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ABSTRACT

The purpose of this paper is to develop a new methodology for analyzing astronomical data, in particular, one of the light curves obtained

in the PHEMU campaign in 1997, where the mutual phenomena between Jupiter and its satellites were observed from the Earth due to the

coincidence of the equatorial plane of Jupiter and the orbit plane of the Earth. The more specific aim of this study is to determine the times of

the beginning and the end of the phenomena, and the moment when the recorded light flux was at a minimum.

The techniques we applied were based on the wavelet theory, which allows us to study a signal from its approximations and details at different

scales. Before applying the designed algorithm to our experimental data, we considered a synthetic light curve in order to check the reliability

of our method. It should be mentioned that the results are not relevant from the astronomical point of view, since no corrections for albedo or

illumination were applied to the recorded data.
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1. Introduction

In the present paper we show how wavelet theory is a useful

tool in analyzing astronomical data, in our case, the study of

the light curve obtained from the eclipse of Europe by the satel-

lite Io in the PHEMU campaign during 1997, when mutual

phenomena among Jupiter and its Galilean satellites Io (J1),

Europe (J2), Ganimedes (J3), and Calisto (J4) were observed.

Every six years, the planes of the orbit of the Earth and

of the equator of Jupiter coincide, so it is possible to observe

from the Earth the interactions taking place among this planet

and these satellites. These phenomena can be divided into two

groups: those where Jupiter and one of its satellites interact,

called classical events, and those that take place between two

of the Galilean satellites, called mutual phenomena. The lack

of atmosphere over these satellites means that data are free of

corrections because of refraction and dispersion.

The importance of studying the interactions among Jupiter

and its Galilean satellites lies in the fact that this system be-

haves like the Solar System. Thus, knowing its dynamics helps

us to understand ours better. The observation campaigns or-

ganized from 1985 for this purpose are called PHEMU cam-

paigns, and observatories all over the world take part in order to

increase the amount of data available for analysis (Arlot 1987).

Our purpose in this paper is to develop a new methodology

for analyzing the data obtained from these events, in particular,

estimating the time of beginning and end of the phenomena,

along with the moment were the registered light flux reaches

its minimum. We will only concentrate on the mathematical

aspect of the data analysis. Instead of the usual polynomial ad-

justment, we propose a method that first consists in removing

the noise from the signal, and then in determining those points

we are interested in by noticing that they correspond to sud-

den changes in the signal behavior. It turns out that the wavelet

basis provides the correct setting for carrying out this program.

To denoise the signal we applied the coherent structure

technique (Mallat 1999) to the wavelet coefficients, which con-

sists of preserving those that satisfy certain conditions and can-

celling the others. The signal is then recovered using these

new filtered coefficients. To estimate the required times, we

designed an algorithm based on the fact that modulus max-

ima wavelet coefficients determine both the isolated singular-

ities and the sudden changes in a signal. The proposed algo-

rithm was first applied to a synthetic curve in order to check its

reliability.

The first three sections of this paper deal with the descrip-

tion of the campaign: some historical background, its objec-

tives, and the equipment used to observe the phenomena.

In the fourth section we detail the way these observations

were carried out. The magnitude to observe is the light flux re-

ceived from the sky, which corresponds to the luminosity of
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the sky background plus the luminosity of the interacting satel-

lites. It allows us to determine the times where the event begins,

when it ends, and the moment when the recorded luminosity is

at its minimum.

The fifth section is about the processing of the data by

means of the wavelet theory. We introduce its basic aspects and

the new point of view it provides, since it allows a signal to

be studied at different scales. The methodology for analyzing

these data is also treated in this section, where wavelets are ap-

plied with two different purposes: to denoise the signal and to

determine the times we are interested in. At the end of the sec-

tion it is shown how this procedure works in studying of the

eclipse of Europe by the satellite Io and results obtained by us-

ing a different wavelet basis are presented. A final discussion

follows in the last section.

2. PHEMU campaigns and their objectives

Due to tie effects and volcanic eruptions, among other factors,

the movement of Jupiter’s satellites constitutes one of the most

difficult problems in celestial mechanics. Measurements dur-

ing mutual events let us determine the spatial position of the

satellites with an accuracy of 100 km, which can sometimes

decrease down to 30 km.

