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Abstract 
 

Clustering is the unsupervised classification of patterns 
(data items, feature vectors, or observations) into groups 
(clusters).  Clustering in data mining is very useful to 
discover distribution patterns in the underlying data.  
Clustering algorithms usually employ a distance metric based 
similarity measure in order to partition the database such that 
data points in the same partition are more similar than points 
in different partitions.  In this paper, we present a new data 
clustering method for data mining in large databases.  Our 
simulation results show that the proposed novel clustering 
method performs better than the Fast SOM combines K-means 
approach (FSOM+K-means) and Genetic K-Means Algorithm 
(GKA).  In addition, in all the cases we studied, our method 
produces much smaller errors than both the FSOM+K-means 
approach and GKA. 
Index Terms: Clustering、data mining、SOM、k-means、ant 
system 
 
 
1. Introduction 
 

The problem of clustering has become increasingly 
important in recent years.  The clustering problem has been 
addressed in many contexts and by researchers in many 
disciplines; this reflects its broad appeal and usefulness as one 
of the steps in exploratory data analysis. Clustering approaches 
aim at partitioning a set of data points in classes such that 
points that belong to the same class are more alike than points 
that belong to different classes.  These classes are called 
clusters and their number may be preassigned or can be a 
parameter to be determined by the algorithm.  There exist 
applications of clustering in such diverse fields as business, 
pattern recognition, communications, biology, astrophysics and 
many others.  Cluster analysis is the organization of a 
collection of patterns (usually represented as a vector of 
measurements, or a point in a multidimensional space) into 
clusters based on similarity.    Usually, distance measures are 
utilized.  Data clustering has its roots in a number of areas, 
including data mining, machine learning, biology, and statistics.  

Traditional clustering algorithms can be classified into two 
main categories: hierarchical and partitional [1].  In 
hierarchical clustering, the number of clusters need not be 
specified a priori, and problems due to initialization and local 
minima do not arise.  However, since hierarchical methods 
consider only local neighbors in each step, they cannot 
incorporate a priori knowledge regarding the global shape or 
size of clusters.  As a result, they cannot always separate 
overlapping clusters.  In addition, hierarchical clustering is 
static, and points committed to a given cluster in the early 
stages cannot move to a different cluster. 

Prototype-based partitional clustering algorithms can be 
divided into two classes: crisp clustering where each data point 
belongs to only one cluster, and fuzzy clustering where every 
data point belongs to every cluster to a certain degree [2]-[3].  
Fuzzy clustering algorithms can deal with overlapping cluster 
boundaries [19]-[21].  Partitional algorithms are dynamic, and 
points can move from one cluster to another.  They can 
incorporate knowledge regarding the shape or size of clusters 
by using appropriate prototypes and distance measures.  Most 
partitional approaches utilize the alternating optimization 
techniques, whose iterative nature makes them sensitive to 
initialization and susceptible to local minima.  Two other 
major drawbacks of the partitional approach are the difficulty 
in determining the number of clusters, and the sensitivity to 
noise and outliers [4]. 

Clustering can be generally defined as the following 
problem.  Given N points in d dimensional feature space, find 
interesting groups of points.  Many algorithms assume that 
the number of clusters, k, is known a priori and find the k 
clusters that minimize some error metric. 

Inspired by the collective behavior of a real ant colony, 
Dorigo first presented the Ant System (AS) in his paper [30], 
and the study was further continued by him [27]-[29], [31].  
The characteristics of an artificial ant colony include positive 
feedback, distributed computation, and the use of a 
constructive greedy heuristic.  Positive feedback accounts for 
rapid discovery of good solutions, distributed computation 
avoids premature convergence, and the greedy heuristic helps 
find acceptable solutions in the early stages of the search 
process.  In order to demonstrate the AS method, the authors 
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apply this method to the classical traveling salesman problem 
(TSP), quadratic assignment problem (QAP), and job-shop 
scheduling problem.  AS reveals very good results in each 
applied area.  More recently Dorigo and Gambardella have 
been working on extended versions of the AS paradigm.  Ant 
system is one of the extensions and has been applied to the 
symmetric and asymmetric TSP with excellent results [27].  
The AS has also been applied with success to other 
combinatorial optimization problems such as the scheduling, 
partitioning, coloring, telecommunications networks, and 
vehicle routing problem [5]-[8].  

