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ABSTRACT Historical data offers a wealth of knowledge to the users. However, often restrictivelymammoth

that the information cannot be fully extracted, synthesized, and analyzed efficiently for an application such

as the forecasting of variable generator outputs. Moreover, the accuracy of the prediction method is vital.

Therefore, a trade-off between accuracy and efficacy is required for the data-driven energy forecasting

method. It has been identified that the hybrid approach may outperform the individual technique in

minimizing the error while challenging to synthesize. A hybrid deep learning-based method is proposed

for the output prediction of the solar photovoltaic systems (i.e. proposed PV system) in Australia to obtain

the trade-off between accuracy and efficacy. The historical dataset from 1990-2013 in Australian locations

(e.g. North Queensland) are used to train the model. The model is developed using the combination of

multivariate long and short-term memory (LSTM) and convolutional neural network (CNN). The proposed

hybrid deep learning (LSTM-CNN) is compared with the existing neural network ensemble (NNE), random

forest, statistical analysis, and artificial neural network (ANN) based techniques to assess the performance.

The proposed model could be useful for generation planning and reserve estimation in power systems with

high penetration of solar photovoltaics (PVs) or other renewable energy sources (RESs).

INDEX TERMS Accuracy, convolutional neural network, data-driven model, deep learning, forecasting,

multivariate long and short-term memory, reliability, solar photovoltaic power plants.

I. ABBREVIATION

ANN Average Neural Network

APL Artificial Pooling Layers

ARENA Australian Renewable Energy Agency

ASEFS Australian Solar Energy Forecasting System

B Bias

BNL Batch Normalization Layer

CNN Convolutional Neural Network

DL Dropout Layer

DNI Direct Normal Irradiance

DHI Diffuse Horizontal Irradiance

GHI Global Horizontal Irradiance

IW Input Weights

LSTM Long and Short-Term Memory

NN Neural Network

NNE Neural Network Ensemble

PSO Particle Swarm Optimization

The associate editor coordinating the review of this manuscript and
approving it for publication was Ravindra Singh.

RNN Recurrent Neural Network

ReLU Rectified Linear Unit

RW Recurrent Weights

W Weights

II. INTRODUCTION

The penetrations of solar photovoltaic (PV) are increasing

in several countries including Australia in multiple straight

years. Significant PVs are either connected to medium or

low voltage networks in Australia. The growth of both large

and small-scale PV penetrations has economic and environ-

mental benefits. However, it poses a range of management

and control issues for grid operators due to the variabil-

ity of PV outputs. The power system has become increas-

ingly volatile and less predictable with PV systems [1].

The PV systems are weather dependent, therefore, hard to

predict. Accuracy of the prediction is critically important for

secure operation of power systems with high penetrations of
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PV systems. It enables the system operator to deal with output

power variability and planning engineers to plan and design

the power system for future [2]. There are various methods

for such forecasting in different time horizons, e.g. short,

medium, and long-term. The physical, persistence, statistical,

and combined approaches may be used to estimate the out-

put of variable generations [3]. The meteorological data and

energy forecasting are the two significant components related

to the forecasting of the PV system [4]. Many procedures

were proposed in the literature to forecast meteorological

information such as wind speed, cloud cover, temperature,

and irradiance [5], [6]. Furthermore, physical, meteorological

data-driven, and astronomical driven are the common meth-

ods reported in the literature to forecast the output power

and energy of the PV system. Different parameters such as

power rating, azimuth angle, module type, tilt angle, wind

speed are used in the physical model for energy forecasting in

PV systems [7]. The historical weather data and the previous

measurements of PV system outputs are used in the mete-

orological data-driven method for PV forecasting [8]. The

statistical, persistence, auto-regression are the key methods

used for this purpose [8]. Recently, machine learning tech-

niques have widely been applied in the meteorological data-

driven approach to forecast PV output [9]. In the astronomical

and meteorological data-driven approach, the physical factor

has been used with the meteorological data [9]. In a data-

driven traditional statistical method, the measured historical

PV data in the past time is used in forecast [10]. The auto-

regression and spatial-temporal are the other two widely used

data-drivenmethods for such application [11], [12]. However,

the physical information of PV is often limited or ignored

in these methods [10]–[12]. Although different techniques

have already recognized for forecasting PV output, there is

still an opportunity to improve the reliability and accuracy

regarding the long-term forecasting of the PV system to be

used in power system planning. A good number of works

have been attempted to estimate the short-term solar yield

using historical data. Most of the forecasting techniques

applied in minutes into day spatial resolution for dispatching

and load following, unit commitment, distributed generation

operation, building energy management, and transmission

scheduling. However, very few studies have investigated the

data-driven long-term estimation of solar yield. In this paper,

a data-driven model is proposed for reliable estimation of

solar yield from historical data.