The study of these phenomena began in 1979, but in 1985

the Bureau des longitudes in Paris designed a network of ob-

servatories all over the world with the aim of increasing the

amount of collected data (Arlot et al. 1997). A detailed de-

scription of the observations, as well as the results, can be

found in Arlot et al. (1992). The Royal Naval Observatory at

San Fernando (ROA) took part for the first time in 1997. The

members of the campaign were some observers from the ROA,

from the Mathematics Department of the University of Cádiz,

and from the Astronomy Association in San Fernando.

The goal of these campaigns is to understand the dynam-

ics of the Jovian System from the observation of the events

at different observatories in the world, by detecting the initial

time, the end time and the time of maximum darkness in the

phenomena.

The classical and the mutual phenomena that can occur

are the following: eclipses, where a satellite immerses in the

shadow of Jupiter or another satellite; occultations, when a

satellite disappears and appears behind another one or behind

the planet; and transits, when a satellite passes in front of

Jupiter or another satellite. Both classical or mutual phenom-

ena can be annular, partial, or total (Figs. 1 and 2; Arlot 1997).

3. Equipment

Observations were carried out using a Gauthier Astrograph

set up in the ROA and consisting of a double refractor tele-

scope: with a visual telescope, with a lens of 20 cm aperture

and 360 cm focal distance, and a photographic telescope of two

lenses of 33 cm aperture and 346 cm focal distance.

An RCA-931 photomultiplier was connected to the

analogical-digital card of a computer and put into operation

on the telescope focal plane to register the changes produced

in the light energy of the observed events. One mm matches
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Fig. 1. Geometric configuration: for an observer at T1, the satellite S 1

is occulted by Jupiter; for an observer at T2, satellite S 2 appears to

move across the face of Jupiter, which is defined as a transit; at T3,

satellite S 3 is eclipsed by the cone shadow of Jupiter.
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Fig. 2. Example of: a) partial occultation; b) annular occultation; c) to-

tal occultation.

in the focal plane with 1′′ of the celestial sphere. A link to the

UTC time scale from the Time Department in the ROA was

available to time the records. Due to the astrograph dome, the

minimum altitude for observing Jupiter was 20 deg.

The width of the diaphragm depends on the configura-

tion of the satellites interacting; too wide a diaphragm will

let brightness from other satellites or even from Jupiter pass

through, thereby contaminating the signal and influencing the

results. The diaphragm used for the observations carried out in

San Fernando takes in 59′′ of sky. As a reference point, we can

point out that the observation of a mutual phenomena, using

photoelectric photometry and a diaphragm of 40 cm of wide-

ness, involves an estimated error of 48 km. No filter was used

in the first stage. A preliminary analysis just consisted of plot-

ting the light flux registered versus the integrating time. The

reliability of the data was checked straight away.

4. Observation of the events

The registered flux light is represented in a plot similar to

Fig. 3. Before the event starts and after it ends, the total flux

is the sum of the eclipsed or occulted satellite, the eclipsing or

occulting one, the flux corresponding to the sky background,

and the dark current of the telescope.

Once the event has begun, the light decreases until it

reaches a minimum value. In the occultations, both satellites

blend in a light point that loses part of its brightness until it

reaches the minimum value, whereas in the eclipses, we have

just one satellite in the visual field whose brightness drops by

an amount that depends on the kind of the event (annular, par-

tial or total). After this point, the light flux increases, and it

comes to its initial value at the end of the event, when the in-

teracting satellites move away from each other.

The perfect situation is a curve like the one in Fig. 3, which

is symmetrical with respect to its minimum value and constant



M. E. Ramírez et al.: New data analysis technique to study mutual events 1199

occulted
satellite

occulting
satellite

sky background+
dark current

A

B

C

Time

V
o

lt
a

g
e

Fig. 3. Components of the registered light flux for a total occultation.

Time A matches the beginning of the event, time B the moment of the

minimum flux, and time C the end of the phenomena. For the case of

an eclipse we get a similar curve.

before the phenomenon begins. But several factors like the rel-

ative movements of the satellites, the changes in the sky back-

ground, and the appearance of stars in the visual field make

data move away from this ideal situation. In practice, we get a

cloud of points that is quite different from the theoretical curve,

as shown in Fig. 4.

