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Abstract Many scientific computing applications and engineering simulations
exhibit noncontiguous I/O access patterns. Data sieving is an important technique to
improve the performance of noncontiguous I/O accesses by combining small and
noncontiguous requests into a large and contiguous request. It has been proven
effective even though more data is potentially accessed than demanded. In this study,
we propose a new data sieving approach namely Performance Model Directed Data
Sieving, or PMD data sieving in short. It improves the existing data sieving approach
from two aspects: (1) dynamically determines when it is beneficial to perform data
sieving; and (2) dynamically determines how to perform data sieving if beneficial. It
improves the performance of the existing data sieving approach and reduces the
memory consumption as verified by experimental results. Given the importance of
supporting noncontiguous accesses effectively and reducing the memory pressure in
a large-scale system, the proposed PMD data sieving approach in this research holds
a promise and will have an impact on high performance I/O systems.
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1 Introduction

Many scientific computing applications and engineering simulations are highly data
intensive. These applications often access a large number of small and noncontig-
uous chunks of data [5, 9]. Even though advanced parallel file systems (such as
PVFS/PVFS2 [3], Lustre [4], GPFS [15]) have been developed in recent years, and
they generally provide high bandwidth for large, well-formed data streams, they
often perform inadequately in dealing with a large number of small and noncon-
tiguous data requests. Data sieving is an important technique that combines small and
noncontiguous I/O requests into a large and contiguous request to reduce the effect of
high I/O latency caused by a noncontiguous access pattern and many small requests
[17, 18]. The data sieving technique has been extensively evaluated and proven
effective in optimizing small and noncontiguous I/O accesses [9, 14, 17, 18]. The
current data sieving technique, however, has two potential limitations. First, the
benefit of data sieving depends on specific access patterns; nevertheless, the existing
data sieving technique is rather static and lacks a dynamic decision based on different
access patterns. If data sieving is enabled in the parallel I/O system, the existing
technique always combines requests to form a large and contiguous request, without
considering specific access patterns. Even though data sieving is beneficial in many
scenarios, the ignorance of access patterns can degrade the I/O performance some
times. For instance, in certain access patterns, the non-requested portion between two
requested portions (also called holes) could be so large that it may not be beneficial to
perform data sieving any more as the sieving may not offset the overhead.

Second, the current data sieving technique has a potential problem of extensive
memory requirement [17, 18]. In the existing algorithm, instead of accessing each
contiguous portion of the data separately, a single contiguous chunk of data
starting from the first requested byte up to the last requested byte is read into a
temporary buffer in memory (in an I/O read case) [17, 18]. The total temporary
buffer that data is read into must be as large as the total number of bytes between
the first and the last byte requested by the user. As multicore/manycore archi-
tectures become universal, the available memory capacity per core is projected to
decrease in high performance computing (HPC) systems. The memory require-
ment of the existing data sieving could be an increasingly important issue.

The detection of beneficial cases and an intelligent, dynamic adoption of the data
sieving technique based on the access pattern can both improve the parallel I/O
performance and reduce the memory consumption of the data sieving technique. In
this study, we revisit the data sieving technique and propose a new data sieving
approach, namely Performance Model Directed Data Sieving (or PMD data sieving
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in short). The newly proposed approach considers the I/O access pattern at run time.
It improves the performance of the existing data sieving technique and reduces the
memory pressure as well. To the best of our knowledge, this work is the first attempt
in developing a dynamic data sieving technique based on access patterns to improve
the parallel I/O performance and reduce the memory consumption.

2 Conventional Data Sieving and Implementation

Data sieving was first used in the PASSION system to access sections of strided
arrays [18]. This technique has been extended in ROMIO to handle general
noncontiguous I/O accesses [14, 17]. The main advantage of data sieving is that it
requires very few I/O requests compared with the direct method in which the
number of I/O requests made is equal to the number of times data is requested.
With the data sieving technique, the I/O performance increases because the
number of I/O calls is reduced and if a large and contiguous request outweighs the
penalty of reading and extracting extra data. The data sieving technique has been
extensively evaluated and proven beneficial for many applications [17, 18].