Three main forecasting algorithms categories, i.e.

statistical analysis [13], machine learning [14], and

hybrid [15], [16], were reported. The Australian Renewable

Energy Agency (ARENA) has reported the Australian Solar

Energy Forecasting System (ASEFS), which used the statisti-

cal models like decision tree, random forest, and persistence

to forecast the hour ahead prediction of solar energy in

Australia. The model has a root mean squire error (RMSE)

of 15.80. Hence, there is still a prospect to improve in

the forecasting approaches. Furthermore, several machine

learning techniques were attempted to forecast minutes,

hours, and day-ahead energy outputs of large-scale PV sys-

tems [7], [8], [14], and [17]. These were mainly used various

neural networks (NN) based forecasting techniques with

the short length of dataset. Very few studies have exhibited

good forecasting performance as reported in [7], which has

a normalized root-mean-square deviation or error (nRMSE)

of 0.07356. However, the proposed algorithm in [7] are not

suitable in generalized forecasting due to the underlying

weather classification and certain assumptions applicable

to the specific region. Furthermore, the hybrid techniques

were attempted to combine the algorithms for better per-

formance as stated in [7]. The proposed method combines

the particle swarm optimization (PSO) with the variation

of NN to achieve better forecasting performance. However,

the performance of the proposed algorithm is almost similar

to other NN based algorithms for forecasting. Recently, the

recurrent neural network (RNN) and deep learning [16]

based forecasting have received a great deal of attention

due to better prediction performance compared to traditional

techniques i.e. statistical, PSO, NN. But, most of the deep

learning-based methods are used for short-term forecasting

with the small length of data.

In this paper, a novel hybrid deep learning method is

proposed. A number of studies have individually used long

and short-term memory (LSTM) and convolutional neural

network (CNN) individually in various application including

forecasting of PV output [18]. This paper proposed a method

that combines LSTM and CNN to obtain a hybrid algorithm

for long-term forecasting of PV output. The proposed algo-

rithm is compared with four baseline modelling methods

and demonstrates the better performance compared to the

other methods. The rest of the paper is organized as follows:

Section III briefly describes the key techniques considered

in this paper. The methodology is explained in Section IV.

Results and discussions are presented in Section V. The

conclusions and the contributions of the paper are given

in Section VI.

III. OVERVIEW

The long-term forecasting of solar PV can be used for the

planning of power system reserve with high penetration

of PV systems. The goal of this research is to find the

PV power and energy in the long-term time horizon – a

couple of years ahead. The historic Typical Meteorological

Year (TMY) dataset used for this study. The TMY dataset are

obtained from Energy Partners’ [19]. The TMY data is used

in the System Advisor Model (SAM) to prepare the required

weather data and PV output data for the predictionmodel. The

blending of two deep learning methods has been considered.

Fig. 1. shows an overview of the proposed method. The key

techniques used in this work are briefly described next in this

section.

A. RECURRENT NEURAL NETWORK (RNN)

The recurrent neural networks (RNNs) consist of recurrent

loops of networks that allow persistent information flow [16].

136224 VOLUME 8, 2020
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FIGURE 1. Overview of the proposed method.

These loops allow the information to flow concurrently from

one step of the network to the next using the chain of

events within networks which are intimately related to the

sequences and lists. The concept of the recurrent neural

network is the base of deep learning techniques/algorithms

which are inspired by the connection of neurons in human

brain [16], [17]. It uses recurrent learning to learn from large

and complex dataset. Deep learning is used to solve complex

problems that require input from diverse, unstructured, and

inter-connected dataset. In this work, two of the most pop-

ular deep learning techniques such as long and short-term

memory (LSTM) and convolutional neural network (CNN)

are utilized. The details about LTSM and CNN are given later

in this paper.