The sky background and the interacting satellites are regis-

tered before and after the event, as well as several times during

the observation, especially if it occurs at dusk. A reference ob-

ject is taken into account for calibration: in a mutual eclipse,

this is the eclipsing satellite, since it is present in the visual

field during the whole event; in the occultations, if the eclips-

ing satellite is too close or too far from the eclipsed one, both

satellites are observed individually before and after the event,

and during the occultation a third satellite is put in the field as

the reference object.

If this configuration is not possible, we proceeded as fol-

lows: for short events lasting less than 15 min, the reference

object is observed before and after the phenomenon, while for

long phenomena, the telescope is pointed at it every 5 or 10 min

(Arlot 1997). Due to the relative movements of the satellites,

the velocity of monitoring is fixed every night.

Records must be made in advance because events occur a

few seconds before and also some minutes after they are pre-

dicted. In practice this involves differences of many hundreds

or several thousands of km in the position of the satellites.

It is advisable that each point in the curve be timed with

better accuracy than 0.5 s, and the integrating time should not

be higher than 1 or 2 s. In our case, we got a record every 0.84 s

approximately.

According to the predictions, 44 mutual phenomena should

have been visible from San Fernando, but only 24 of them were

recorded due to factors such as bad weather conditions or fail-

ures in the equipment or observers’ errors. Just six of the 24

were kept since they were the only ones that represented an

event clearly: the eclipse of Europe by Io, eclipse of Ganimedes

by Europe, the occultation of Io by Ganimedes, the partial oc-

cultation of Europe by Ganimedes, and the total occultation of

Europe by Ganimedes (Fig. 4).

It is observed that events (d) and (f) could not be completed,

since the presence of clouds made the register of the whole

phenomenon imposible. Otherwise plots (b), (c), and (e) are

similar to the expected curve. Thus we will concentrate only

on the eclipse of Europe by Io, in (a).

5. Data processing

As stated before, the main purpose of our study is to detect the

times that match the beginning of the event tini, the moment of

minimum light flux tmin, and the end of the event tend.

In order to do so, we first eliminate the noise in the data by

means of the coherent structure procedure, which will be ex-

plained in what follows. Then we search for the maxima curves,

to detect the sudden changes in the signal, which should corre-

spond to the three instants of time we are trying to estimate.

Both techniques are based on the wavelet theory, and the ef-

fectiveness of the method is proved by applying our algorithm

to a synthetic light curve designed for this purpose. Let us first

begin by briefly introducing some background and later on we

will analyze the steps of the filtering deeply and search for max-

ima curves.

5.1. Wavelet background

Through over the years, Fourier analysis has been the main tool

for signal processing. The Fourier transform is reversible in the

sense, that under certain conditions, it lets us move from the

study in the time domain to one in the frequency domain, al-

though studying of both domains simultaneously is not pos-

sible, as the Heisenberg principle asserts. In fact, the Fourier

transform informs about the frequencial components in the sig-

nal, but does not show when they occur.

The basis of the wavelet theory is the existence of two func-

tions ϕ and ψ, known as father and mother wavelet, respec-

tively. By the operations of translation and dilation, we can, on

one hand, analyze the time domain since we translate the func-

tions ϕ and ψ in time, and on the other hand, the dilation or

contraction of their time support implies the contraction or di-

lation of its frequencial support, respectively, which allows us

to perform a study in the frequency domain. The importance of

these functions comes from the possibility of obtaining a basis

of the space of functions of finite energy L2(R). Thus, any func-

tion f ∈ L2(R) can be written in terms of the system {ψ j,k}( j,k)

as follows:

f =
∑

j∈Z

∑

k∈Z

〈 f , ψ j,k〉ψ j,k, (1)

where

ψ j,k(t) =
1

2 j/2
ψ

(

t − 2 jk

2 j

)

· (2)

The coefficients d j,k = 〈 f , ψ j,k〉 are called wavelet coefficients

and are obtained by the inner product of the signal f with the

wavelet function ψ localized in time and frequency, that is,

d j,k = 〈 f , ψ j,k〉 =

∫ +∞

−∞

f (t)
1

2 j/2
ψ

(

t − 2 jk

2 j

)

dt = f ⋆ ψ j[k], (3)

where f ⋆ ψ j denotes the convolution of the signal f by the

scaled version ψ j of ψ, ψ j(t) = 2− j/2ψ(t/2 j).
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Fig. 4. Events observed at the Real Instituto y Observatorio de la Armada in San Fernando (Cádiz) during the PHEMU97 campaign. Time is

plotted against light flux: a) J1ECLJ2 (07.07.97); b) J2ECLJ3A (16.07.97); c) J3OCC J1P (26.07.97); d) J4ECLJ3A (01.08.97); e) J3OCCJ2P

(25.07.97); f) J3OCC J2T (02.08.97). J1, J2, J3, and J4 denote the Galilean satellites from the closest to Jupiter.

