
Universal Journal of Communications and Network 3(2): 51-56, 2015
DOI: 10.13189/ujcn.2015.030203 http://www.hrpub.org

A New Decentralized Cryptographic Access Control
Solution for Smart-phones

Ernst Piller1,∗, Fernando Moya de Rivas2

1Institute of IT Security Research, University of Applied Sciences St. Pölten, Matthias Corvinus-Straße 15, 3100 St. Pölten, Austria
2Department of Communications and Information Technology, Polytechnique University of Cartagena,

Pza. del Cronista Isidoro Valverde, Edif. La Milagrosa,30202 Cartagena, Spain

Copyright c⃝2015 Horizon Research Publishing All rights reserved.

Abstract As the wireless technologies are becoming
more and more popular and the number of cloud providers
increases due to the growing demand of services and
new emerging concepts like “Cloud computing”, security
concerns are gaining a leading role. Data storage follows
deprecated systems which make the cloud more vulnerable
to data leakage. Besides, commmon cellphones have evolved
to small pocket computers known as smart-phones, running
their own Operating System. These devices are suffering
every year an increment of cyber-attacks owing to weak-
nesses regarding the Operating System policy and the fact of
using wireless standards such as GSM, UMTS, LTE, Wifi
or Bluetooth. Over this document, we propose a new access
control solution based on a cryptographic system managed
by the end-user to add extra security to one’s personal
information on the cloud. It is orientated to smart-phones
and takes into account the computational limitations these
devices may have.

Keywords Cryptographic Access Control, Rabin Cryp-
tosystem, Shamir Secret Sharing Scheme

1 Introduction
In a world with a growing demand of services, where con-

cepts like the Internet of Things (IoT) or Big Data are now a
reality, and considering the rise of the global Internet connec-
tivity as well as its speed average, the current global thinking
has tended to move most part of resources to the cloud (Cloud
Computing), filling the net with loads of data and increasing
the number of cloud storage providers. In addition, the in-
crement of smart-devices and wireless technology in general
has caused people to be nearly permanently connected, send-
ing constantly information to the Internet. As a consequence,
end-users are highly interested in keeping their personal data
securely on the cloud[8] instead of a physical device such as
the hard disk or a pen-drive.

This issue has provoked a rise of net security concerns:

• Is our personal data safe?

• Who has access to this data?

• How can we assure its integrity?

• How to safely share this data?

Researches about this topic have discovered some weak-
nesses on most cloud storage providers, even the major ones,
all of them concerning the way our files are shared. So as to
put the reader into a context, there are usually two ways these
servers provide for file-sharing: email and URL. The first op-
tion does not control which account the user gets logged in
with. On the other hand, the second option does not assure
that this URL is not gonna be widely distributed without the
owner’s permission. Furthermore, it does not even always
follows the HTTP protocol.

Therefore, while the file transference to the cloud is secure
and commonly uses the TLS/SSL protocol, we come across
two different problems. Firstly, the way in which these files
are shared is not completely efficient. Secondly, the way they
are stored is deprecated. It does not usually follow any cryp-
tographic method or, in case it does, it is not possible for the
end-user to use his own cryptographic key, that means, de-
centralize the process. As a result, we cannot be absolutely
sure the administrator of the server has not accessed or even
modified my personal data.

Over this document, we will explain a valid solution to
cope with these security problems. We will call “owner” to
that end-user who is in charge of the key management, that
is, the administrator of the “sharing group”, the master. Like-
wise, we will name “partners”to those end-users who are part
of the sharing group, but do not manage it.

2 ACL vs CAC
Regarding data storage, there are mainly two distinct solu-

tions globally implemented:

• Access Control Lists.

• Cryptographic Access Control[6].

The former consists in a list of permissions which specifies
which users are granted access and what kind of operations

52 A New Decentralized Cryptographic Access Control Solution for Smart-phones

they are allowed to perform. Traditionally these operations
are three at least: read, write and execute. ACLs are cen-
tralized which means there is a third party in charge of given
these permissions. This is the main system found in current
cloud storage providers.