B. LONG- AND SHORT-TERM MEMORY (LSTM)

The LSTM is a deep learning technique explicitly designed

to reduce long lasting dependency problem using a chain like

structure [20]. The recuring model of LSTM uses concurrent

cell update structure. The initial update starts right after the

first output of initial LSTM block which uses the initial state

of the network and the first-time step of the sequence to

compute the output. At time step t , the block uses the current

state (ct−1,yt−1) to update cell state ct , and the following

time step of the network to compute the output. Each layer

has two states known as the cell and the hidden state (also

known as the output state). The output of the LSTM layer

at time step t is contained in the hidden state of the same

time step [21]. The information erudite from previous steps

is confined in the cell state of the current step. The layer adds

or removes information from the cell state controlled by gates

in each time step. Fig. 2 illustrates a general LSTM block

architecture.

FIGURE 2. LSTM general architecture.

From Fig. 2, it is evident that there are four control gates

in LSTM: forget (f ), cell candidate (g), input (i), and output

(o) as illustrated in Fig. 2. When c (t − 1) points enter to

the LSTM unit from LSTM block, it first passed through the

forget gate and drop some memory. The new memories are

added by update gate. The output is filtered through the output

gate. Working mechanisms can be mathematically expressed

as in (1) - (4) for timestamp t for each control gate.

it = σg (Wixt + Riyt−1 + bi) (1)

ft = σg
(

Wf xt + Rf yt−1 + bf
)

(2)

gt = σg
(

Wgxt + Rgyt−1 + bg
)

(3)

Ot = σg (Woxt + Rtyt−1 + bo) (4)

In (1)-(4), σg denotes the gate activation function. The sig-

moid function given by σ (x) = (1 + e−x)
−1

is used to com-

pute the gate activation function in MATLAB [22]. There are

three learnable weights of an LSTM layer: input weights W ,

recurrent weights R, and bias b. The matrices of W , R, and b

are concatenated as in (5).

W =









Wi

Wf

Wg

Wo









, R =









Ri
Rf
Rg
Ro









, b =









bi
bf
bg
bo









(5)

where i, f , g, and o represent the input gate, forget gate, cell

candidate, and output gate, respectively.
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The cell and hidden state at timestamp t are expressed

by (6) and (7), respectively.

ct = ft ⊙ ct−1 + it ⊙ gt (6)

ht = ot ⊙ σc(ct ) (7)

where ⊙ denotes the Hadamard product (element-wise mul-

tiplication of vectors) and σc denotes the state activation

function. The state activation function is compared by using

the hyperbolic tangent function (tanh) and lstmLayer function

in MATLAB.

C. CONVOLUTIONAL NEURAL NETWORK (CNN)

The Convolutional Neural Network (CNN) is one of the most

popular deep learning algorithms [21]. It has the advantage

of extracting data features effectively. Therefore, the CNN

is used widely in image recognition and classification. The

CNN networks are like a visual cortex, with arrangements

of simple and complex cells [18]. Similar to an RNN neural

network, CNN is composed of three main components: the

input layer, output layer, and hidden layers in between the

input and output layers [23]. A general CNN structure is

illustrated in Fig. 3. One or multiple convolutional layers may

be involved in CNN as given in Fig. 3. The CNN used in this

paper has four 2-D convolutional layers, BNL, ReLU layer,

and APL. These are followed by one DL, fully connected

layer, and regression output layer, respectively.

FIGURE 3. Generic architecture of CNN.

The influential input parameters of m× m× n are used in

CNN (wherem×m determine size of each set, and n specifies

the total number of dataset). The inputs are passed to the

convolutional 2D network consists of neurons that connect

to sub-regions of input dataset or the output of the previous

layer. The convolutional 2D network uses the set of weights

called filter (k) that convolved the input. This has extracted

the important features of the input dataset for accurate output

prediction. Then, the batch normalization is used to normalize

inputs (mi) by calculating the mean (µB) , and variance (σ 2
B)

over a mini-batch and each input channel. The normalized

activations can be obtained as in (8).

x̂i =
mi − µB
√

σ 2
B + ǫ

(8)

In (8), ǫ is the property Epsilon that improves the numerical

stability when the mini-batch variance is very small. The

batch normalization layers are followed by ReLU layer which

acts as a threshold operation to the input with the following

relationship as given in (9).

f (x) =

{

m, m ≥ 0

0, m < 0
(9)

The ReLU layer is followed by an APL, which performed

down sampling. The input is divided into rectangular pooling

regions to compute the average values in that region. If the

input (I ) to the pooling layer is n× n, and the pooling region

size (PS) is h × h, then, the pooling layer down-sampled

the regions by h [23]. The output (O) of a pooling layer for

overlapping regions can be expressed as in (10).