The inner product of the signal f with the dilated and trans-

lated function ϕ, gives

a j,k = 〈 f , ϕ j,k〉 =

∫ +∞

−∞

f (t)
1

2 j/2
ϕ

(

t − 2 jk

2 j

)

dt = f ⋆ ϕ j[k]. (4)

The difference between both expressions lies in the fact that

coefficients a j,k provide approximations or averages of the

2 j-scaled signal, while coefficients d j,k determine its details at

the same scale.

Under these considerations, each 2 j-scaled approxima-

tion a j of a signal can be understood as the sum of the approx-

imation of it at a coarser level 2 j+1, plus the details that appear

at level 2 j and disappear at level 2 j+1, that is,

a j = a j+1 + d j+1. (5)

The revolution of wavelet theory comes precisely from this

fact: with the wavelet transform we can “look at” our signal

at different levels. In this way, not only is the study of the sig-

nal possible in the time domain, but so is studying it in the

frequency domain by changing the scales.

We must notice that the higher the considered scale, the big-

ger the time support of the function ψ j, and the smaller its fre-

quency support becomes. This fact is known as the Heisenberg

uncertainty principle (Vetterli & Kovacevick 1995), which

states the impossibility of knowing the exact time and fre-

quency representations of a signal simultaneously. Therefore,

we can make the time support of the ψ j
′s functions decrease

and localize our signal in this domain, which is particularly

useful for detecting singularities or for making their frequency

support decrease, and for localizing the signal in the frequency

domain, which is very interesting for denoising, since it allows

us to discover the high frequencies in the signal that are usually

related to noise.

Related to the size of the time support of a wavelet function

is the number of vanishing moments it has. A function ψ is said

to have m vanishing moments if it verifies

∫ +∞

−∞

tnψ(t)dt = 0, for 0 ≤ n ≤ m − 1. (6)

The importance of these vanishing moments comes from the

fact that for a function f that is regular enough, which can

be written as a power series, each wavelet coefficient d j,k =

〈 f , ψ j,k〉 will depend only on the terms of order higher than m.

Thus, function f can be represented from a few non-zero

wavelet coefficients (Vetterli & Kovacevick 1995), which con-

centrate its energy. This property will be essential in the de-

noising techniques we apply later on.

On the other hand, if ψ has m vanishing moments, the size

of its support will be greater than or equal to 2m − 1 (Hwang

& Mallat 1991). Thus, in practice, when it comes to the choice

of the mother wavelet, we need both a wide support to denoise

and a small support to detect singularities or sudden changes

in the signal. An arrangement between denoising and detection

must be reached.

5.2. Denoising

The denoising procedure is based on a wavelet thresholding

method; that is, the wavelet coefficients above a certain thresh-

old are preserved and the rest are set to zero. Mallat (1999)

pointed out several techniques of non-linear filtering to remove

different kinds of noises. Donoho & Johnstone (1994) proved

that, in the case of Gaussian white noise, nearly optimal esti-

mators are obtained by thresholding decomposition coefficients

in an orthonormal wavelet basis.
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According to it, the value of the threshold T for estimating

a signal in a Gaussian white noise of variance σ2 should be

T = σ
√

2 log N (7)

where N is the sample size of the noisy data.

Without any a priori knowledge of the type of noise, it is

more convenient to use a method that does not involve the noise

variance. Mallat (1999) proposes the coherent structure method

in this case. The general idea is that noise is defined as the sig-

nal components that do not have any strong correlation with the

elements in the wavelet basis, that is, the ones below the cor-

responding threshold. The signal is then estimated by isolating

the components that carry the information, i.e., the ones with

high correlation, the coherent structures.

According to this, the best basis for denoising will be the

one that concentrates the signal energy better over a few co-

efficients, that is, the one that is capable of distinguishing the

coherent structures from the noise.

