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Abstract— The accuracy of geophysical parameter estimation
made with interferometric synthetic aperture radar (InSAR)
time-series techniques can be improved with rapidly increasing
available data volumes and with the development of noise
covariance matrices applicable to joint analysis of networks of
interferograms. In this article, we present a new decorrelation
phase covariance model and discuss its role in noise reduction in
unwrapped interferometric phase stacks. We demonstrate with
an example in which we average unwrapped interferogram phase
stacks that span over a transient event how a noise covariance
model can aid in noise reduction. Our model suggests that, for
rapidly decorrelating surfaces (i.e., surfaces with much shorter
correlation time than SAR acquisition intervals), it is preferable
to incorporate all available interferograms from long observation
windows. For slowly decorrelating surfaces (i.e., surfaces with
longer correlation time than SAR acquisition intervals), our
model suggests that a small subset of interferometric pairs is
sufficient. We validate our model and three existing models
of decorrelation phase covariance matrices in both Cascadia,
a region with heavy vegetation cover, and Death Valley, a desert
region with C-band Sentinel-1 A observations. Our proposed
model matches observations with the smallest average discrep-
ancy between theory and observations.

Index Terms— Covariance matrix, decorrelation noise, inter-
ferometric synthetic aperture radar (InSAR) noise reduction.

I. INTRODUCTION

I
NTERFEROMETRIC synthetic aperture radar (InSAR)

is a widely used remote sensing technique that com-

bines coherent radar images to form interferograms, which

can be used to generate high-precision measurements of

surface topography or crustal deformation over large areas

with meter-level resolution [1]–[4]. In the past few years,

three new InSAR satellites, Sentinel-1A/B and ALOS-2,

became operational. In the near future, additional InSAR
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satellites, such as NISAR and ALOS-4, are anticipated to

come online. Featuring higher temporal sampling rates and

wider spatial coverage, this new generation of satellites pro-

vides large volumes of high-quality radar measurements and

thereby makes observations of millimeter-level signals, such

as very slow and long-wavelength interseismic velocities

possible [5].

The accuracy of measured geophysical signals with InSAR

is inherently limited by atmospheric noise and decorrelation.

Atmospheric noise is caused by fluctuations in wave prop-

agation delays through the atmosphere due to the presence

of water vapor. Since the revisit time of SAR satellites

is on the order of days, atmospheric noise is essentially

uncorrelated in time but correlated in space and is often

modeled as a long-wavelength artifact in individual interfero-

grams [6]–[9]. Decorrelation, on the other hand, can be related

to changes between radar measurements in surface scattering

properties, imaging geometries, and thermal noise among

others [10], [11]. Temporal decorrelation due to independent

motions of scatterers in the resolution cell translates to sto-

chastic noise in interferometric measurements. In contrast,

processes that result in both correlation loss and systematic

phase shifts (e.g., variations in soil moisture [12]) have non-

stochastic effects on interferometric stacks [13]–[15] and are

linked with observations of phase biases in short temporal-span

interferograms [16]. In this article, we limit our focus on the

first category of decorrelation that results in stochastic noise

in interferometric measurements.

InSAR time-series techniques are methodologies that exploit

interferogram stacks with the aim of retrieving desired geo-

physical signals while minimizing the effect of decorrelation.

There are two broad categories of InSAR time-series algo-

rithms. One involves identifying “persistent scatterer” (PS)

pixels with highly stable scattering mechanisms [17], [18].

The PS pixels are minimally affected by decorrelation but are

mostly limited to man-made structures and cities. The other

approach involves exploitation of pixels that are affected by

decorrelation, known as “distributed scatterers” (DSs) pixels.

The DS method can be further divided into two categories.

The first category of DS methods is based on the analysis

of unwrapped interferometric phase stacks. For example, the

conventional Small BAseline Subset (SBAS) technique [19]

obtains phase time series by solving a linear system of

equations of unwrapped phases. The SBAS method limits the
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effect of decorrelation by restricting the use of interferometric

measurements to a subset of interferograms with small spatial

and temporal baselines. The second category of DS methods

performs time-series estimation based on the analysis of SAR

correlation matrices before phase unwrapping. Accounting for

target statistics of SAR measurements [20], [21], approaches,

such as SqueeSAR [22] and its ensuing algorithms [23]–[25],

relax the coherence constraint imposed in SBAS and allow for

use of all interferograms [20], [21]. In this article, we focus

on the first category of DS methods that operate on networks

of unwrapped interferometric phases. Hereinafter, we refer to

the first category of DS methods as “SBAS-like time-series

algorithms.”