 
2. Definitions for Clustering Problem 
 

A clustering C means partitioning a data set into a set of 
clusters Ci, i = 1,…, H.  A widely adopted definition of 
optimal clustering is a partitioning that minimizes distances 
within and maximizes distances between clusters.  Within- 
and between-clusters distances can be defined in several ways; 
see [37].  In this paper, Euclidean norm is utilized because it 
is widely utilized with SOM (Self-Organizing Feature Map).  
In addition, the k-means error criterion is based on it.  In order 
to evaluate the proposed method, we define the time cost for 
clustering as follows,  
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where Ta represents the time cost for clustering, nr  denotes 
the number of runs, Ts is the initial time for clustering, Te 
represents the terminate time for clustering. 
 
3. Ant Colony Optimization (ACO) 
 

The ant colony optimization technique has emerged recently 
as a novel meta-heuristic belongs to the class of 
problem-solving strategies derived from natural (other 
categories include neural networks, simulated annealing, and 
evolutionary algorithms) [9]-[18], [22], [25], [32]-[36].  The 
ant system optimization algorithms is basically a multi-agent 
system where low level interactions between single agents (i.e., 
artificial ants) result in a complex behavior of the whole ant 
colony.  Ant system optimization algorithms have been 
inspired by colonies of real ants, which deposit a chemical 
substance (called pheromone) on the ground.  It was found 
that the medium used to communicate information among 
individuals regarding paths, and used to decide where to go, 
consists of pheromone trails.  A moving ant lays some 
pheromone (in varying quantities) on the ground, thus making 
the path by a trail of this substance.  While an isolated ant 
moves essentially at random, an ant encountering a previously 
laid trail can detect it and decide with high probability to 
follow it, thus reinforcing the trail with its own pheromone.  
The collective behavior where that emerges is a form of 
autocatalytic behavior where the more the ants following a trail, 
the more attractive that trail becomes for being followed.   

The process is thus characterized by a positive feedback 
loop, where the probability with which an ant choose a path 
increases with the number of ants that previously chose the 
same path. 

Given a set of n cities and a set of distances between them, 
the Traveling Salesman Problem (TSP) is the problem of 
finding a minimum length closed path (a tour), which visits 
every city exactly once.  We call dij the length of the path 
between cities i and j.  An instance of the TSP is given by a 
graph (N, E), where N is the set of cities and E is the set of 
edges between cities (a fully connected graph in the Euclidean 
TSP). 
 Let bi(t) (i = 1,…,n) be the number of ants in city i at 

time t and let ∑ == n
i i tbm 1 )(  be the total number of ants.  Let 

)( ntij +τ be the intensity of pheromone trail on connection (i, j) 

at time t + n, given by 

        ),,()1()( nttnt ijijij +∆+−=+ ττρτ         (1) 

where ρ is a coefficient such that 1- ρ  denotes a coefficient 

which represents the evaporation of trail between time t and t + 
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quantity per unit of length of trail substance (pheromone in real 

ants) laid on connection (i, j) by the kth ant at time t + n and is 

given by the following formula: 
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where Q denotes a constant and Lk represents the tour length 
found by the kth ant.  For each edge, the intensity of trail at 
time 0 (τij(0)) is set to a very small value. 

While building a tour, the transition probability that ant k 
in city i visits city j is 
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where allowedk(t) is the set of cities not visited by ant k at time 
t, and ijη denotes a local heuristic which equal to 1/d (and it is 
called ‘visibility’).  The parameterα and β  control the 
relative importance of pheromone trail versus visibility.  
Hence, the transition probability is a trade-off between 
visibility, which says that closer cities should be chosen with a 
higher probability, and trail intensity, which says that if the 
connection (i, j) enjoys a lot of traffic then is it highly 
profitable to follow it.   
 A data structure, called a tabu list, is associated to each 
ant in order to avoid that ants visit a city more than once.  
This list tabuk(t) maintains a set of visited cities up to time t by 
the kth ant.  Therefore, the set allowedk(t) can be defined as 
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follows: { })(tabu|)(allowed tjjt kk ∉= .  When a tour is 
completed, the tabuk(t) list (k = 1,…, m) is emptied and every 
ant is free again to choose an alternative tour for the next cycle. 
 By using the above definitions, we can describe the ant 
colony optimization algorithm as follows: 
 

procedure ACO algorithm for TSP 
  Set parameters, initialize pheromone trails 
  while (termination condition not met) do 
    Construct Solutions 
    Apply Local Search 
    Local_Pheromone_Update  
  End 
  Global_Pheromone_Update  

end ACO algorithm for TSPs 
              

Fig. 1.  The ACO algorithm. 
 