Following the coherent structures algorithm, the wavelet

coefficients d j,k (Mallat 1999) are calculated and arranged by

modulus in the following way

|α1| ≥ |α2| ≥ . . . ≥ |αN | (8)

where N represents the sample size and αi denotes the detail

coefficient d j,k in the proper position according to Eq. (8). In

such a way, signal f can be written as follows:

f =

N
∑

i=1

αiψi (9)

where ψi is the translated and scaled version of the wavelet

function ψ corresponding to the wavelet coefficient αi.

For each k ≥ 0, the wavelet coefficient αk is not reduced to

noise if

|αk|
2

|| f ||2
> T 2

N =
2 log N

N
, (10)

and ψk is a coherent structure if

|αi|
2

N
∑

i=k

|〈 f , ψi〉|
2

=
|αi|

2

N
∑

i=k

|αi|
2

> T 2
N−k+1. (11)

The algorithm stops when we find the first index k = M, such

that ψM is not a coherent structure. Filtered coefficients will be

given by

α̃i =

{

αi, i < M

0, i ≥ M
. (12)

Then, signal f̃ is estimated by the sum of the M coherent

structures:

f̃ =

M−1
∑

i=1

αiψi. (13)

The advantage of this procedure over a filtering by frequency

bands lies in the fact that we get a signal that is almost

free of noise by hardly modifying the characteristics of the

signal, while in traditional filtering the denoising involves a

smoothness of the original components of the signal. In fact, a

wavelet thresholding is equivalent to estimating the signal with

a smoothing that is locally adapted to the signal regularity.

5.3. Maxima curves

Irregular structures of a signal (discontinuities, inflection

points, local maxima or minima, sudden changes, etc.) usu-

ally offer important information about it. From a continuous

point of view, the wavelet transform can be used to study the

local regularity of a signal. We have mentioned that one of the

main advantages of the wavelet theory lies in how it allows

the analysis of the local structures with a zooming procedure

that reduces the scale parameter. When the scale decreases,

the wavelet transform measures the fine scale variations in the

neighborhood of certain point. Thus, a fast decay of the wavelet

transform as the scales go to zero implies that the signal is regu-

lar at that point. Several results relating the decay of the wavelet

transform to the local regularity of a signal can be found in

Hwang & Mallat (1991).

The designed algorithm is based on the following result:

modulus maxima wavelet (MMW) coefficients determine the

irregular structures in the signal, which appear in every scaled

version. Considering these modulus maxima along the succes-

sive scales, a line called maxima curve is defined. Thus, singu-

larities are detected by finding the abscissa where this maxima

curve converges at fine scales (Hwang & Mallat 1991). In or-

der to determine such abscissa with good precision, we need a

wavelet with small time support.

The number of vanishing moments of the wavelet func-

tion ψ is also related to the regularity of a signal, since they

determine the “kind of singularity” we will be able to detect.

We can gather from the theoretical aspect of the light curve that

the three points we want to detect are those with the maximum

curvature.

It can be proved (Mallat 1999) that a wavelet function ψ

with a fast decay has n vanishing moments, if and only if ψ is

the nth derivative of a function θ with fast decay, that is,

ψ(t) = (−1)n dnθ(t)

dtn
· (14)

Thus, if a waveletψ has just one vanishing moment, the wavelet

transform of a signal f at a scale 2 j can be written as

f ⋆ ψ j(t) = f ⋆

(

2− j/2ψ

(

t

2 j

))

= f ⋆

(

−2− j/2θ′
(

t

2 j

))

= f ⋆ 2 jθ̄ j
′
(t) = 2 j( f ⋆ θ̄ j)

′(t), (15)

where θ̄ j = −2 j/2θ(t/2 j). That means that the local maxima of

the wavelet transform f ⋆ ψ j at scale 2 j are the maxima of the

first order derivative of the signal f smoothed by a function θ̄ j,

that is, the inflection points. In a similar way, if the wavelet

function ψ has two vanishing moments, it can be proved that

the modulus maxima of the wavelet transform

f ⋆ ψ j = (2 j)2( f ⋆ θ̄ j)
′′(t) (16)

correspond to locally maximum curvatures of f ⋆ θ j.