The implementation of the data sieving technique is straightforward in general. In
the read case, the data sieving approach first reads the entire contiguous chunk
starting from the lowest offset of all requests to the highest offset of all requests. This
contiguous chunk includes non-requested data, also called holes. After the entire
chunk is read into temporary memory, the data sieving approach sieves out non-
requested data. Only the demanded data are kept and copied into user buffer. Given a
large number of I/O requests, and the possible wide distribution of these requests, the
temporary memory requirement of the conventional data sieving technique could be
high. In the write case, it is slightly more complicated than in the read case because
the data sieving needs to perform a read-modify-write operation. In addition, as other
processes can try to access the same region, an atomic read-modify-write is needed.
The data sieving technique has been well implemented in ROMIO, the most popular
implementation of the MPI-IO middleware [14, 17].

3 Performance Model Directed Data Sieving

We propose a new performance model directed data sieving strategy to improve the
I/O performance and to reduce the memory consumption of the existing approach.
The essential idea of this strategy is that we model the performance of I/O requests,
and based on the performance model, the new strategy dynamically determines the
way to perform data sieving based on access patterns and the performance esti-
mated from the model. It is essentially a heuristic data sieving approach that adapts
to different I/O access patterns and makes the decision dynamically.
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3.1 Performance Model

The purpose of a performance model is to estimate the performance of I/O requests
and thus direct data sieving dynamically. The performance model does not need to
be exactly accurate but provides useful heuristic direction. In our model, the time
consumption for each data access primarily contains two parts, the time spent on
accessing storage and the time spent on the network establishment and transmission.
Table 1 lists the parameters considered in the performance model and the descrip-
tions of them. The performance model is simple but effective. It has been verified that
it has clear benefits of improving the performance and reducing the memory
requirement for data sieving via experimental tests.

The basic idea of constructing network time is as follows. For each data access,
the time spent on network, Tnetwork, consists of the time spent on establishing the
connection and the time spent on transferring the data. The storage access time,
Tstorage, consists of the start up time for one storage node I/O operation (s) and the
time spent on the actual data read/write (Trw). The latency for outstanding I/Os (lq
dep) also affects the overall time of data access and hence we consider it in the
performance model as well. As storage node performance varies for read and write
requests, we consider these two operations separately in the model. Thus, the total
time can be written as a function of the above workload characteristics as:

Ttotal ¼ function Tnetwork; Tstorage; lqdep

� �

Table Parameters and
descriptions

Parameters Description

p Number of I/O client processes in a client node
n Number of storage nodes (file servers)
te Time of establishing network connection for

single node
tt Network transmission time of one unit of data
cud Time reading/writing one unit of data
lqdep The latency for outstanding I/Os
sizerd Read data size of one I/O request
sizewr Write data size of one I/O request

Table Formula of deriving
I/O performance

Total time required for
establishing network
connection

te * p

The total time spent on the
network transmission

tt�sizerd
n Ortt�sizewr

n

The total start up (s) time
for I/O operations

p � ðseek timeþ system IO callÞ

Total time spent on the
actual data read/write (Trw)

sizerd�cud
n Or sizewr�cud

n
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In practice, we can find the relations between above workload characteristics
and can derive formulas that guide the performance estimation of I/O requests in a
data sieving approach as shown in Table 2.

Hence, the total required time to access a requested data from the storage node
can be calculated from the above discussed parameters and formula as:

Ttotal ¼ te � pþ tt � sizerd

n
þ p � ðseek timeþ system IO callÞ þ sizerd � cud

n
þ lqdep

The performance model contains those most critical parameters that determine the
performance of an I/O system. With such a performance model, we are able to
analyze the performance of a data sieving approach and perform data sieving
dynamically based on different access patterns. In the proposed PMD data sieving
approach, we explore two levels of improvements over the existing data sieving
approach: (1) with the performance model, the PMD data sieving approach can
dynamically determine when would be good to perform data sieving depending on
specific access patterns; and (2) if it is determined to perform data sieving, the PMD
data sieving approach will also determine how to perform data sieving to achieve the
maximum benefits. We introduce two algorithms to achieve these goals.

