✓

Götz, Liehr-Gobbers, and Krafft (2010) ✓

Hair et al. (2011) ✓ ✓

Hair et al. (2012a) ✓ ✓

Hair et al. (2012b) ✓ ✓

Hair et al. (2014) ✓ ✓

Henseler et al. (2009) ✓ ✓

Hulland (1999) ✓

Lee et al. (2011) ✓ ✓

Peng and Lai (2012) ✓

Ringle et al. (2012) ✓ ✓

Roldán and Sánchez-Franco (2012) ✓ ✓

Sosik et al. (2009) ✓

2 Nunnally (1978) offers an extreme example with five mutually uncor-

related indicators, implying zero loadings if all were measures of a

construct. However, each indicator’s correlation (i.e., loading) with an

unweighted composite of all five items is 0.45.
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et al. 2009), the interplay between inflated AVE values and

deflated structural model relationships in the assessment of

discriminant validity has not been systematically examined.

Furthermore, the Fornell-Larcker criterion does not rely on

inference statistics and, thus, no procedure for statistically

testing discriminant validity has been developed to date.

Assessing cross-loadings

Another popular approach for establishing discriminant validity is

the assessment of cross-loadings, which is also called “item-level

discriminant validity.” According to Gefen and Straub (2005, p.

92), “discriminant validity is shownwhen eachmeasurement item

correlates weakly with all other constructs except for the one to

which it is theoretically associated.” This approach can be traced

back to exploratory factor analysis, where researchers routinely

examine indicator loading patterns to identify indicators that have

high loadings on the same factor and those that load highly on

multiple factors (i.e., double-loaders; Mulaik 2009).

In the case of PLS, Barclay et al. (1995), as well as Chin

(1998), were the first to propose that each indicator loading

should be greater than all of its cross-loadings.3Otherwise, “the

measure in question is unable to discriminate as to whether it

belongs to the construct it was intended tomeasure or to another

(i.e., discriminant validity problem)” (Chin 2010, p. 671). The

upper part a) of Fig. 1 illustrates this cross-loadings approach.

However, there has been no reflection on this approach’s

usefulness in variance-based SEM. Apart from the norm that

an item should be highly correlated with its own construct, but

have low correlations with other constructs in order to estab-

lish discriminant validity at the item level, no additional

theoretical arguments or empirical evidence of this approach’s

performance have been presented. In contrast, research on

covariance-based SEM has critically reflected on the

approach’s usefulness for discriminant validity assessment.

For example, Bollen (1989) shows that high inter-construct

correlations can cause a pronounced spurious correlation be-

tween a theoretically unrelated indicator and construct. The

paucity of research on the efficacy of cross-loadings in

variance-based SEM is problematic, because the methods tend

to overestimate indicator loadings due to their reliance on

composites. At the same time, the introduction of composites

as substitutes for latent variables leaves cross-loadings largely

unaffected. The majority of variance-based SEM methods are

limited information approaches, estimating model equations

separately, so that the inflated loadings are only imperfectly

introduced in the cross-loadings. Therefore, the very nature of

algorithms, such as PLS, favors the support of discriminant

validity as described by Barclay et al. (1995) and Chin (1998).

Another major drawback of the aforementioned approach

is that it is a criterion, but not a statistical test. However, it is

also possible to conduct a statistical test of other constructs’

influence on an indicator using partial cross-loadings.4 The

partial cross-loadings determine the effect of a construct on an

indicator other than the one the indicator is intended to mea-

sure after controlling for the influence of the construct that the

indicator should measure. Once the influence of the actual

construct has been partialed out, the residual error variance

should be pure random error according to the reflective mea-

surement model:

ε jk ¼ x jk−λ jkξ j; ε jk⊥ξi ∀i: ð5Þ

If εjk is explained by another variable (i.e., the correlation

between the error term of an indicator and another construct is

significant), we can no longer maintain the assumption that εjk
is pure random error but must acknowledge that part of the

measurement error is systematic error. If this systematic error

is due to another construct ξi, we must conclude that the

indicator does not indiscriminately measure its focal construct

ξj, but also the other construct ξi, which implies a lack of

discriminant validity. The lower part b) of Fig. 1 illustrates the

working principle of the significance test of partial cross-

loadings.

While this approach has not been applied in the context of

variance-based SEM, its use is common in covariance-based

SEM, where it is typically applied in the form of modification

indices. Substantial modification indices point analysts to the

correlations between indicator error terms and other con-

structs, which are nothing but partial correlations.

An initial assessment of traditional discriminant validity

methods

Although the Fornell-Larcker criterion was established more

than 30 years ago, there is virtually no systematic examination

of its efficacy for assessing discriminant validity. Rönkkö and

Evermann (2013) were the first to point out the Fornell-

Larcker criterion’s potential problems. Their simulation study,

which originally evaluated the performance of model valida-

tion indices in PLS, included a population model with two

identical constructs. Despite the lack of discriminant validity,

the Fornell-Larcker criterion indicated this problem in only 54

of the 500 cases (10.80%). This result implies that, in the vast

majority of situations that lack discriminant validity, empirical

3 Chin (2010) suggests examining the squared loadings and cross-

loadings instead of the loadings and cross-loadings. He argues that, for

instance, compared to a cross-loading of 0.70, a standardized loading of

0.80 may raise concerns, whereas the comparison of a shared variance of

0.64 with a shared variance of 0.49 puts matters into perspective. 4 We thank an anonymous reviewer for proposing this approach.
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researchers would mistakenly be led to believe that discrimi-

nant validity has been established. Unfortunately, Rönkkö and

Evermann’s (2013) study does not permit drawing definite

conclusions about extant approaches’ efficacy for assessing

discriminant validity for the following reasons: First, their

calculation of the AVE—a major ingredient of the Fornell-

Larcker criterion—was inaccurate, because they determined

one overall AVE value instead of two separate AVE values;

that is, one for each construct (Henseler et al. 2014).5 Second,

Rönkkö and Evermann (2013) did not examine the perfor-

mance of the cross-loadings assessment.