Therefore, since the three instants of time we want to de-

tect are those matching the highest curvatures and inflection

points, we choose wavelet functions with at least two vanish-

ing moments.
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Fig. 5. Simulated light curve.

5.4. Methodology

In order to check the reliability of our method, the algorithm

was applied to a synthetic light curve (Fig. 5) given by a nor-

malized and discretized version of the following function

f (x) =

{

0, |x | > 1

−e−1/(1−x2), |x | < 1
. (17)

The continuous curve is a differentiable function with deriva-

tives of all orders. The three instants of time are calculated

analytically by evaluating the minimum of the curve and

those points where the curvature reaches its maxima, thereby

obtaining:

t a
ini = −98.46, t a

min = 0, t a
end = 98.46. (18)

The sample size N = 520 and the sampling rate 0.84 s are

the same as in the registered event, in order to get a simulated

curve that is as similar to the experimental situation as possible.

We associated the times in Eq. (18) to the closest ones in the

synthetic light curve, that is,

t s
ini = −98.88, t s

min = 0.24, t s
end = 98.52. (19)

White noise with different levels of SNR ranging from 1

to 40 dB was added to the synthetic signal and the method

was applied to the noisy data with the aim of getting the re-

sults given in Eq. (19). Figures 7a and c represents the noisy

and the denoised light curves corresponding to SNR = 30 dB

and SNR = 1 dB, respectively.

Data were filtered using the procedure explained in

Sect. 5.2. The wavelet basis is chosen according to the min-

imum entropy criterion: the best will be the one that better

concentrates the signal energy over a few coefficients. In our

case, we get different wavelet bases depending on the SNR of

the noisy signal. For example, for the signal in Fig. 7a, with a

SNR of 30 dB, the most suitable function is the Meyer discrete

wavelet basis. On the other hand, for the signal in Fig. 7c with

an SNR of 1 dB, the most suitable wavelet is the Coiflet basis

with 6 vanishing moments.

To estimate the times given in Eq. (19) we designed

an algorithm to detect the maxima curves. First, wavelet
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xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

1

2

3

4

5

6

40 coefficients

d j,k1
d j,k2

d j−1,2k1
d j,2k1+2

..

.

j

j + 1

j − 1

j = 8

Fig. 6. Iterative algorithm scheme: (1) modulus maxima wavelet coef-

ficients (MMW) are marked at each level and a first one is chosen at

the coarser level j+ 1. To select the MMW at level j, we search in the

forty cells above; (2) if there is more than one, we take the one with

greatest modulus, and continue at the level j− 1; (3) if there is not any

MMW, we go down to level j + 1 (4); and run the algorithm again,

choosing the subsequent MMW at level j (5).

coefficients {d j,k} at scales j = 1, . . . , 8 were calculated for the

filtered signal according to the filter bank algorithm proposed

by Mallat (1999). At scale j the number of wavelet coefficients

will be N/2 j, where N is the sample size. In order to get the

same number of coefficients at every scale, wavelets coeffi-

cients {d j,k} j=1,...,8 were upsampled and synthesized by means

of the reconstruction filters in the algorithm. Therefore, at each

scale j we have a component of the original signal of size N,

and we can find the local modulus maxima wavelet coeffi-

cient at each scale j (Figs. 7b and d) that we will denoted by

MMW coefficient.

To determine the maxima curves we set the following cri-

terium: an MMW coefficient at scale j − 1 is said to lie on the

same maxima curve as an MMW coefficient at scale j, if the

first one is located in one of the forty positions above the second

one. If there is more than one modulus maxima point at these

positions, we take the largest one (Fig. 6). If there is not any, we

return to the scale j+1 and run the algorithm again. Some pack-

ets from the free software WaveLab, available on-line in the

URL http://www-stat.stanford.edu./˜wavelab, have

been used in the design of the algorithm.

To decide which wavelet fits better for detection, we must

take into account the existing relation between the number of

vanishing moments and the different kinds of singularities, or

irregular structures in a signal. In fact, at least two vanish-

ing moments and a small time support are required to detect

highest curvatures and inflection points. We ran the algorithm

with several wavelet functions satisfying these considerations.

Those that give rise to a more clearly defined maximum curve

are the Coiflet function with two vanishing moments (coif1)

and the Biorthogonal function with two vanishing moments

(bior2.2). They both detect three maxima curves, which begin

with MMW coefficients from the coarsest level j = 8 and end

at a finer scale j = 2.