3.2 When to Perform Data Sieving

The first algorithm we present for dynamically determining whether to perform data
sieving or not depending on specific access patterns. This algorithm takes requests
(with possible holes), and the rest of the parameters in the performance model as
input, and outputs whether it is beneficial to perform data sieving for such requests.

The algorithm makes the decision of when to perform data sieving dynamically
based on the performance model, access patterns, network, and the storage system
performance. It compares the overhead of accessing holes (time of accessing a
hole) and the time savings with the data sieving (reduced storage and network
startup time and latency due to combined requests), and if the savings outperforms
the overhead, then a data sieving approach is determined to be performed.

The first algorithm is a building block for the second algorithm. The second
algorithm scans all requests from the lowest offset to the highest offset, and
dynamically determines whether to perform data sieving for any two consecutive
requests as discussed in the next subsection.

3.3 How to Perform Data Sieving

If it is determined that the data sieving technique is beneficial then the challenge is
how to do it. The second algorithm solves this issue. The aim of this algorithm is to
find different groups in which data sieving technique can be beneficial.
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This algorithm starts grouping these I/O requests from the lowest offset to the
largest one. This algorithm scans all requests and applies the first algorithm to
determine whether each request should be handled with data sieving or not. For
instance, this algorithm comes across the first request, and then it follows the first
algorithm. Let us assume that it does not follow data sieving technique. Hence, it
will treat the first I/O request independently and will not group with any other
requests. After that it will need to make the decision between second and third
request and assume, again it cannot group them together. In this case also, the
second I/O request will be treated independently and won’t be grouped with any
other. Now, it comes across the third request. Assume this time the algorithm
determines to adopt data sieving. Then, it will be grouped with the consecutive data
request. The algorithm will keep grouping consecutive noncontiguous requests
unless the decision from the first algorithm comes out to be NO. This process will be
continued and the second algorithm will terminate at the end of the last I/O request.

4 Experimental Results and Analysis

In this section, we present the experimental results of the proposed PMD data
sieving. We also compare it with the existing data sieving approach and the direct
method where no data sieving is applied.

4.1 Experimental Environment

The experiments were conducted on a 65-node Sun Fire Linux-based cluster test
bed, with Ubuntu 4.3.3-5 operating system with kernel 2.6.28.10, PVFS 2.8.1 file
system and MPICH2-1.0.5p3 library and runtime environment. The tests were
conducted with three I/O benchmark scenarios, one with all requests and holes
among them have different sizes, one with sparse noncontiguous I/O requests and
large holes exist among requests, and one with dense noncontiguous I/O requests
where small size holes exist among requests. We performed the tests with three I/O
access scenarios and combinations of them to measure the performance. The actual
values of the parameters used in the performance model were obtained through
measurement on the experimental platform. The values are, te: 0.0003 s, tt:
1/120 MB, s: 0.0003 s and cud: 1/120 MB. The run time measured for each
scenario was obtained from the average of 100 runs.

4.2 Experimental Results

The above and following figures report the time comparison between the three
methods, the direct method, the existing data sieving approach and the proposed
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PMD data sieving approach. The Y-axis represents the run time in seconds. The X
axis represents different number of I/O client processes, ranging from 1, 2, 4, 8 and
16. We fixed the number of storage nodes as 16 in these tests. Figure 1 plots the
run time results of all three strategies for the first access scenario. In all cases, the
PMD data sieving approach performed better than the current data sieving
approach and the direct method.