In order to shed light on the Fornell-Larcker criterion’s

efficacy, as well as on that of the cross-loadings, we conducted

a small simulation study. We randomly created 10,000

datasets with 100 observations, each according to the one-

factor population model shown in Fig. 2, which Rönkkö and

Evermann (2013) and Henseler et al. (2014) also used. The

indicators have standardized loadings of 0.60, 0.70, and 0.80,

analogous to the loading patterns employed in previous sim-

ulation studies on variance-based SEM (e.g., Goodhue et al.

2012; Henseler and Sarstedt 2013; Reinartz et al. 2009).

To assess the performance of traditional methods regarding

detecting (a lack of) discriminant validity, we split the

construct in Fig. 2 into two separate constructs, which results

in a two-factor model as depicted in Fig. 3. We then used the

artificially generated datasets from the population model in

Fig. 2 to estimate the model shown in Fig. 3 by means of the

variance-based SEM techniques GSCA and PLS. We also

benchmarked their results against those of regressions with

summed scales, which is an alternative method for estimating

relationships between composites (Goodhue et al. 2012). No

matter which technique is used to estimate the model param-

eters, the Fornell-Larcker criterion and the assessment of the

cross-loadings should reveal that the one-factor model rather

than the two-factor model is preferable.

Table 2 shows the results of this initial study. The reported

percentage values denote the approaches’ sensitivity, indicating

their ability to identify a lack of discriminant validity (Macmillan

and Creelman 2004). For example, when using GSCA for

model estimation, the Fornell-Larcker criterion points to a lack

of discriminant validity in only 10.66% of the simulation runs.

The results of this study render the following main find-

ings: First, we can generally confirm Rönkkö and Evermann’s

(2013) report on the Fornell-Larcker criterion’s extremely

poor performance in PLS, even though our study’s concrete

sensitivity value is somewhat higher (14.59% instead of

10.80%).6 In addition, we find that the sensitivity of the
5 We thankMikko Rönkkö and Joerg Evermann for providing us with the

code of their simulation study (Rönkkö and Evermann 2013), which

helped us localize this error in their analysis.

6 The difference between these results could be due to calculation errors

by Rönkkö and Evermann (2013), as revealed by Henseler et al. (2014).

b)

a)Fig. 1 Using the cross-loadings

to assess discriminant validity
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cross-loadings regarding assessing discriminant validity is

8.78% in respect of GSCA and, essentially, zero in respect

of PLS and regression with summed scales. These results

allow us to conclude that both the Fornell-Larcker criterion

and the assessment of the cross-loadings are insufficiently

sensitive to detect discriminant validity problems. As we will

show later in the paper, this finding can be generalized to

alternative model settings with different loading patterns,

inter-construct correlations, and sample sizes. Second, our

results are not due to a certain method’s characteristics, be-

cause we used different model estimation techniques.

Although the results differ slightly across the three methods

(Table 2), we find that the general pattern remains stable. In

conclusion, the Fornell-Larcker criterion and the assessment

of the cross-loadings fail to reliably uncover discriminant

validity problems in variance-based SEM.

The heterotrait-monotrait ratio of the correlations

approach to assess discriminant validity

Traditional approaches’ unacceptably low sensitivity regard-

ing assessing discriminant validity calls for an alternative

criterion. In the following, we derive such a criterion from

the classical multitrait-multimethod (MTMM) matrix

(Campbell and Fiske 1959), which permits a systematic dis-

criminant validity assessment to establish construct validity.

Surprisingly, the MTMM matrix approach has hardly been

applied in variance-based SEM (for a notable exception see

Loch et al. 2003).

The application of the MTMMmatrix approach requires at

least two constructs (“multiple traits”) originating from the

same respondents. The MTMMmatrix is a particular arrange-

ment of all the construct measures’ correlations. Campbell and

Fiske (1959) distinguish between four types of correlations,

two of which are relevant for discriminant validity assessment.

First, the monotrait-heteromethod correlations quantify the

relationships between two measurements of the same con-

struct by means of different methods (i.e., items). Second,

the heterotrait-heteromethod correlations quantify the rela-

tionships between two measurements of different constructs

bymeans of different methods (i.e., items). Figure 4 visualizes

the structuring of these correlations types by means of a small

example (Fig. 3) with two constructs (ξ1 and ξ2) measured

with three items each (x1 to x3 and x4 to x6). Since the MTMM

matrix is symmetric, only the lower triangle needs to be

considered. The monotrait-heteromethod correlations subpart

includes the correlations of indicators that belong to the same

construct. In our example, these are the correlations between

the indicators x1 to x3 and between the indicators x4 to x6, as

the two triangles in Fig. 4 indicate. The heterotrait-

heteromethod correlations subpart includes the correlations

between the different constructs’ indicators. In the example

in Fig. 4, the heterotrait-heteromethod correlations subpart

Fig. 2 Population model

(one-factor model)

Fig. 3 Estimated model

(two-factor model)
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consists of the nine correlations between the indicators of the

construct ξ1 (i.e., x1 to x3) and those of the construct ξ2 (i.e., x4
to x6), which are indicated by a rectangle.

The MTMMmatrix analysis provides evidence of discrim-

inant validity when the monotrait-heteromethod correlations

are larger than the heterotrait-heteromethod correlations

(Campbell and Fiske 1959; John and Benet-Martínez 2000).

That is, the relationships of the indicators within the same

construct are stronger than those of the indicators across

constructs measuring different phenomena, which implies that

a construct is empirically unique and a phenomenon of interest

that other measures in the model do not capture.

While this rule is theoretically sound, it is problematic in

empirical research practice. First, there is a large potential for

ambiguities. What if the order is not as expected in only a few

incidents? It cannot be ruled out that some heterotrait-

heteromethod correlations exceed monotrait-heteromethod

correlations, although the two constructs do in fact differ

(Schmitt and Stults 1986). Second, one-by-one comparisons

of values in large correlation matrices can quickly become

tedious, which may be one reason for the MTMM matrix

analysis not being a standard approach to assess discriminant

validity in variance-based SEM.