Table 1 summarizes the results (tini, tmin, tend) obtained af-

ter applying our algorithm using a Biorthogonal basis to the

simulated light curve. It can be observed that we obtain very
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(a)
(b)

(c)
(d)

Fig. 7. Some results for the synthetic light curve given by Eq. (17): a) and c) show the noisy data with SNR = 30 and 1 dB, respectively,

the filtered curve, and the results got by the algorithm; b) and d) show the upsampled wavelet coefficients d j for the noisy signals at scales

j = 1, . . . 8. Circles mark the local modulus maxima wavelet coefficient.

precise results for SNR values above 20 dB. Taking into account

that the sampling rate is 0.84 s, the estimated error reaches

up to 15 samples when the noise level in the signal is high

(low SNR) and goes down to at most 1 sample when the SNR is

above 26 dB.

These results allow us to compute the accuracy of the

method when it is applied to our experimental data from the

PHEMU campaign. An estimate of the SNR level of the data

gives a value of 27.6 dB, which is above the lower limit

of 20 dB required to obtain an accurate estimation.

5.5. Processing of the light curve from J1 ECL J2

We now apply the provided strategy to a set of experimen-

tal data. The considered light curve corresponds to the eclipse

of Europe by Io, as observed from the Royal Observatory at

San Fernando, Cádiz (Spain) on the 7th July 1997. Recorded

data were stored in a file where the number of the record

was given from left to right, along with the time of the be-

ginning of each record in hours, minutes, and seconds, the

recorded voltage, and the time when the record ends, as shown

in Table 2. The first ten records and the last ten ones match the

sky background.

In order to perform the wavelet decomposition, it was nec-

essary to increase the sample to reach a power of 2. New data

were added specularly, inserting each half on both sides of the

signal. This does not influence our results significantly since

first and last data are related to the sky background, when the

event had not begun or had already finished.

The filtering of the data using the coherent structures al-

gorithm produces the denoised light curve plotted in Fig. 9.

In this case the best wavelet basis for the denoising is the

Daubechies 20.

We ran the maxima curves algorithm with several wavelet

basis. The results lead us to conclude that the bases which de-

tect the light curves better are the Coiflet of two vanishing mo-

ments and the Biorthogonal of two vanishing moments. The up-

sampled wavelet coefficients associated to these wavelet bases

are shown in Figs. 8a and b. The times estimated by the algo-

rithm are marked on the filtered data in Fig. 9 and summarized

in Table 3.

In order to estimate the value of the SNR of our signal, we

assume that the pre-event and post-event data provide a good

estimation for the entire noise data, and we obtain a value of

SNR = 27.6 dB. According to the results for the case of the
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Table 1. Outline of the results obtained for a synthetic light curve, with SNR ranging from 1 dB to 40 dB, using a Biorthogonal basis.

t s
ini
= −98.88 t s

min
= 0.24 t s

end
= 98.52

SNR level tini Error (s) No. of samples tmin Error (s) No. of samples tend Error (s) No. of samples