ACLs can be thought of as a building. If someone wants
to gain access to it, he must go to the entry phone, get iden-
tified and say which his intentions are. The system is cen-
tralized and it might keep a record containing all people ac-
cesses, timings, attendance. The problem is the information
stored using this method is not encrypted and can be easily
modified: a trusted central component is needed, not being
suited for cloud storage providers. The content may have
been even modified by the administrator of the building or
someone who entered it by mistake, not being possible then
to make sure of its integrity, authenticity and confidentiality.

The latter refers to that solution where the information is
encrypted by its owner and decrypted for those who want
to get access to this information, implying the necessity of
a key management: generation, exchange, storage, use and
replacement of cryptographic keys.

Depending on how this key management is performed, it
is said the cryptographic access control is centralized or de-
centralized. On one hand, the key management can be done
by the owner of the information. In this case, the key man-
agement is decentralized and has the advantage that the key
is only known by the owner and not by a third party. Hence,
it can be assured the information is authentic, has not been
modified and no unauthorized person has accessed it. The
problem appears when storing the key: there is no backup
and in case the user loses its device or it gets broken, his data
is lost too.

On the other hand, the key management can be performed
by the cloud and in this case it is said it is centralized. Thus,
the cryptographic key is always negotiated with the cloud,
which is also in charge of its distribution and storage, having
this way a backup. Nevertheless, the administrator or person
in charge of the server could access at any time the data stored
on it as the key has been agreed with the server.

In any case, if choosing a cryptographic access control,
there is no impediment for a person who knows the key to
have total access to the information as there is no difference
between accesses: in this case, someone at the entrance of the
building should get identified to get in it, being only capable
of accessing the information he has the key for.

Eventually and so as to gather the advantages of both sys-
tems, the best solution is a combination of both approaches,
where ACLs are used to grant access to some information
which is encrypted, being safer that the key management is
decentralized. Therefore, integrity, authenticity and confi-
dentiality are guaranteed as well as restraining permissions
are used.

3 Solution Adopted

The solution considered by our side is a decentralized
cryptographic access control system, implemented for smart-
phones[7]. The choice of this platform meets the demands
of a great deal of users worried by the rise of cyber-attacks
over these devices[5]. Owing to their lower performance, is-
sues such as memory capacity or computing speed are highly
relevant and must be taken into account.

For being a decentralized solution, the owner must be the
one who takes over the key management, including the key
storage. Our approach consists in a system where crypto-
graphic keys are related to each other, so that only one of
them (the most recent one) must be stored since it would be
enough for a user to calculate and obtain the previous ver-
sions from it. This is performed by a modular operation with
a “public number” known by all the people a user wants to
share his information with. At the same time, only the user
who “starts” encrypting first is capable of computing the new
key versions as he is the only one who has the means to do it:
another modular operation regarding two “private numbers”,
whose multiplication outcome is the “public number”. With
the appropriate bit length, these private numbers are impos-
sible to be achieved out of the public one.

So as to put the reader into a context, let’s picture A wants
to share some information with B and C. He generates a key
and starts encrypting and sharing the ciphertext with B and
C. Thus, another user called D cannot access this shared in-
formation as he does not know the key in use.

Now, let’s figure A wants to share his information with
C no longer. The limitations regarding memory capacity
and computing speed prevent us from implementing a sys-
tem where A had to download all his shared data, decrypt
it, generate a new key, re-encrypt the data, re-upload it and
share again the key with B. Instead, A could just generate
a new key and start encrypting the new files with it, avoid-
ing thus spending time in the process of re-encrypting the old
data since C had already looked into the files, after all.

However, the old files would be encrypted with a differ-
ent key so A and B should save both keys into the memory
(again, a problem regarding capacity and, as we will see, a
storage obstacle for a backup). Besides, if A wanted to share
with a new user called E, he would have to distribute both
keys instead of one, making the process more complicated.
Hence, it would be desirable that the first key generated as
well as the prospective ones had some sort of relationship be-
tween each other so that only one of them had to be stored,
with the only addition of its version, that is, the position the
current key occupy within the timeline. Therefore, E would
receive the most recent key with which he could calculate
the old versions and have access to every shared content, no
matter they key that was used to encrypt them.