We suggest assessing the heterotrait-monotrait ratio

(HTMT) of the correlations, which is the average of the

heterotrait-heteromethod correlations (i.e., the correlations of

indicators across constructs measuring different phenomena),

relative to the average of the monotrait-heteromethod correla-

tions (i.e., the correlations of indicators within the same con-

struct). Since there are two monotrait-heteromethod

submatrices, we take the geometric mean of their average

correlations. Consequently, the HTMT of the constructs

ξi and ξj with, respectively, Ki and Kj indicators can be

formulated as follows:

HTMTij ¼
1

K iK j

X

g¼1

KiX

h¼1

K j

rig;jh

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

average

heterotrait−

heteromethod

�
2

K i K i−1ð Þ
⋅
XKi−1

g¼1

X

h¼gþ1

K i

rig;ih⋅
2

K j K j−1
� � ⋅

XK j−1

g¼1

X

h¼gþ1

K j

rjg;jh

 !1
2

:

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

geometric mean of the average monotrait−heteromethod
correlation of construct ξi and the average

monotrait−heteromethod correlation of construct ξ j

ð6Þ

In essence, as suggested by Nunnally (1978) and

Netemeyer et al. (2003), the HTMT approach is an estimate

of the correlation between the constructs ξi and ξj (see the

Appendix for the derivation), which parallels the disattenuated

construct score correlation. Technically, the HTMT provides

two advantages over the disattenuated construct score corre-

lation: The HTMT does not require a factor analysis to obtain

factor loadings, nor does it require the calculation of construct

scores. This allows for determining the HTMTeven if the raw

data is not available, but the correlation matrix is.

Furthermore, HTMT builds on the available measures and

data and—contrary to the standard MTMM approach—does

not require simultaneous surveying of the same theoretical

concept with alternative measurement approaches. Therefore,

this approach does not suffer from the standard MTMM

approach’s well-known issues regarding data requirements

and parallel measures (Schmitt 1978; Schmitt and Stults

1986).

Because the HTMT is an estimate of the correlation be-

tween the constructs ξi and ξj, its interpretation is straightfor-

ward: if the indicators of two constructs ξi and ξj exhibit an

HTMT value that is clearly smaller than one, the true correla-

tion between the two constructs is most likely different from

one, and they should differ. There are two ways of using the

HTMT to assess discriminant validity: (1) as a criterion or (2)

as a statistical test. First, using the HTMT as a criterion

involves comparing it to a predefined threshold. If the value

of the HTMT is higher than this threshold, one can conclude

that there is a lack of discriminant validity. The exact threshold

level of the HTMT is debatable; after all, “when is a correla-

tion close to one”? Some authors suggest a threshold of 0.85

(Clark andWatson 1995; Kline 2011), whereas others propose

a value of 0.90 (Gold et al. 2001; Teo et al. 2008). In the

remainder of this paper, we use the notations HTMT.85 and

HTMT.90 in order distinguish between these two absolute

thresholds for the HTMT. Second, the HTMT can serve as

Table 2 Sensitivity of traditional

approaches to assessing discrimi-

nant validity

Approach GSCA PLS Regression with summed scales

Fornell-Larcker criterion 10.66 % 14.59 % 7.76 %

Cross-loadings 8.78 % 0.00 % 0.03 %
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the basis of a statistical discriminant validity test (which we

will refer to as HTMTinference). The bootstrapping procedure

allows for constructing confidence intervals for the HTMT, as

defined in Eq. 6, in order to test the null hypothesis

(H0: HTMT ≥ 1) against the alternative hypothesis (H1:

HTMT < 1).7 A confidence interval containing the value one

(i.e., H0 holds) indicates a lack of discriminant validity.

Conversely, if the value one falls outside the interval’s range,

this suggests that the two constructs are empirically distinct.

As Shaffer (1995, p. 575) notes, “[t]esting with confidence

intervals has the advantage that they give more information by

indicating the direction and something about the magnitude of

the difference or, if the hypothesis is not rejected, the power of

the procedure can be gauged by the width of the interval.”

In real research situations with multiple constructs, the

HTMTinference analysis involves the multiple testing prob-

lem (Miller 1981). Thus, researchers must control for an

inflation of Type I errors resulting from applying multiple

tests to pairs of constructs. That is, discriminant validity

assessment using HTMTinference needs to adjust the upper

and lower bounds of the confidence interval in each test to

maintain the familywise error rate at a predefined α level

(Anderson and Gerbing 1988). We use the Bonferroni

adjustment to assure that the familywise error rate of

HTMTinference does not exceed the predefined α level in

all the (J–1) J/2 (J = number of latent variables) tests. The

Bonferroni approach does not rely on any distributional

assumptions about the data, making it particularly suitable

in the context of variance-based SEM techniques such as

PLS (Gudergan et al. 2008). Furthermore, Bonferroni is a

rather conservative approach to maintain the familywise

error rate at a predefined level (Hochberg 1988; Holm

1979). Its implementation therefore also renders

HTMTinference more conservative in terms of its sensitivity

assessment (compared to other multiple testing ap-

proaches), which seems warranted given the Fornell-

Larcker criterion and the cross-loadings’ poor perfor-

mance in the previous simulation study.