1 –111.48 +12.6 15 –3.96 +4.2 5 110.28 –11.76 14

2 –111.48 +12.6 15 –3.96 +4.2 5 110.28 –11.76 14

3 –111.48 +12.6 15 –3.96 +4.2 5 110.28 –11.76 14

4 –111.48 +12.6 15 –3.96 +4.2 5 110.28 –11.76 14

5 –111.48 +12.6 15 –3.96 +4.2 5 110.28 –11.76 14

6 –111.48 +12.6 15 –3.96 +4.2 5 111.96 –13.44 16

7 –111.48 +12.6 15 –3.96 +4.2 5 111.96 –13.44 16

8 –111.48 +12.6 15 –3.96 +4.2 5 111.96 –13.44 16

9 –111.48 +12.6 15 –3.96 +4.2 5 111.96 –13.44 16

10 –111.48 +12.6 15 –3.96 +4.2 5 111.96 –13.44 16

14 –111.48 +12.6 15 0.24 0 0 111.96 –13.44 16

16 –103.08 +4.2 5 0.24 0 0 111.96 –13.44 16

18 –103.08 + 4.2 5 0.24 0 0 111.96 –13.44 16

20 –103.08 + 4.2 5 0.24 0 0 111.96 –13.44 16

22 –98.04 –0.84 1 0.24 0 0 103.56 –5.04 6

24 –98.04 –0.84 1 0.24 0 0 103.56 –5.04 6

26 –98.04 –0.84 1 0.24 0 0 98.52 0 0

28 –98.04 –0.84 1 0.24 0 0 98.52 0 0

30 –98.04 –0.84 1 0.24 0 0 98.52 0 0

32 –98.04 –0.84 1 0.24 0 0 98.52 0 0

34 –98.04 –0.84 1 0.24 0 0 98.52 0 0

36 –98.04 –0.84 1 0.24 0 0 98.52 0 0

38 –98.04 –0.84 1 0.24 0 0 98.52 0 0

40 –98.04 –0.84 1 0.24 0 0 98.52 0 0

Table 2. File containing the original data.

Record Hour min s Voltage min s

1 2 8 20.82 0.449219 8 21.10

2 2 8 21.59 0.463867 8 21.81

3 2 8 22.36 0.478516 8 22.58

4 2 8 23.13 0.463867 8 23.35

5 2 8 23.90 0.468750 8 24.17

6 2 8 24.67 0.473633 8 24.89

7 2 8 25.44 0.478516 8 25.66

8 2 8 26.37 0.463867 8 26.70

9 2 8 27.30 0.434570 8 27.52

10 2 8 28.02 0.468750 8 28.29

. . . . . . .

synthetic light curve, we can conclude that the associated error

is 0.84 s, i.e., the sampling size.

6. Discussion

The remarkable point of this method is the denoising strategy

and the effectiveness of the designed algorithm in detecting the

maxima curves and, therefore, the three searched times. Firstly,

from what appeared to be chaotic data, the filtering method pro-

vides a consistent light curve that fits the theoretical one. It

should also be definitely noticed that no information about the

expected curve is used at any point in the denoising process.

Secondly, when running the designed algorithm with the

chosen wavelets (Coiflet of two vanishing moments and

Biorthogonal of two vanishing moments), three maxima curves

are detected, converging to the abscissas that match two points

of maximum curvature and the minimum in the light curve,

which are the instants of time we are looking for. We do em-

phasize the fact that the algorithm has no previous information,

that is, the algorithm detects three special points, without any a

priori knowledge or characterization of them.

The times we get with both wavelet functions are exactly

the same, except for the time of minimum flux, which differs

from one to the other by one sample. This minimum differ-

ence shows the mathematical accuracy of the proposed method,

since it falls in the range of the predicted error.

Finally, it must be noticed that the obtained results are not

exactly the times of the beginning, end, and minimum light

flux of the phenomenon, since we did not carry out any correc-

tion to the data. In this way, albedo markings, limb-darkening,

and illumination geometry must be taken into account as soon
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(a) (b)

Fig. 8. Upsampled wavelet coefficients d j, j = 1 . . . , 8 of the synthetic light curve using a) a Coiflet basis with two vanishing moments

and b) a Biorthogonal basis with two vanishing moments. The marked points show the modulus maxima wavelet coefficients.

(a)

(b) (c) (d)

Fig. 9. a) Data filtered by means of the coherent structure procedure. Times obtained by using a Coiflet basis are marked with a solid line (−);

times got by means of a Biorthogonal basis are marked with an asterisk (∗). b)–d) Zooming onto these three steps.

Table 3. Estimated times tini, tmin, tend for the eclipse of Europe by the satellite Io. They were obtained by applying the maxima curves algorithm

with a Coiflet wavelet basis and a Biorthogonal wavelet basis, both with two vanishing moments. The initial and end event times coincide with

both wavelet functions, and only the moment of minimun flux differs.

Wavelet basis tini tmin tend

Coiflet 2 vanishing moments 1:40:49.91 UT 1:42:41.83 UT 1:44:41.57 UT

Biorthogonal 2 vanishing moments 1:40:49.91 UT 1:42:42.62 UT 1:44:41.57 UT
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as we are interested in giving a physical meaning to the ob-

tained times. In this paper, our purpose has only been to show

the possibility of studying astronomical data using the wavelet

techniques.

A detailed study of the rest of the phenomena in Fig. 4 in-

troducing those corrections will be the subject of a future work.
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