All in all, in terms of sharing information, our solution
means some people who may have access to some data could
lose their grant to new files (and/or subsequently modified
ones, but not to old non-modified ones) if the key manager
calculates a new key and does not distribute it or it does, but
excludes some of them. It also means a new partner would
only need the last key in use since he would be capable of
calculating all its previous versions.

Hence, our concerns about speed and capacity in smart-
phones are fulfilled:

• Choosing the right algorithms will guarantee the process
is performed fast enough, not blocking other processes
that might be running on the device.

• The key management performance will permit to store
data on the cloud and avoid downloading all the files to
re-encrypt them in case a new file with different access
grants (meaning someone is not given the key for this
new share) has to be done.

Universal Journal of Communications and Network 3(2): 51-56, 2015 53

• Only one key will be needed to be stored, which is the
last version, since all the previous ones will be able to
be computed by means of current key.

For being a decentralized solution, we have the additional
problem of the key storage: presuming the administrator and
owner of the key and the private numbers lost his phone or
this last one was destroyed, there would be no way to con-
tinue with the secret sharing or at least to generate new keys.
What is more: what if the owner is the only person in the
group? His information will be lost forever. Summarizing,
the point is the owner has no backup for these vital informa-
tion (key and both private numbers).

One solution might be not to create any backup: in case
the phone is lost, CACS key (key + private numbers) is lost
too. Another one may be to store CACS key on one server
and thereby have a backup on the cloud. Nevertheless, that is
precisely what it was intended to avoid from the beginning:
the server administrator having the key. CACS key could be
even split into several parts and stored in different servers. It
could be even mixed byte by byte following some algorithm.
However, it will never stop being plaintext so, all in all, part
of CACS key could be known, making easier to guess it since
if one of these shares is sniffed, the sniffer will have part of
the information. On the other hand, encrypting CACS key
with a different key is not a solution either since we are in the
same situation: what to store the key?.

Fortunately, it exists a good solution based on one of the
last ideas exposed. CACS key could be split in several shares
but following an threshold algorithm called “Shamir Secret
Sharing”[14] by which the shares are securely protected and,
likewise, one sniffer could even get no information out of
several shares, let alone one of them. These shares could
be, afterwards, uploaded to different servers and different
parts of the cloud to make it securer (we do not want all of
them stored on the same server). Besides, the reader must be
aware that the transmissions client-server usually follow the
TLS/SSL protocols, so even to sniff just one of these shares
would be highly complicated for anyone.

4 Key Management
The purpose of this section is to describe the algorithms

implemented and used for the key management: generation,
exchange, storage, use and replacement of cryptographic
keys.

The variables x and y will symbolize different versions of
the key used by the system, p and q are the secret numbers
generated by the “owner” and n is the public number, where
n = p · q

4.1 Generation
CACS solution is based on three “magic” numbers: a key

and two prime numbers p and q. The first one must be shared
with the persons somebody wants to securely share data with.
Nonetheless, the two last ones are known just by the owner
and only the outcome of their multiplication, n, is shared so
as to compute the key replacement, that is, compute previous
versions of the key in case they exist.

Hence, these three numbers must be generated, attending
to some conditions, though. Firstly, p and q are computed,
being verified they both are prime and fulfill:

p ≡ q (mod 4) = 3

These conditions are to be satisfied for the Rabin Cryptosys-
tem to perform valid results (see Replacement section). Then,
another condition is required of the key: a positive Legendre
and Jacobi Symbol regarding both p and q.

(
y

p

)
=

1 if y is a quadratic residue modulo p

−1 if y is a quadratic non-residue modulo p

0 if y ≡ 0 (mod p)

Likewise, if p and q are prime, y will be their quadratic
residue respectively as long as:

y
p−1
2 (mod p) = 1

y
q−1
2 (mod p) = 1

As well as the other conditions, this one has to do with the
Rabin Cryptosystem
.