Comparing the approaches by means of a computational

experiment

Objectives

To examine the different approaches’ efficacy for estab-

lishing discriminant validity, we conduct a second Monte

Carlo simulation study. The aims of this study are (1) to

shed further light on the performance of the Fornell-

Larcker criterion and the cross-loadings in alternative

model settings and (2) to evaluate the newly proposed

HTMT criteria’s efficacy for assessing discriminant va-

lidity vis-à-vis traditional approaches. We measure the

approaches’ performance by means of their sensitivity

and specificity (Macmillan and Creelman 2004). The

sensitivity, as introduced before, quantifies each

approach’s ability to detect a lack of discriminant valid-

ity if two constructs are identical. The specificity indi-

cates how frequently an approach will signal discrimi-

nant validity if the two constructs are empirically dis-

tinct. Both sensitivity and specificity are desirable char-

acteristics and, optimally, an approach should yield high

values in both measures. In real research situations, how-

ever, it is virtually impossible to achieve perfect sensi-

tivity and perfect specificity simultaneously due to, for

example, measurement or sampling errors. Instead, ap-

proaches with a higher sensitivity will usually have a

lower specificity and vice versa. Researchers thus face a

trade-off between sensitivity and specificity, and need to

find a find a balance between the two (Macmillan and

Creelman 2004).

7 Strictly speaking, one should assess the absolute value of the HTMT,

because a correlation of −1 implies a lack of discriminant validity, too.

Fig. 4 An example of a reduced

MTMM matrix
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Experimental design and analysis

The design of the Monte Carlo simulation was motivated by

the objective to define models that (1) allow for the assess-

ment of approaches’ sensitivity and specificity with regard to

detecting a lack of discriminant validity and (2) resemble set-

ups commonly encountered in applied research (Paxton et al.

2001). In line with Rönkkö and Evermann (2013), as well as

Henseler et al. (2014), the simulation study’s population mod-

el builds on a two-construct model, as shown in Fig. 3.

Drawing on the results of prior PLS reviews (e.g., Hair et al.

2012a; Ringle et al. 2012), we vary the indicator loading

patterns to allow for (1) different levels of the AVE and (2)

varying degrees of heterogeneity between the loadings.

Specifically, we consider four loading patterns for each of

the two constructs:

1. A homogenous pattern of loadings with higher AVE:

λ11 ¼ λ12 ¼ λ13 ¼ λ21 ¼ λ22 ¼ λ23 ¼ :90;

2. A homogenous pattern of loadings with lower AVE:

λ11 ¼ λ12 ¼ λ13 ¼ λ21 ¼ λ22 ¼ λ23 ¼ :70;

3. A more heterogeneous pattern of loadings with lower

AVE:

λ11 ¼ λ21 ¼ :60;λ12 ¼ λ22 ¼ :70;λ13 ¼ λ23 ¼ :80;

4. A more heterogeneous pattern of loadings with lower

AVE:

λ11 ¼ λ21 ¼ :50;λ12 ¼ λ22 ¼ :70;λ13 ¼ λ23 ¼ :90:

Next, we examine how different sample sizes—as routine-

ly assumed in simulation studies in SEM in general (Paxton

et al. 2001) and in variance-based SEM in particular (e.g.,

Reinartz et al. 2009; Vilares and Coelho 2013)—would influ-

ence the approaches’ efficacy. We consider sample sizes of

100, 250, 500, and 1,000.

Finally, in order to examine the sensitivity and

specificity of the approaches, we vary the inter-

construct correlations. First, to examine their sensitivi-

ty, we consider a situation in which the two constructs

a situation in which an analyst mistakenly models two

constructs, although they actually form a single con-

struct. Optimally, all the approaches should indicate a

lack of discriminant validity under this condition.

In line with Vilares et al. (2010), as well as Vilares

and Coelho (2013), we generate 1,000 datasets for each

combination of design factors. Hence, the simulation

study draws on a total number of 816,000 simulation

runs: 4 levels of loading patterns times 4 levels of

sample sizes times 51 levels of inter-construct correla-

tions times 1,000 datasets per condition. In each simu-

lation run, we apply the following approaches to assess

the discriminant validity:

1. The Fornell-Larcker criterion: Is the squared correlation

between the two constructs greater than any of the two

constructs’ AVE?

2. The cross-loadings: Does any indicator correlate more

strongly with the other constructs than with its own

construct?

3. The partial cross-loadings: Is an indicator significantly

explained by a construct that it is not intended to

measure when the actual construct’s influence is

partialed out?

4. The HTMT.85 criterion: Is the HTMT criterion greater

than 0.85?

5. The HTMT.90 criterion: Is the HTMT criterion greater

than 0.90?

6. The statistical HTMTinference test: Does the 90% normal

bootstrap confidence interval of the HTMT criterion with

a Bonferroni adjustment include the value one?8

In the simulation study, we focus on PLS, which is

regarded as the “most fully developed and general system”

(McDonald 1996, p. 240) of the variance-based SEM

techniques. Furthermore, the initial simulation study

showed that PLS is the variance-based SEM technique

with the highest sensitivity (i.e., 14.59% in respect of

the Fornell-Larcker criterion; Table 2). All calculations

were carried out with R 3.1.0 (R Core Team 2014) and

we applied PLS as implemented in the semPLS package

(Monecke and Leisch 2012).

8 Since HTMTinference relies on one-tailed tests, we use the 90% bootstrap

confidence interval in order to warrant an error probability of five percent.
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are perfectly correlated (φ=1.0). This condition mirrors

Second, to examine the approaches’ specificity, we de-

crease the inter-construct correlations in 50 steps of 0.02

from φ=1.00 to φ=0.00, covering the full range of

absolute correlations. The smaller the true inter-

construct correlation φ, the less an approach is expected

to indicate a lack of discriminant validity; that is, we

anticipate that the approaches’ specificity will increase

with lower levels of φ.



Sensitivity results

With respect to each sensitivity analysis situation, we report

each approach’s relative frequency to indicate the lack of

discriminant validity if the true correlation between the con-

structs is equal to one (Table 3). This frequency should be

100%, or at least very close to this percentage.