Figures 2 and 3 are similar to Fig. 1, and plot the run time results for the access
scenarios 2 and 3, respectively. The PMD approach performed almost equally well
with the direct method, whereas the existing data sieving technique had worse
performance in this case as shown in Fig. 2. Figure 3 demonstrates that, as the
number of I/O client processes increased, the run time of the direct method
increased drastically. In the case of one process, the direct method performed
better than both data sieving approaches; whereas the direct method performed
worse than the other two in the case of 16 processes.

Fig. 1 Execution time for
access scenario 1 (fixed
storage nodes)

Fig. 2 Execution time for
access scenario 2 (fixed
storage nodes)
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We have also fixed the number of processes at 16 and varied the number of
storage nodes to observe the performance variations. In this set of tests, the storage
nodes were varied from 1, 2, 4, 8 and 16. Figures 4, 5 and 6 report the results of
these tests for access scenarios 1, 2 and 3 respectively. In these figures, the X axis
represents the number of storage nodes while Y axis represents the run time in
seconds. As the number of storage nodes increased, the distribution of requested
data also increased. The transmission time and the time spent on the actual data
read/write were decreased. All the three graphs confirmed the decreasing trend. In
these tests, the existing data sieving performed better than the direct method for
access scenario 3, while the PMD data sieving achieved the best performance in
most cases because of its capability of making data sieving decisions dynamically
based on different access patterns.

5 Related Work

There has been significant amount of research effort in optimizing parallel I/O
performance, such as collective I/O [17], two-phase I/O [2], extended two-phase

Fig. 3 Execution time for
access scenario 3 (fixed
storage nodes)

Fig. 4 Execution time for
access scenario 1 (fixed client
processes)
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I/O [18], data sieving [17], and ADIOS library [8], resonant I/O [21], I/O
forwarding [6]. These strategies demonstrate that data sieving is one of the most
successful and widely used approaches to collect and merge requests into a large
and contiguous one to carry out more efficiently. This study further improves the
data sieving approach and proposes an intelligent performance model directed data
sieving that dynamically makes the decision for when and how to conduct data
sieving. It advances the state of the art in these areas.

Many research efforts have also been devoted to caching and prefetching
optimizations for high performance I/O systems [1, 7, 10, 11, 12, 13, 16, 19], while
prefetching optimizations can hide I/O access latency and caching optimizations
can reduce the I/O requests to underlying storage devices, they cannot completely
eliminate small and noncontiguous I/O requests. The data sieving and the proposed
performance model directed data sieving approach are complementary to them and
are critical for providing a high performance I/O system.

Fig. 5 Execution time for
access scenario 2 (fixed client
processes)

Fig. 6 Execution time for
access scenario 3 (fixed client
processes)
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Parallel file systems [3, 4, 15, 16, 20], enable concurrent I/O accesses from
multiple clients to files. While parallel file systems perform well for large and
well-formed data streams, they often perform inadequately in dealing with many
small and noncontiguous data requests. The data sieving and the enhanced per-
formance model directed data sieving approach proposed in this study address
these issues well. This research will have an impact for high performance parallel
I/O system.

6 Conclusion

Poor I/O performance is a critical hurdle in HPC systems, especially for data-
intensive applications. These applications often exhibit small and noncontiguous
accesses, and it is important to deliver high performance for these accesses. Data
sieving remains a critical approach to improve the performance of small and non-
contiguous accesses [17, 18]. The existing data sieving strategy, however, suffers
large memory requirement pressure and is static. This study proposes a new per-
formance model directed (PMD) data sieving approach and addresses the drawbacks.
The proposed approach is essentially a heuristic data sieving approach directed by
the performance estimation given from a performance model. The PMD data sieving
approach dynamically makes the decision on when and how to perform data sieving
based on different access patterns. The experimental results have confirmed its
benefits and advantages over the widely used conventional method. It improves the
I/O performance and reduces the memory requirement. Given the importance of a
data sieving approach to improve the performance of small and noncontiguous I/O,
the PMD data sieving approach will have an impact on high performance I/O
systems.
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