4.2 Replacement
As it was commented on Section 3, CACS works with keys

which are related to each other. More specifically, these keys
depend on each other so that somewhat only one of them is
needed to calculate the rest of them. For that purpose, the
public number n and the private ones p and q are needed to
be part of the operations regarding this behavior.

The algorithms invoked are Montgomery Reduction The-
orem and both Chinese Remainder Theorem and Rabin
Cryptosystem[9]. The former allows modular arithmetic to
be performed efficiently when the modulus is large, while the
combination of the last ones performs the quadratic residue.

In terms of efficiency, Montgomery Reduction Theorem
can be optimized by means of the following iterative calculus
called “Bunimov method”[2][13]:

P = 0 ;
f o r (i n t i = 0 ; i < n ; i ++) {

P = P + x i ∗ Y ;
i f (P >= M) P = P − M;
Y = 2 ∗ Y ;
i f (Y <= M) Y = Y − M;

}

where, X = {xn, . . . , x1, x0} and the operation computed is
P = X · Y (mod M). xi stands for the bit in the position i.

To calculate the quadratic residue is more complicated and
it needs several steps. The four possible solutions of the equa-
tion are obtained by invoking the Chinese Remainder Theo-
rem:

x1 = b · s · p+ a · t · q (mod n)

x2 = b · s · p+ (p− a) · t · q (mod n) = n− x1

x3 = (q − b) · s · p+ (p− a) · t · q (mod n)

x4 = (q − b) · s · p+ a · t · q (mod n) = n− x3

54 A New Decentralized Cryptographic Access Control Solution for Smart-phones

Here, we have several terms to calculate. This is one of the
reasons this operation is harder. Both a and b are the re-
sult of calling Rabin Cryptosystem. This algorithm has been
commonly used as an asymmetrical encryption algorithm[1],
with the disadvantage of having four possible solutions. If
the plaintext is intended to represent a text message, guessing
is not difficult. However, if the plaintext is intended to rep-
resent a numerical value, this issue becomes a problem that
must be resolved by some kind of disambiguation scheme
such as special structures or padding.

Nonetheless, its use here is with the purpose of computing
an operation so having four different outcomes does not af-
fect the behavior of CACS as long as they are valid solutions
(which is true if the restrictions are fulfilled, for the key, p
and q; see 4.1) since only one of them is needed. Therefore,
a and b can be computed as follows:

a =
√
y (mod p) → a = y

p+1
4 (mod p)

b =
√
y (mod q) → b = y

q+1
4 (mod q)

The last terms left are known as the coefficients of Bézout’s
identity, which can be obtained by means of the Extended
Euclidean Algorithm (whose entries in this case are the se-
cret numbers p and q). This computes the greatest common
divisor (gcd) of two integers a and b as well as the previ-
ously mentioned coefficients. The Bézout’s coefficients are
two number s and t that fulfills:

p · s+ q · t = gcd(p, q)

being p and q two integer numbers, with p > q. In order to
calculate Bézout’s coefficients, an iterative calculus must be
applied which consists of computing a sequence of quotients
uk and remainders rk, with

r0 = p r1 = q

The initial values for s and t are:

s0 = 0 s1 = 1

t0 = 1 t1 = 0

and the next values are calculated as follows:

si+1 = si−1 − ui · si

ti+1 = ti−1 − ui · ti

The computation is finished when rk + 1 = 0. Likewise,
all terms needed for the Chinese Remainder formula are
obtained and CACS is set to perform the key replacement
(and calculus of previous keys).