4. The proposed Approach 
 

In this paper, we propose a novel ant system with 
differently favorable strategy for data clustering.  To the best 
of our knowledge, there is no existing ant colony optimization 
algorithm for data clustering.  It is desirable to design an ant 
colony optimization algorithm (ACO) that is not required to 
solve any hard subproblem but can give nearly optimal 
solutions for data clustering.  The proposed method can 
obtain optimal solutions quicker via differently favorable 
strategy.  The ant colony optimization with different favor 
(ACODF) algorithm has the following three important 
desirable strategies: (a) using differently favorable ants to solve 
the clustering problem, (b) adopting simulated annealing 
concept for ants to decreasingly visit the amount of cities to get 
local optimal solutions, (c) utilizing tournament selection 
strategy to choose a path.  According to our simulation results, 
the computation cost and error rate of our proposed method can 
reduce much more than the other promising methods: 
FSOM+K-means (fast self-organizing map combines k-means) 
[15] and GKA (genetic K-means algorithm) [23].  

 
4.1. The Strategy of Using ACO with Different favor 
 
    We utilize ACO with different favor to solve the 
clustering problem. Every ant only needs to visit (1/10) cities 
not all of cities; then, the ant decreasingly visit cities every 
time.  After several iterations (cycles), the trail intensity 
(pheromone) close between nodes of trails will be increased; 
on the other hand, the trail intensity (pheromone) far between 
nodes of trails will be decreased.  Therefore, ants will favor to 
visit the closer nodes and then reinforcing the trail with their 
own pheromone.  Finally, a number of clans (clusters) will be 
built.  Fig. 2 through Fig. 5 illustrates the clustering processes 
using the strategy of ACO with different favor.  Fig. 2 shows 
the initial data; Fig. 3 reveals the initial connecting trails; Fig. 
4 depicts the pheromone intensity of every trail after 10 cycles; 
while the trails with higher pheromone intensity after 10 cycles 
are shown in Fig. 5. 

 Fig. 2. Initial data.  

 
Fig. 3. Initial connecting trails. 

Fig. 4. The pheromone intensity of each trail (after 10 cycles).    

 

 Fig. 5. The trails with higher pheromone Intensity (after 10 cycles). 
          

 
4.2. The Strategy of Using Simulated Annealing 
 
   We adopt simulated annealing concept for ants to 
decreasingly visit the number of cities to get local optimal 
solutions.  Thus, two useful formulas are devised as follows, 
             Ttnstns ×=+ )()1( ,                  (4) 
where ns is the number of visiting nodes of ants during T0 
function (see the detailed algorithm in Fig. 7), ns(t+1) denotes 
the current number of visiting nodes of ants, ns(t) represents 
the number of visiting nodes of ants at last time (cycle), T is a 
constant (T= 0.95).  According to this formula, we understand 
the fact that ants really decreasingly to visit cities.  Eqn. (5) 
shows the relationship between nf(t+1) and ns(t), where nf is 
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the  nu mb er  o f  vis i t in g n odes  o f an t s  dur in g T 1  
function (see the detailed algorithm in Fig. 7), nf(t+1) denotes 
the current number of visiting nodes of ant, nf(t) represents the 
number of visiting nodes of ant at last time (cycle), run = 2, 
i ∈ {1, 2}. 
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4.3. The Strategy of Using Tournament Selection 
 
   A scheme called Roulette Wheel Selection is one of the 
most common techniques being used for a proportionate 
selection mechanism.  Traditional ACO also uses this 
technique to select trials.  However, Tournament Selection is 
more powerful than Roulette Wheel Selection in our 
experiences.  Therefore, we adopt it in our research.  Fig. 6 
reveals this mechanism.  In Fig. 6, suppose we randomly 
select three lines among five lines; then, we continue to select 
the shortest line among the three previous selected lines (in this 
instance means SE ). 
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     Fig. 6.  The tournament selection mechanism. 

 

4.4.  The Proposed Algorithm for Clustering  
 
   The proposed algorithm for clustering is shown as follows, 
 
 
void main() 
{ 
 Initialization();               //initial the data set  
 Do  

{ 

T0();                     //let each ant to visit some data set 

cities at random 
 For i=1 to run            //run = 2  

T1i();                   // follow the pheromone of T11() and 

T12() to visit cities 

For every edge (i, j) update the ijτ∆ given by Eq.(2) 

} While (ACODF.stop=Ture) 
 Consolidation(); 
 Compute the clustering results to find clusters ; 
} 
Void Initialization() 
{ 
 For i=1 to n   