Extending our previous findings, the results clearly show

that traditional approaches used to assess discriminant validity

perform very poorly; this is also true in alternative model

settings with different loading patterns and sample sizes. The

most commonly used approach, the Fornell-Larcker criterion,

fails to identify discriminant validity issues in the vast major-

ity of cases (Table 3). It only detects a lack of discriminant

validity in more than 50% of simulation runs in situations with

very heterogeneous loading patterns (i.e., 0.50 /0.70 /0.90)

and sample sizes of 500 or less. With respect to more homo-

geneous loading patterns, the Fornell-Larcker criterion yields

much lower sensitivity rates, particularly when the AVE is

low.

The analysis of the cross-loadings fails to identify any

discriminant validity problems, as this approach yields sensi-

tivity values of 0% across all the factor level combinations

(Table 3). Hence, the comparison of cross-loadings does not

provide a basis for identifying discriminant validity issues.

However, the picture is somewhat different regarding the

partial cross-loadings. The sensitivity remains unacceptably

low in respect of homogeneous loadings patterns, no matter

what the sample size is. However, the sensitivity improves

substantially in respect of heterogeneous loadings patterns.

The sample size clearly matters for the partial cross-loadings

approach. The larger the sample size, the more sensitive the

partial cross-loadings are regarding detecting a lack of dis-

criminant validity.

In contrast to the other approaches, the two absolute

HTMT.85 and HTMT.90 criteria, as well as HTMTinference,
yield sensitivity levels of 95% or higher under all simulation

conditions (Table 3). Because of its lower threshold, HTMT.85
slightly outperforms the other two approaches with an average

sensitivity rate of 99.90% compared to the 99.45% of

HTMT.90 and the 97.01% of HTMTinference. In general, all

three HTMT approaches detect discriminant validity issues

reliably.

Specificity results

The specificity results are depicted in Fig. 5 (for homogeneous

loading patterns) and Fig. 6 (for heterogeneous loadings pat-

terns). The graphs visualize the frequency with which each

approach indicates that the two constructs are distinct regard-

ing varying levels of inter-construct correlations, loading pat-

terns, and sample sizes. The discussion focuses on the three

HTMT-based approaches, as the sensitivity analysis has al-

ready rendered the Fornell-Larcker criterion and the

Table 3 Results: Sensitivity of approaches to assess discriminant validity

Loading pattern Sample size Approach to assess discriminant validity

Fornell-Larcker Cross-loadings Partial cross-loadings HTMT.85 HTMT.90 HTMTinference

0.90/0.90/0.90 100 42.10 % 0.00 % 16.70 % 100.00 % 100.00 % 96.30 %

250 27.30 % 0.00 % 15.30 % 100.00 % 100.00 % 96.00 %

500 15.40 % 0.00 % 17.70 % 100.00 % 100.00 % 95.50 %

1,000 4.80 % 0.00 % 19.40 % 100.00 % 100.00 % 96.00 %

0.70/0.70/0.70 100 6.90 % 0.00 % 5.10 % 99.10 % 95.90 % 96.00 %

250 0.30 % 0.00 % 5.10 % 100.00 % 99.90 % 95.70 %

500 0.00 % 0.00 % 5.60 % 100.00 % 100.00 % 94.90 %

1,000 0.00 % 0.00 % 6.40 % 100.00 % 100.00 % 95.50 %

0.60/0.70/0.80 100 13.70 % 0.00 % 39.60 % 99.40 % 96.90 % 96.60 %

250 2.30 % 0.00 % 82.80 % 100.00 % 100.00 % 96.80 %

500 0.20 % 0.00 % 99.50 % 100.00 % 100.00 % 97.10 %

1,000 0.00 % 0.00 % 100.00 % 100.00 % 100.00 % 98.40 %

0.50/0.70/0.90 100 64.60 % 0.00 % 99.50 % 99.90 % 98.50 % 98.20 %

250 59.50 % 0.00 % 100.00 % 100.00 % 100.00 % 99.40 %

500 53.90 % 0.00 % 100.00 % 100.00 % 100.00 % 99.80 %

1,000 42.10 % 0.00 % 100.00 % 100.00 % 100.00 % 100.00 %

Average 20.82 % 0.00 % 50.79 % 99.90 % 99.45 % 97.01 %

The correlation between the two constructs is 1.0; consequently, one expects discriminant validity problems to be detected with a frequency close to

100% regarding all the criteria in all the analyzed constellations
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Fig. 5 Specificity of approaches to assess discriminant validity in homogeneous loading patterns
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Fig. 6 Specificity of approaches to assess discriminant validity in heterogeneous loading patterns
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assessment of the (partial) cross-loadings ineffective (we nev-

ertheless plotted their specificity rates for completeness sake).

All HTMTapproaches show consistent patterns of decreas-

ing specificity rates at higher levels of inter-construct correla-

tions. As the correlations increase, the constructs’ distinctive-

ness decreases, making it less likely that the approaches will

indicate discriminant validity. Furthermore, the three ap-

proaches show similar results patterns for different loadings,

sample sizes, and inter-construct correlations, albeit at differ-

ent levels. For example, ceteris paribus, when loading patterns

are heterogeneous, specificity rates decrease at lower levels of

inter-construct correlations compared to conditions with ho-

mogeneous loading patterns. A more detailed analysis of the

results shows that all three HTMTapproaches have specificity

rates of well above 50% with regard to inter-construct corre-

lations of 0.80 or less, regardless of the loading patterns and

sample sizes. At inter-construct correlations of 0.70, the spec-

ificity rates are close to 100% in all instances. Thus, neither

approach mistakenly indicates discriminant validity issues at

levels of inter-construct correlations, which most researchers

are likely to consider indicative of discriminant validity.

Comparing the approaches shows that HTMT.85 always

exhibits higher or equal sensitivity, but lower or equal speci-

ficity values compared to HTMT.90. That is, HTMT.85 is more

likely to indicate a lack of discriminant validity, an expected

finding considering the criterion’s lower threshold value. The

difference between these two approaches becomes more pro-

nounced with respect to larger sample sizes and stronger

loadings, but it remains largely unaffected by the degree of

heterogeneity between the loadings.