O = (I − PS + 2 ∗ Padding)/(Stride+ 1) (10)

In the final stage, one DL, fully connected layer, and regres-

sion layer work together to prepare the output of the CNN

network. The dropout layer randomly sets the input ele-

ments to zero given by the dropout mask rand(size(m)) <

Probability (where m is the layer input). The fully connected

layer multiplies the input by a weight matrix W and adds

the bias vector b. In this case, the fully connected layer acts

independently on each time step with the sequential inputs.

At time step t , the corresponding entry of Z is WYt + b.

The loss function of the regression layer is the half-mean-

squared-error for the sequence-to-one regression networks of

the predicted responses as in (11). This can be computed by

a regression layer as given in (11).

Loss =
1

2

∑n

i=1
(ti − yi)

2 (11)

where n is the number of responses, ti is the target output, and

Yi is the network’s prediction for response i.

IV. METHODOLOGY

The step-by-step methodology used in this paper is given in

Fig. 4. The monthly dataset from 1990 to 2013 with one-

hour time interval have been used here for the forecasting.

Solar dataset for four locations in Queensland, e.g. Cairns,

Gladstone, Rockhampton, and Townsville are considered to

validate the proposed method.

Step 1: Prepare the initial dataset-The historic Typical

Meteorological Year (TMY) dataset from 1990-2013 with

.tm2 file extension are used to generate the weather data for

the proposed algorithm. The System Advisor Model (SAM)

is used to generate the energy output of the PV system [24].

The SAM is developed by the National Renewable Energy

Laboratory (NREL) to estimate the energy output of renew-

able energy systems including PV generators by the physical

model of the system. The PV system in SAM has been

tuned using the manufacturer data of PV cell, inverters,

AC lines, derating factors, and others. Using the specification

of the physical model of PV plant and relevant TMY dataset,

the SAM presents influential weather parameters like global

horizontal irradiance (GHI), direct normal irradiance (DNI),

diffuse horizontal irradiance (DHI), wet bulb, and dew point

temperature in hourly and monthly duration. Fig. 5 illustrates

136226 VOLUME 8, 2020



B. Ray et al.: New Data Driven Long-Term Solar Yield Analysis Model of Photovoltaic Power Plants

FIGURE 4. Process flow.

the output of a PV plant estimated by SAM for a represen-

tative year in Cairns. The obtained output can be exported

to a.csv format to use this as an input to the deep learning

algorithm. The hourly and monthly energy outputs of the PV

plants are also calculated using TMY and physical model

specification in the SAM.

Step 2: Input selection-Initially the generated weather

data were analyzed using the correlation coefficient to find

positive and negative Correlation Index (CI) for parameters

associated with energy production. The CI values in this

paper are calculated based on the Pearson product-moment

correlation coefficient as given in (12) [25]:

CI =

∑

(x − X̄ )(y− Ȳ )
√

∑

(x − X̄ )(y− Ȳ )

(12)

The influential parameters are given in Table 1. As pre-

sented in Table 1, the five major influential input values with

CI > ±0.5 are employed. As can be seen from Table 1,

GHI and DNI are positively correlated while DHI, wet bulb,

TABLE 1. Influential weather parameters.

FIGURE 5. One year meteorological output.

and dew point temperature are negatively correlated with

energy the production.

Step 3: In this step, the dataset are prepared for the training

and testing of the hybrid deep learning structure. The LSTM

part of the hybrid deep learning technique has been used to

predict inputs in tyears (this will be used in Step 4 to calculate

PV output for tnyears using CNN part of the hybrid structure).

The brief overview of dataset preparation and hybrid deep

learning is given next.