4.3 Use and exchange
Regarding the key use and exchange, the procedure basi-

cally follows the common standards used worldwide, except
some issues that we will discuss. For the key distribution, an
asymmetric scheme is used wheras a symmetric one is used
for the data encryption. Thus, our solution makes use of a
hybrid key exchange (like PGP solution) with RSA[10] and
AES[3] respectively. The encryption is performed using AES
with “ECB-mode” for the file name and “CBC-mode” for the
file content. Concerning this last one, a random initializa-
cion vector (IV) is randomly generated and appended at the
end of the ciphertext so that the decryption cipher knows the
sequence to use.

Another issue is the AES key length. AES standard
consider three different lengths: 128, 192 or 256 bits. For
security reasons, Rabin Cryptosystem demands 1024-bits
numbers so as to be robust enough and not easy to be hacked.
As a consequence, a hash function (SHA-256[12]) is applied
to get an appropriate length (256 bits in this case).

5 Storage
Regarding the key storage, Shamir Secret Sharing scheme

is applied. In cryptography, a secret sharing scheme is a
method for distributing a secret amongst a group of partici-
pants, each of which is allocated a share of the secret. The se-
cret can only be reconstructed when the shares are combined
together as individual shares are of no use on their own.

More formally, in a secret sharing scheme there is one
dealer and n players. The dealer gives a secret to the play-
ers, but only when specific conditions are fulfilled. The
dealer accomplishes this by giving each player a share in
such a way that any group of k (for threshold) or more
players can together reconstruct the secret but no group of
less than k players can. Such a system is called a (k, n)-
threshold scheme[11]. Particularly, Shamir Secret Sharing
scheme make use of polynomial interpolation (“Lagrange in-
terpolation”) and this is the reason this scheme is so popular.

The essential idea of Adi Shamir’s threshold scheme[14]
is that 2 points are sufficient to define a line, 3 points are
sufficient to define a parabola, 4 points to define a cubic curve
and so forth. That is, it takes k points to define a polynomial
of degree k − 1.

Suppose we want to use a (k, n) threshold scheme to share
our secret S, without loss of generality assumed to be an el-
ement in a finite field F of size P , where 0 < k ≤ n < P ,
S < P and P is a prime number.

Choose at random k− 1 positive integers a1, a2, . . . , ak−1

with ai < P , and let a0 = S. Build the polynomial y =
f(x) = a0+a1x+a2x

2+a3x
3+. . .+ak−1x

k−1. Let us con-
struct any n points out of it, for instance set i = 1, 2, . . . , n to
retrieve (i, f(i) mod p). Every participant is given a point
(an integer input to the polynomial, and the corresponding
integer output). Given any subset of k of these pairs, we can
find the coefficients of the polynomial using interpolation.
The secret is the constant term a0.

In order to reconstruct the secret we will compute La-
grange basis polynomials:

l0 =

(
x− x1

x0 − x1
· x− x2

x0 − x2
· . . . · x− xk1

x0 − xk1

)
(mod p)

Universal Journal of Communications and Network 3(2): 51-56, 2015 55

l1 =

(
x− x0

x1 − x0
· x− x2

x1 − x2
· . . . · x− xk1

x1 − xk1

)
(mod p)

...

lk−1 =

(
x− x0

xk−1 − x0
· . . . · x− xk−2

xk−1 − xk−2

)
(mod p)

Therefore,

f(x) =

k−1∑
j=0

yj · lj(x)

6 Comparison: Solutions on the mar-
ket

Currently on the market, there are several tools based on
decentralized access control systems. They split and, there-
fore, distinguish between storage and confidentiality respon-
sibilities, hence emphasizing, once more, that a cloud storage
provider should only be responsible for storing data and reg-
ulating user-level access. There are two main kinds of tools:
container and file based encryption tools. The latter is the one
in the matter at hand.

These file encryption tools usually work as a third-party
for a great number clouds, such as Dropbox, Google Drive,
Box or Microsoft One Drive. We will highlight two of them:
Boxcryptor and TAVUU.

The first one defines themselves as an “easy-to-use encryp-
tion software optimized for the cloud”, supporting a great
deal of different cloud storage providers and OS platforms.
The file encryption is performed symmetrically and the file
key is added to the resulting bunch of bits after an asym-
metrical encryption. It fulfills the “Confidentiality as a Ser-
vice” paradigm[4] in which a multiple commutative layers of
encryption scheme is used. This means these layers can be
added and removed in an arbitrary order.