Compared to the two threshold-based HTMT approaches,

HTMTinference generally yields much higher specificity values,

thus constituting a rather liberal approach to assessing dis-

criminant validity, as it is more likely to indicate two con-

structs as distinct, even at high levels of inter-construct corre-

lations. This finding holds especially in conditions where

loadings are homogeneous and high (Fig. 5). Here,

HTMTinference yields specificity rates of 80% or higher in

terms of inter-construct correlations as high as 0.95, which

many researchers are likely to view as indicative of a lack of

discriminant validity. Exceptions occur in sample sizes of 100

and with lower AVE values. Here, HTMT.90 achieves higher

sensitivity rates compared to HTMTinference. However, the

differences in specificity between the two criteria are marginal

in these settings.

Empirical example

To illustrate the approaches, we draw on the American

Customer Satisfaction Index (ACSI) model (Anderson and

Fornell 2000; Fornell et al. 1996), using empirical data from

the first quarter of 1999 with N=10,417 observations after

excluding cases with missing data from the indicators used for

model estimation (case wise deletion). In line with prior

studies (Ringle et al. 2010, 2014) that used this dataset in their

ACSI model examples, we rely on a modified version of the

ACSI model without the constructs complaints (dummy-

coded indicator) and loyalty (more than 80% of the cases for

this construct measurement are missing). Figure 7 shows the

reduced ACSI model and the PLS results.

The reduced ACSI model consists of the four reflectively

measured constructs: customer satisfaction (ACSI), customer

expectations (CUEX), perceived quality (PERQ), and per-

ceived value (PERV). The evaluation of the PLS results meets

the relevant criteria (Chin 1998, 2010; Götz et al. 2010; Hair

et al. 2012a), which Ringle et al. (2010), using this example,

presented in detail. According to the Fornell-Larcker criterion

and the cross-loadings (Table 4), the constructs’ discriminant

validity has been established: (1) the square root of each

construct’s AVE is higher than its correlation with another

construct, and (2) each item loads highest on its associated

construct. Table 4 also lists the significant (p<0.05) partial

cross-loadings. Two thirds of them are significant. This rela-

tively high percentage is not surprising, considering that even

marginal correlations (e.g., an absolute value of 0.028) be-

come significant as a result of the high sample size. Hence,

and in line with the approach’s sensitivity results (Table 3), the

multitude of significant partial cross-loadings seems to sug-

gest serious problems with respect to discriminant validity.

Next, we compute the HTMT criteria for each pair of

constructs on the basis of the item correlations (Table 5) as

defined in Eq. 6.9 The computation yields values between

0.53 in respect of HTMT(CUEX,PERV) and 0.95 in respect

of HTMT(ACSI,PERQ) (Table 6). Comparing these results

with the threshold values as defined in HTMT.85 gives rise to

concern, because two of the six comparisons (ACSI and

PERQ; ACSI and PERV) violate the 0.85 threshold.

However, in the light of the conceptual similarity of the

ACSI model’s constructs, the use of a more liberal criterion

for specificity seems warranted. Nevertheless, even when

using HTMT.90 as the standard, one comparison (ACSI and

PERQ) violates this criterion. Only the use of HTMTinference
suggests that discriminant validity has been established.

This empirical example of the ACSI model and the use of

original data illustrate a situation in which the classical criteria

do not indicate any discriminant validity issues, whereas the

two more conservative HTMT criteria do. While it is beyond

this study’s scope to discuss the implications of the results for

model design, they give rise to concern regarding the empirical

distinctiveness of the ACSI and PERQ constructs.

9 An Excel sheet illustrating the computation of the HTMT values can be

downloaded from http://www.pls-sem.com/jams/htmt_acsi.xlsx.
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Summary and discussion

Key findings and recommendations

Our results clearly show that the two standard approaches to

assessing the discriminant validity in variance-based SEM—

the Fornell-Larcker criterion and the assessment of cross-

loadings—have an unacceptably low sensitivity, which means

that they are largely unable to detect a lack of discriminant

validity. In particular, the assessment of the cross-loadings

completely fails to detect discriminant validity issues.

Similarly, the assessment of partial cross-loadings—an ap-

proach which has not been used in variance-based SEM—

proves inefficient in many settings commonly encountered in

applied research. More precisely, the criterion only works well

in situations with heterogeneous loading patterns and high

sample sizes.

As a solution to this critical issue, we present a new set of

criteria for discriminant validity assessment in variance-based

SEM. The new HTMTcriteria, which are based on a compar-

ison of the heterotrait-heteromethod correlations and the

monotrait-heteromethod correlations, identify a lack of dis-

criminant validity effectively, as evidenced by their high sen-

sitivity rates.

Themain difference between the HTMTcriteria lies in their

specificity. Of the three approaches, HTMT.85 is the most

conservative criterion, as it achieves the lowest specificity

rates of all the simulation conditions. This means that

HTMT.85 can pint to discriminant validity problems in re-

search situations in which HTMT.90 and HTMTinference indi-

cate that discriminant validity has been established. In con-

trast, HTMTinference is the most liberal of the three newly

proposed approaches. Even if two constructs are highly, but

not perfectly, correlated with values close to 1.0, the criterion

is unlikely to indicate a lack of discriminant validity, particu-

larly when (1) the loadings are homogeneous and high or (2)

the sample size is large. Owing to its higher threshold,

HTMT.90 always has higher specificity rates than HTMT.85.