A. PREPARATION OF DATASET

From the available solar data, 1990–2014 (25 years), solar

data from 1990 – 2013 are used for training and testing. Solar

data of 2013 and 2014 are used for the validation. Fig. 7 shows

the process flows which used to prepare dataset for training

and testing.
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FIGURE 6. Influential input parameters.

B. DATASET STANDARDIZATION

The standardization process is used to prepare the dataset to

better fit and keep the deviation minimum. For the dataset

matrixMij, the mean and standard deviation are estimated to

get standardizing dataset of S.

µ =

∫ n

ij=1

Mij (13)

σ =

√

∑n
ij=1

(

Mij − M̄
)

n− 1
(14)

δ =

(

Mij − µ
)

σ
(15)

In (13)-(15), Mij is the dataset matrix, S is the standardized

dataset, µ is the mean, and σ is the standard deviation of the

dataset.

C. PARTITION OF TRAINING AND TEST DATA

The 90% of the available data are used for training, while,

the other 10% are used for testing. The training data size can

be estimated as in (16):

T = 0.9 × sin(δ) (16)

D. PREPARE PREDICTORS AND RESPONSES

The training sequences are shifted by n time steps to forecast

the value in future time. This has been done to make sure

that the proposedmethod could learn to predict ahead of input

sequences. The predictor and responses for the proposed

algorithm can be obtained as in (17) and (18):

Xtrain = δ(1 : T − n)) (17)

Ytrain = δ(2 : T) (18)

E. HYBRID DEEP LEARNING ARCHITECTURE

The hybrid deep learning (LSTM-CNN) architecture has

been designed using LSTM and CNN deep learning tech-

niques. Due to the weather variability, it is difficult to predict

PV output accurately in longer time horizon. The CNN

FIGURE 7. Steps to prepare data for machine learning.

has intelligently adapting mechanism to understand complex

relationships of properties in variable nature which moti-

vated us to choose CNN over other deep learning methods

to predict yearly PV output. As illustrated in Fig. 8, a deep

learning network using two LSTM layers denoted as LSTM1

and LSTM1 with 500 and 1000 hidden layers are initially

considered. These LSTM layers then combined with input

data Iyears which is 5 by 12 matrix as presented in (19).

Iyears =





x11 − x1i
− − −

x51 − x5i





i=1...12

years

(19)

The LSTM network is designed with fully connected layer

and regression output layer to getOnyears outputs. The LSTM

network was set with training option properties as given

in Table 2.

The LSTM network is designed to predict input values in

future time of nyears where (nyears = years + n). The value

136228 VOLUME 8, 2020
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FIGURE 8. Hybrid deep learning structure for long term PV forecasting.

TABLE 2. LSTM training values.

of n can be replaced by any number of years. The output

Onyears of LSTM network is 5 by 12 matrix which gives all

influential input values of n years as presented in (20).

O(5×12×1)
nyears =





x11 − x1n
− − −

xi1 − xin





i=1..5

nyears

(20)

Step 4: The output from LSTM network used as the inputs

into the CNN network as presented in Fig. 8. The CNN net-

work is designed with three 2D CNN deep learning networks

followed by equal numbers of BNL, ReLU layers, and APL.

The CNN network also added with DL to handle overfitting.

Finally, it has fully connected layers of 12 outputs for each

year which is followed by the regression layer. The network

was set with training option properties as given in Table 3.

The CNN network is then trained using Iyears where Iyears=

24 from 1990 to 2013. It was then used to predict output

energy Enyears for nyears time as given in (21) (where value

TABLE 3. CNN training values.

of nLSTM = nCNN ).

Enyears =
[

x11 − xin
]i=1...12

nyears
(21)

V. RESULTS AND DISCUSSIONS

A. PREDICTION RESULTS

The forecasted performance is tested in North Queens-

land locations, e.g. Cairns, Gladstone, Rockhampton, and

Townsville. However, due to the brevity, only the results

related to Cairns are presented in this section. Historical

meteorological data from 1990 to 2013 in Cairns has been

used for the training of the model. The downloaded data files

have some low quality, missing data, and format compliance

to SAM and the proposed prediction model. To resolve these

problems, data cleaning has been carried out based on the

physical model. The SAM has also been used for data clean-

ing in this paper. For example, if the PV output obtained more

than the capacity value for very low irradiance or output of

PV at night, flagged as bad data. Sometimes the PV output

could be obtained due to missing data. This is also flagged

as bad data. Similar to [7], 5271 hours out of 5461 daytime

are considered as good data in this work. The bad data are

excluded from the training of the proposed method. Often the

missing data have been filled based on the previous hour of

measurements. The SAM model is later used to compare the

forecast model with the baseline PV model.