The second one is a peer-to-peer solution which avoids the
use of a server, all in all a client-based software solution. As
in the case above, the file encryption is symmetrical and it
makes use of an asymmetric scheme for the key exchange.
The foremost idea is this solution is a hierarchical system,
where one user generates a key as “an entry point” key, which
has a public and a private part and grants access to the parent
directory. Keys for subfolders are discovered by traversing
the file system, depending whether you are authorized. This
authorization comes from a user, called owner or producer,
who can also deauthorize other users, making them incapable
of seeing new files or changes.

The flaw of this approach is its incapability for backup:
as it is a non-server solution, one users password will never
leave his end-point device (computer, mobile phone. . .).
Thus, as a side-effect it is impossible to recover it in case
of forgetting or damage. Our key management approach fol-
lows a modern and secure solution for the key storage, which
offers a user-friendly experience based on a (k, n)-threshold
scheme. The upset is the more shares one wants to split the
key in, the more accounts and password one has to remember.

Besides, these two presented solutions are focused more on
computers than smart-devices. The algorithms they use do

not considered their computational and memory limitations
and, thereby, are not optimized for the use of smart-phones
or tablets. Our solution is more time-efficient in this sense
and, by means of the Rabin-method and the idea of relating
keys to each other, no re-encryption is needed after the owner
decides to exclude one of his partners from the sharing group.

7 Implementation and Testing
This approach has been implemented and tested in an An-

droid environment. We will now attend to some consid-
erations about its implementation. The resulting applica-
tion makes use of different folders for the synchronization
in which we can find:

• Plain files.

• Encrypted files (for testing).

• Meta data needed for the synchronization (revision
number on the server and timestamp in the smart-
device).

• The CACS key, RSA pair of keys and both secret num-
bers, in case of the owner; the CACS key, RSA pair of
keys and the public number, in case of the partner.

The App enables file and folder uploading, downloading,
renaming and deletion. Client-server operations are carried
out immediately while server-client ones are performed
with a 10 seconds latency. All these operations need a
multithreading system.

It has been tested exhaustively by a random group of stu-
dents within a period of one month, installing the App in their
smart-phones. During this time, several development bugs
were corrected to improve its operation and its simple user-
friendly interface. The following considerations arose within
this test:

Process Milliseconds
Key and secret numbers generation 10 GB
Key storage 10 GB
Key recovery 100 MB

Table 1. CACS operation results. Except the last measure, the rest depends
on the speed of the prime number generation. The wide range on the first
measure is due to the restrictions the three numbers must fulfilled between
each other.

The rest of operations (key exchange, use and key sub-
stitution) were performed time-efficiently, barely consuming
time. By these, it was deduced the algorithms CACS solu-
tion implements are suitable for smart-devices, considering
the background idea, as well.

8 Conclusion
Conceivable bugs and weaknesses that might be on cloud

storage providers are coped by our approach, adding a new
grade of security to data storage. By making use of the Rabin
Cryptosystem from an uncommon point of view, we are capa-
ble of setting up a entire cryptographic system which fulfills
with the smart-phones computational limitations. We pro-
pose a decentralized solution where it is the end-user, and not

56 A New Decentralized Cryptographic Access Control Solution for Smart-phones

any third party, who manages the key and we give a solution
for the key storage, based on a (k, n)-threshold scheme.

Over the paper, we have commented one by one all the
pieces which form part of the key management. This sys-
tem has been implemented and tested on Android, but it is
itself a solution not only valid por Android smart-phones, but
general purpose. Finally, we have given several reasons for
which we think cryptographic access control should be added
to current cloud data storage.