Input data set;  
 For every edge(i, j) set ijτ∆ =0 
  Place m ants randomly to m nodes;   // m is equal to (1/2) n 

} 
 
void T0 () 
{  

For k=1 to m { 
For l=1 to ns(t) randomly choose city j to move, where ns(t) is 
given by  Eqn. (4)  // decreasing rate is 0.95 and the initial  

  number of visiting nodes is equal to 
(1/15) n 

Compute Lk  for the kth ant                          

Put ijτ∆  to the edge from kth ant visited} 

  Set visiting range of T1  //to set upper bound and lower bound 
} 
 
void T1i() 
{ 

  Set nf(t+1) = )
3
)(  ()()3/2(
⋅

⋅−⋅
run

tnsitns   

For k=1 to m { 
Choose city j to tournament selection 
 // randomly selected 10 (j=10) trails and find the high quality 

pheromone trail, select this trail to visit 
Compute Lk for the kth ant                     

Put ijτ∆  to edge from kth ant visited} 
} 
 
void Consolidation() 
{ 
  Compute pheromone quality of every trail and set the trail state   

//to set visible (greater than the average of all trails pheromone 
quality) and non-visible trails (less than the average of all trails 
pheromone quality) and set empty the pheromone quality trail is 
not exist 

  Using visible trails to find all clusters   
Compute nearest distances for clusters 
Join the small cluster with the nearest cluster   

}  
  
       Fig. 7.  The proposed ACODF algorithm. 
 
5. Simulation Results 
 

In order to verify the performance of our method, some 
computer simulations have been conducted on a PC Pentium 
Ⅲ.  We are even more to conduct a non-spherical clustering 
with 579 data set and a spherical clustering with 400 data set.  
Fig. 8 depicts 400 source data set and the results of a spherical 
clustering with 400 data set utilizing the FSOM+K-means, 
ACODF, and GKA approaches, respectively.   Table 1 shows 
the simulation results regarding between-clusters distances 
(define by [37]) of a non-spherical clustering with 579 data set 
for FSOM+K-means, ACODF, and GKA.  Table 2 reveals the 
comparison of time cost for FSOM+K-means, ACODF, and 
GKA.  It is observed that ACODF searches faster than some 
of the other promising evolutionary algorithms used for 
clustering.  The time cost in non-spherical clustering with 579 
data set for ACODF and GKA almost the same.  However, 
ACODF can always search faster than FSOM+K-means and 
GKA in sphere clustering with 300 and 400 data set.  In 
addition, according to the results of clustering comparisons 
from Fig. 8 and Table 1 to Table 4, it is observed in the 
simulations that ACODF converges to the best known optimum 
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or near-optimum (with no error rate or lower error rate) 
corresponding to the given data in concurrence with the 
convergence result. 
 
6. Conclusions 
 

In this paper, we propose a novel algorithm called ant 
colony optimization with different favor (ACODF) for data 
clustering.  The ACODF algorithm has the following three 
important desirable strategies: (a) using ACO with different 
favor to solve the clustering problem, (b) adopting simulated 
annealing concept for ants to decreasingly visit the amount of 
cities to get local optimal solutions, (c) utilizing tournament 
selection strategy to choose a path.  We compare our ACODF 
method with the FSOM+K-means approach and GKA.  
Through experiments, we show that ACODF efficiently finds 
accurate clusters in large high dimensional datasets. 
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(a) 400 source data set          (b) ACODF result               (c) GKA result           (d) Fast SOM result 

Fig. 8.  The results of a spherical clustering with 400 data set utilizing ACODF, GKA, and FSOM+K-means. 

                                         

 
Table 1: THE BETWEEN-CLUSTER RESULTS OF A NON-SPHERICAL CLUSTERING WITH 579 DATA SET USING ACODF, GKA, AND FSOM+K-MEANS. 

Between-clusters single linkage complete linkage average linkage centroid linkage error rate

FSOM+k-means 0.029666033 0.866149859 0.439210384 0.456982684 0.031826 

ACODF 0.030057599 0.866149859 0.43637177 0.455576274 0.001727 

GKA 0.029666033 0.866149859 0.439210384 0.456982684 0.031826 
 

 
 
 

Table 2: THE COMPARISON OF TIME COST FOR FSOM+K-MEANS, ACODF, AND GKA. 

 579(non-spherical) 300 (spherical) 400 (non spherical) 

FSOM+k-means 8097 sec. 8155 sec. 8234 sec. 

ACODF 2320 sec. 782 sec. 1531 sec. 

GKA 2325 sec. 874 sec. 1653 sec. 
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