After processing the monthly weather input parameters

and energy output estimated by step 1 and step 2 given in

Section IV. The historical dataset of 24 years with a list

of input values are established. These have been processed

later to pepare a input matrix Iyears=24 as in (18) for LSTM

(see step 3). The proposed LSTM algorithm predict output

matix Onyears=6 for 6 years as illustrated in Fig. 9.

In Fig. 9, GHIs from 2014 to 2020 are presented. The

predicted value of GHIs is comparedwith the actualmeasured

values to validate the performance of the proposed method.

From the results, it is evident that the forecasted values

are well-matched with the actual measurements. The rest of

the GHI values from 2015 to 2020 are predicted using the

proposed hybrid algorithm. These predicted values then used

with other predicted input Onyears = 6 as given in (19) to

get the energy outputs from 2015 to 2020 in Cairns (Latitude

−16.8833 and longitude 145.75).
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FIGURE 9. Yearly forecasted GHI in Cairns.

Fig. 10 shows the actual and predicted energy output for

the PV system in Cairns for 2014 to validate the accuracy

of the model. The physical model of the PV system and the

actual meteorological data are used to get the actual value,

FIGURE 10. Monthly energy prediction at Cairns in 2014.

whereas, the predicted meteorological data have been used

to get the PV output for 2014 using the physical model

of PV. From the results given in Fig. 10, it is evident that

the predicted energy output almost accurately matched with

the actual energy output of 2014 with errors less than 3.3.

It should be worth noting that energy prediction in May and

September showed the highest positive errors, while August

has the highest negative error. From the results in Fig. 10, it is

evident that the forecasted energy value closely matched with

the actual values of energy in 2014. Thereby, it is evident that

the proposed method is able to forecast the long-term energy

from PV systems.

The proposed method is further used to estimate the energy

output of a PV system at Cairns. Yearly predicted energy

outputs are given in Fig. 11 for 2015 to 2020. From the yearly

predicted results, it is evident that the energy production

would be high from September to January and low from

February to August – which are the general trends for the

PV systems in North Queensland.

FIGURE 11. Yearly predicted energy value.

B. COMPARATIVE ANALYSIS

There are no standard sets of performance comparison param-

eters to be used in the existing forecasting techniques. Hence,

it is important to cover a reasonable range of performance

parameters for benchmarking the proposed method. Four

well-known forecasting performance parameters such as

RMSE, nRMSE, mean absolute percent error (MAPE), and

Rvalue are used to benchmark the proposed algorithm.

The RMSE is more sensitive to forecast errors [14], [26].

Hence, it is suitable where the small errors are more toler-

able than the larger ones. The RMSE can be expressed as

in (22) [14]:

RMSE =

√

1

N
×

∫ N

i=1

(

PV α
i − PV

f
i

)2
(22)
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In (22), PV a
i is actual PV output power, PV

f
i is forecasted

power, and N the number of observations. The RMSE error

is nomalized with respect to maximum andminimum value of

PV
f
i to get nRMSE as given in (23). It should be noted that the

lower the RMSE and nRMSE values, better the performance

of the algorithm for forecasting.

NRMSE =
RMSE

PV
f
max − PV

f
min

(23)

The MAPE is widely used index to determine the fore-

cast accuracy with respect of scale-independency and inter-

pretability. The MAPE and error variance can be calculated

as in (24) [17], [26], and [27]:

MAPE (%) =
1

FH

∫ FH

t=1

PV α
i − PV

f
i

PV
ρ
t

(24)

where FH is the forecast horizon and PV
p
t is the peak output

power at time t . A higherMAPE value means lower accuracy

of forecasting algorithms whereas lower MAPE value means

high accuracy of the forecasting algorithms.