REFERENCES
[1] Gilles Barthe, David Pointcheval, and Santiago

Zanella Béguelin. Verified Security of Redundancy-free
Encryption from Rabin and RSA. In Proceedings of the 2012
ACM Conference on Computer and Communications Security,
CCS ’12, pages 724–735, New York, NY, USA, 2012. ACM.
ISBN 978-1-4503-1651-4. doi: 10.1145/2382196.2382272.

[2] Viktor Bunimov and Manfred Schimmler. Completely redun-
dant modular exponentiation by operand changing. In Pro-
ceedings of the 2005 International Conference on Computer
Design, CDES 2005, Las Vegas, Nevada, USA, June 27-30,
2005, pages 224–232, 2005.

[3] Joan Daemen and Vincent Rijmen. The Design of Rijndael.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2002.
ISBN 3540425802.

[4] S. Fahl, M. Harbach, T. Muders, and M. Smith. Confidentiality
as a service – usable security for the cloud. In Trust, Security
and Privacy in Computing and Communications (TrustCom),
2012 IEEE 11th International Conference on, pages 153–162,
June 2012. doi: 10.1109/TrustCom.2012.112.

[5] Minzhe Guo, Prabir Bhattacharya, Ming Yang, Kai Qian, and
Li Yang. Learning Mobile Security with Android Security
Labware. In Proceeding of the 44th ACM Technical Sympo-
sium on Computer Science Education, SIGCSE ’13, pages
675–680, New York, NY, USA, 2013. ACM. ISBN 978-1-
4503-1868-6. doi: 10.1145/2445196.2445394.

[6] Anthony Harrington and Christian Jensen. Cryptographic
Access Control in a Distributed File System. In Proceed-
ings of the Eighth ACM Symposium on Access Control Mod-

els and Technologies, SACMAT ’03, pages 158–165, New
York, NY, USA, 2003. ACM. ISBN 1-58113-681-1. doi:
10.1145/775412.775432.

[7] Takashi Matsunaka, Takayuki Warabino, and Yoji Kishi. Se-
cure Data Sharing in Mobile Environments. In Proceedings of
the The Ninth International Conference on Mobile Data Man-
agement, MDM ’08, pages 57–64, Washington, DC, USA,
2008. IEEE Computer Society. ISBN 978-0-7695-3154-0. doi:
10.1109/MDM.2008.32.

[8] Machigar Ongtang, Kevin Butler, and Patrick McDaniel.
Porscha: Policy Oriented Secure Content Handling in An-
droid. In Proceedings of the 26th Annual Computer Security
Applications Conference, ACSAC ’10, pages 221–230, New
York, NY, USA, 2010. ACM. ISBN 978-1-4503-0133-6. doi:
10.1145/1920261.1920295.

[9] M. O. Rabin. Digitalized signatures and public-key functions
as intractable as factorization. Technical report, Cambridge,
MA, USA, 1979.

[10] Dorothy Elizabeth Robling Denning. Rivest-Shamir-Adleman
(RSA) Scheme. In Cryptography and Data Security, pages
104–109. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1982. ISBN 0-201-10150-5.

[11] Dorothy Elizabeth Robling Denning. Threshold Schemes. In
Cryptography and Data Security, page 179. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1982.
ISBN 0-201-10150-5.

[12] Somitra Kumar Sanadhya and Palash Sarkar. A New Hash
Family Obtained by Modifying the SHA-2 Family. In Pro-
ceedings of the 4th International Symposium on Informa-
tion, Computer, and Communications Security, ASIACCS ’09,
pages 353–363, New York, NY, USA, 2009. ACM. ISBN 978-
1-60558-394-5. doi: 10.1145/1533057.1533103.

[13] Manfred Schimmler and Viktor Bunimov. Fast modular multi-
plication by operand changing. In International Conference on
Information Technology: Coding and Computing (ITCC’04),
Volume 2, April 5-7, 2004, Las Vegas, Nevada, USA, pages
518–524, 2004. doi: 10.1109/ITCC.2004.1286707.

[14] Adi Shamir. How to Share a Secret. Commun. ACM,
22(11):612–613, November 1979. ISSN 0001-0782. doi:
10.1145/359168.359176.