PERQ
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Fig. 7 Reduced ACSI model and

PLS results

Table 4 Fornell-Larcker criterion results and cross loadings

ACSI CUEX PERQ PERV

Fornell-Larcker criterion

ACSI 0.899

CUEX 0.495 0.781

PERQ 0.830 0.556 0.860

PERV 0.771 0.417 0.660 0.942

Cross-loadings

acsi1 0.926 0.489 0.826 0.757

acsi2 0.903 0.398 0.729 0.676

acsi3 0.867 0.447 0.672 0.638

exp1 0.430 0.845 0.471 0.372

exp2 0.429 0.848 0.474 0.356

exp3 0.283 0.629 0.346 0.229

qual1 0.802 0.561 0.916 0.640

qual2 0.780 0.486 0.919 0.619

qual3 0.515 0.364 0.731 0.408

value1 0.751 0.418 0.663 0.948

value2 0.699 0.364 0.575 0.935

Significant (p<0.05) partial cross-loadings

acsi1 0.702 n.s. 0.178 0.098

acsi2 0.996 −0.057 −0.037 −0.044

acsi3 1.037 0.060 −0.176 −0.071

exp1 n.s. 0.841 −0.029 0.029

exp2 0.028 0.846 n.s. n.s.

exp3 −0.063 0.638 0.064 −0.031

qual1 0.122 0.068 0.770 n.s.

qual2 0.058 −0.040 0.891 n.s.

qual3 −0.277 −0.047 0.999 n.s.

value1 n.s. n.s. 0.067 0.906

value2 n.s. n.s. −0.074 0.982

The results marked in bold indicate where the highest value is expected;

n.s., not significant
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Compared to HTMTinference, the HTMT.90 criterion yields

much lower specificity rates in the vast majority of conditions.

We find that none of the HTMTcriteria indicates discriminant

validity issues for inter-construct correlations of 0.70 or less.

This outcome of our specificity analysis is important, as it

shows that neither approach points to discriminant validity

problems at comparably low levels of inter-construct

correlations.

Based on our findings, we strongly recommend drawing on

the HTMT criteria for discriminant validity assessment in

variance-based SEM. The actual choice of criterion depends

on the model set-up and on how conservative the researcher is

in his or her assessment of discriminant validity. Take, for

example, the technology acceptance model and its variations

(Davis 1989; Venkatesh et al. 2003), which include the con-

structs intention to use and the actual use. Although these

constructs are conceptually different, they may be difficult to

distinguish empirically in all research settings. Therefore, the

choice of a more liberal HTMTcriterion in terms of specificity

(i.e., HTMT.90 or HTMTinference, depending on the sample

size) seems warranted. Conversely, if the strictest standards

are followed, this requires HTMT.85 to assess discriminant

validity.

Guidelines for treating discriminant validity problems

To handle discriminant validity problems, researchers may

follow different routes, which we illustrate in Fig. 8. The

first approach retains the constructs that cause discrimi-

nant validity problems in the model and aims at increasing

the average monotrait-heteromethod correlations and/or

decreasing the average heteromethod-heterotrait correla-

tions of the constructs measures. When researchers seek

to decrease the HTMT by increasing a construct’s average

monotrait-heteromethod correlations, they may eliminate

items that have low correlations with other items measur-

ing the same construct. Likewise, heterogeneous sub-

dimensions in the construct’s set of items could also

deflate the average monotrait-heteromethod correlations.

In this case, researchers may consider splitting the con-

struct into homogenous sub-constructs, if the measure-

ment theory supports this step. These sub-constructs then

replace the more general construct in the model. However,

researchers need to re-evaluate the newly generated con-

structs’ discriminant validity with all the opposing con-

structs in the model. When researchers seek to decrease

the average heteromethod-heterotrait correlations, they

Table 5 Item correlation matrix
acsi1 acsi2 acsi3 cuex1 cuex2 cuex3 perq1 perq2 perq3 perv1 perv2

acsi1 1.000

acsi2 0.770 1.000

acsi3 0.701 0.665 1.000

cuex1 0.426 0.339 0.393 1.000

cuex2 0.423 0.345 0.385 0.574 1.000

cuex3 0.274 0.235 0.250 0.318 0.335 1.000

perq1 0.797 0.705 0.651 0.517 0.472 0.295 1.000

perq2 0.779 0.680 0.635 0.406 0.442 0.268 0.784 1.000

perq3 0.512 0.460 0.410 0.249 0.277 0.362 0.503 0.533 1.000

perv1 0.739 0.656 0.622 0.373 0.359 0.230 0.645 0.619 0.411 1.000

perv2 0.684 0.615 0.579 0.326 0.310 0.200 0.556 0.543 0.354 0.774 1.000

Table 6 HTMT results

ACSI CUEX PERQ PERV

ACSI

CUEX
.63

CI.900 [0.612;0.652]

PERQ
.95

CI.900 [0.945;0.958]

.73

CI.900 [0.713;0.754]

PERV
.87

CI.900 [0.865;0.885]

.53

CI.900 [0.511;0.553]

.76

CI.900 [0.748;0.774]

The two results marked in bold indicate discriminant validity problems according to the HTMT.85 criterion, while the one problem regarding the

HTMT.90 criterion is shaded grey; HTMTinference does not indicate discriminant validity problems in this example
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may consider (1) eliminating items that are strongly cor-

related with items in the opposing construct or (2)

reassigning these indicators to the opposing construct, if

theoretically plausible.

It is important to note that the elimination of items

purely on statistical grounds can have adverse conse-

quences for the construct measures’ content validity

(e.g., Hair et al. 2014). Therefore, researchers should

carefully scrutinize the scales (either based on prior

research results, or on those from a pretest in case of

the newly developed measures) and determine whether

all the construct domain facets have been captured. At

least two expert coders should conduct this judgment

independently to ensure a high degree of objectivity

(Diamantopoulos et al. 2012).

The second approach to treat discriminant validity prob-

lems aims at merging the constructs that cause the problems

into a more general construct. Again, measurement theory

must support this step. In this case, the more general con-

struct replaces the problematic constructs in the model and

researchers need to re-evaluate the newly generated con-

struct’s discriminant validity with all the opposing con-

structs. This step may entail modifications to increase a

construct’s average monotrait-heteromethod correlations

and/or to decrease the average heteromethod-heterotrait cor-

relations (Fig. 8).