The Rvalue is the correlation between the predicted values

and the observed values [27]–[29]. It gives an idea about

the model generalization. An Rvalue close to one means,

the forecasting values are highly close to the fitted regression

line and it can be used in more generalized cases. The Rvalue

can be calculated as in (25) [27]–[29]:

Rvalue =






1 −

∑

(

PV α
i − PV

f
i

)2

∑

(

PV
f
i

)2






(25)

Table 4 shows the baseline comparison of the proposed

method against the four well-establishedmethods given in the

literature to forecast the long-term energy from the PV sys-

tem. All four benchmarking performance indices mentioned

earlier are used for the comparison. From the results given

in Table 4, it is evident that the proposed method has the

RMSE of 3.89 which is very low compared to the other meth-

ods. The nRMSE value for the proposed method is 0.0529,

considerably low with compared to others. However, this

can be further improved with training. The given algorithm

outperforms all other existing algorithms in MAPE which

is 2.83 for the studied location. Furthermore, the Rvalue of

the proposed method is 0.9. This indicates that the proposed

method is very close to the fitted regression line. Moreover,

it is worth noting that the Rvalue of the proposed method is

higher with compared to statistical analysis. However, Rvalue

of the given method is slightly low with compared to random

forest and NNE. From the comparative results, it is evident

that the proposed forecasting algorithm is more accurate for

forecasting the long-term energy output from PV system.

Fig. 12 illustrated the values of RMSE and MAPE for all

four studied locations in the North Queensland, e.g. Cairns,

Gladstone, Rockhampton, and Townsville for the proposed

method. From the results given in Fig. 12, it is evident that

the RMSE values are lower than 15 in all studied locations

TABLE 4. Benchmarking of the proposed algorithm–carins.

FIGURE 12. Comparative results of various locations in North
Queensland: (a) RMSE; (B) MAPE.

for the givenmethod.Moreover, the given algorithm has good

forecast quality for various locations with RMSE ranging

between 3.89 – 11.87. It should be worth to note that the

MAPE values of the studied locations are ranging between

2.5 –7.8, which makes the proposed method more reliable in

estimating long-term energy output of PV.

Further analyses are conducted to evaluate the reliability

of the proposed method for different datasets and layers for

LSTM. The RSME, MAPE, nRMSE, and Rvalue are used as

the indices to measure the reliability of the proposed method.

Table 6 gives the performance of the proposed model under

different lengths of training data (i.e. 5 years, 10 years, and

25 years).

Table 7 shows the performance of the proposed method

under different LSTM layers and standard deviation of

indices in relation to result presented in Table 4. From the

results given in Table 6 and 7, it is evident that the mean

standard deviations of all the indices are lower in relation to

actual values presented in Table 4. For example, the average

RMSE standard deviations varies in worst case scenarios

is ±1.2 only whereas ±0.2 best case scenarios. Therefore,

the performance indices for the given method are lower under

various factors affecting the forecasting performance.
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TABLE 5. Rvalue of various locations.

TABLE 6. Performance of the proposed method for various length of
training data.

TABLE 7. Performance of the proposed method for various layer of LSTM.

From the results given in Table 6, it should be worth noting

that the Rvalue reduced significantly for the smaller training

dataset. Moreover, the MAPE value for the lower training

datasets is also high. However, the average changes are low

which suggests that the proposed method is reliable.

VI. CONCLUSION

This paper proposed a new and reliable method forforecast-

ing the long-term output of solar PV. The proposed method

utilized the multivariate long and short-term memory and

convolutional neural network to develop the technique for

forecasting the PV output. This paper utilized the twenty-four

years of historical data from various locations in North

Queensland in Australia to validate the performance of the

developedmodel. Additionalmeteorological parameters have

been used in the proposed algorithm based on their positive

and negative influences on the output of the PV system.

From the given results and comparisons, it is evident that

the proposed method may accurately predict the long-term

output of the PV system for planning studies with RMSE

lower than 15 for all studied locations. Moreover, the pro-

posed method is robust compared to some well-established

methods such as ANN, Random Forest, NNE, and others. The

proposed algorithm was run in MATLAB R2018b (9.5) with

the computational cost for training and prediction of 203.63 s.

Therefore, it could be considered as a low computation cost

algorithm compared to others.

In this study, several assumptions had to make for PV

output forecasting. Therefore, further sensitivity study around

this domain would be performed in the future. This work

will be further extended to forecast the long-term generation

reserve in power systems with high penetration of wind and

solar in Australia.
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