Step 1

Selection of the HTMT criterion

Step 2

Discriminant validity assessment 

using the HTMT criterion 

Criterion has been selected

Final

result

Discriminant validity 

has been established

Step 3

Establish discriminant validity 

while keeping the problematic constructs

Discriminant validity 

has not been established

Increase the 

monotrait-heteromethod 

correlations

Decrease the 

heterotrait-heteromethod

correlations

Final

result

Discriminant validity 

has been established

Step 4

Establish discriminant validity 

by merging the problematic constructs and replacing 

them with the new (merged) construct

Discriminant validity 

has not been established

Increase the 

monotrait-heteromethod 

correlations of the new 

construct

Decrease the 

heterotrait-heteromethod

correlations of the new 

construct

Final

result

Discriminant validity 

has been established

Discard model

Discriminant validity 

has not been established

Fig. 8 Guidelines for discriminant validity assessment in variance-based SEM
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Further research and concluding remarks

Our research offers several promising avenues for future re-

search. To begin with, many researchers view variance-based

SEM as the natural approach when the model includes forma-

tively measured constructs (Chin 1998; Fornell and Bookstein

1982; Hair et al. 2012a). Obviously, the discriminant validity

concept is independent of a construct’s concrete

operationalization. Constructs that are conceptually different

should also be empirically different, no matter how they have

been measured, and no matter the types of epistemic relation-

ships between a construct and its indicators. However, just like

the Fornell-Larcker criterion and the (partial) cross-loadings,

the HTMT-based criteria assume reflectively measured con-

structs. Applying them to formatively measured constructs is

problematic, because neither the monotrait-heteromethod nor

the heterotrait-heteromethod correlations of formative indica-

tors are indicat ive of discr iminant val idi ty. As

Diamantopoulos and Winklhofer (2001, p. 271) point out,

“there is no reason that a specific pattern of signs (i.e., positive

versus negative) or magnitude (i.e., high versus moderate

versus low) should characterize the correlations among for-

mative indicators.”

Prior literature gives practically no recommendations on

how to assess the discriminant validity of formatively mea-

sured constructs. One of the few exceptions is the research by

Klein and Rai (2009), who suggest examining the cross-

loadings of formative indicators. Analogous to their reflective

counterparts, formative indicators should correlate more high-

ly with their composite construct score than with the compos-

ite score of other constructs. However, considering the poor

performance of cross-loadings in our study, its use in forma-

tive measurement models appears questionable. Against this

background, future research should seek alternative means to

consider formatively measured constructs when assessing dis-

criminant validity.

Apart from continuously refining, extending, and testing

the HTMT-based validity assessment criteria for variance-

based SEM (e.g., by evaluating their sensitivity to different

base response scales, inducing variance basis differences and

differential response biases), future research should also as-

sess whether this study’s findings can be generalized to

covariance-based SEM techniques, or the recently proposed

consistent PLS (Dijkstra 2014; Dijkstra and Henseler 2014a,

b), which mimics covariance-based SEM. Specifically, the

Fornell-Larcker criterion is a standard approach to assess dis-

criminant validity in covariance-based SEM (Shah and

Goldstein 2006; Shook et al. 2004). Thus, it is necessary to

evaluate whether this criterion suffers from the same limita-

tions in a factor model setting.

In the light of the Fornell-Larcker criterion and the cross-

loadings’ poor performance, researchers should carefully re-

consider the results of prior variance-based SEM analyses.

Failure to properly disclose discriminant validity problems

may result in biased estimations of structural parameters and

inappropriate conclusions about the hypothesized relation-

ships between constructs. Revisiting the analysis results of

prominent models estimated by means of variance-based

SEM, such as the ACSI and the TAM, seems warranted. In

doing so, researchers should analyze the different sources of

discriminant validity problems and apply adequate procedures

to treat them (Fig. 8).

It is important to note, however, that discriminant

validity is not exclusively an empirical means to validate

a model. Theoretical foundations and arguments should

provide reasons for constructs correlating or not (Bollen

and Lennox 1991). According to the holistic construal

process (Bagozzi and Phillips 1982; Bagozzi 1984), per-

haps the most influential psychometric framework for

measurement development and validation (Rigdon

2012), constructs are not necessarily equivalent to the

theoretical concepts at the center of scientific research:

a construct should rather be viewed as “something cre-

ated from the empirical data which is intended to enable

empirical testing of propositions regarding the concept”

(Rigdon 2014, pp. 43–344). Consequently, any derivation

of HTMT thresholds is subjective. On the other hand,

concepts are partly defined by their relationships with

other concepts within a nomological network, a system

of law-like relationships discovered over time and which

anchor each concept. Therefore, hindsight failure to es-

tablish discriminant validity between two constructs does

not necessarily imply that the underlying concepts are

identical, especially when follow-up research provides

continued support for differing relationships with the

antecedent and the resultant concepts (Bagozzi and

Phillips 1982). Nevertheless, our research clearly shows

that future research should pay greater attention to the

empirical validation of discriminant validity to ensure the

rigor of theories’ empirical testing and validation.
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Appendix

In this Appendix we demonstrate that the heterotrait-monotrait

ratio of correlations (HTMT) as presented in the main manu-

script is an estimator of the inter-construct correlation
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Let xi1,…,xiKi be the Ki reflective indicators of construct ξi,

and xj1,…,xjKj the Kj reflective indicators of construct ξj. The

empirical correlation matrix R is then

R ¼

1 ri1;i2 … ri1;iK i
ri1; j1 ri1; j2 … ri1; jK j

ri2;i1 1 … ri2;iK i
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If the reflective measurement model (i.e., a common factor

model) holds true for both constructs, the implied correlation

matrix Σ is then

Σ¼
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We depart from the notion that Cronbach’s alpha is

α ¼
K ⋅r�

1þ K−1ð Þ⋅r�
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Moreover, the composite reliability ρc, is:
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If a construct’s indicators are tau-equivalent, Cronbach’s

alpha is a consistent estimate of a set of indicators just like the

composite reliability ρc, which implies that:
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The HTMTij of constructs ξi and ξj as introduced in the

manuscript is then:
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