Phase statistics of multi-interferometric measurements play

a critical part in improving the performance and design

of SBAS-like time-series algorithms. Several studies have

evaluated covariance between interferometric phases. In the

simple mathematical framework developed in [6] to describe

common noise sources in InSAR, decorrelation phase is

modeled as an independent noise term, uncorrelated between

interferograms. More recent works, such as [13], [14], [20],

and [26]–[28], show that interferometric phases are partially

correlated between interferograms and present analytical mod-

els with various forms. With respect to these works, we pro-

pose a new covariance model for decorrelation phase based on

surface scattering characteristics. We compare and validate our

model with previously published models against Sentinel-1

data collected over both low coherence and medium-to-high

coherence areas. We also demonstrate with an example how

a network noise covariance model can facilitate decorrelation

noise reduction.

This article is organized as follows. In Section II, we review

existing decorrelation phase covariance models and then

present the proposed model. In Section III, we demonstrate

how decorrelation covariance models can be incorporated into

SBAS-like time-series algorithms to great effect and provide

theoretical comparisons between the existing and the proposed

models. In Section IV, we validate all models using data

collected by Sentinel-1. We conclude with a summary in

Section V.

II. DECORRELATION PHASE COVARIANCE MODELS

Similar to the definition of the correlation coefficient ρ

between radar measurements, we define γ as the correlation

coefficient between interferometric measurements. Let σ 2
x,i j

denote the variance associated with φdecor
x,i j (by convention,

i < j ), the decorrelation phase component of the interfero-

metric measurement between SAR acquisitions with indices i

and j for pixel x. The covariance of φdecor
x,i j and φdecor

x,kl is

cov
(
φdecor

x,i j , φdecor
x,kl

)
= γ

(
φdecor

x,i j , φdecor
x,kl

)
· σx,i j σx,kl . (1)

Phase variance σ 2
x,i j has been comprehensively studied in

the literature and can either be derived from a probability

distribution function (PDF) of interferometric phases under

the assumption of a DS mechanism [2], [29]–[32] or be

approximated by the Cramer–Rao bound [33] when the cor-

relation coefficient ρ between radar measurements is close

to 1. The main focus of this article is therefore the derivation

of the correlation coefficient between interferometric phases

γ (φdecor
x,i j , φdecor

x,kl ). In this section, we first review the existing

covariance models. Then, we introduce the proposed new

covariance model.

It is worth emphasizing that the focus of this article is the

covariance models for multi-interferometric phase measure-

ments of a single pixel. Hereinafter, we omit the subscript x

to simplify mathematical notations.

A. Existing Models for γ (φdecor
i j , φdecor

kl )

The first statistical evaluation of temporal decorrelation

noise is given by [6], which models decorrelation as a fully

independent noise term in each interferogram in a network

γ
(
φdecor

i j , φdecor
kl

)
= δikδ jl (2)

where δi j = 1, if i = j , and δi j = 0 if otherwise.

In contrast, more recent works, such as [13], [14],

and [26]–[28], argue that decorrelation noise is correlated

between interferograms. De Zan et al. [13] and Rocca [26]

provided estimations under the simplified assumption that

interferometric measurements can be described as circular

complex Gaussian random variables. Samiei-Esfahany and

Hanssen [28] later noted that interferometric phase generally

does not follow a circular Gaussian distribution and provided

a closed-form analytical approximation of the correlation

between interferometric decorrelation phases using the method

of nonlinear error propagation:

cov
(
φdecor

i j , φdecor
kl

)
≈

ρikρ jl − ρilρ jk

2Lρi jρkl

(3)

where L is the number of looks. Note that when i = k, j = l,

(3) becomes the Cramer–Rao bound [33], which is the lower

bound for decorrelation phase variance. Zwieback et al. [14]

also presented a similar equation with (3). We can derive

γ (φdecor
i j , φdecor

kl ) from (3)

γ
(
φdecor

i j , φdecor
kl

)
=

ρikρ jl − ρilρ jk√(
1 − ρ2

i j

)(
1 − ρ2

kl

) . (4)

Since (4) has been derived with an approximation that only

holds for a large coherence, (4) is not a complete covariance

model for decorrelation phase noise.

Attempting to extend the covariance model from high to

moderate coherence level, Agram and Simons [27] started

with a pseudocovariance matrix �̃i f g that is derived from an

SAR coherence matrix �sar and the InSAR incidence matrix A

(Definition of A can be found in [19]) �̃i f g = (1/2)A�sar AT .

The pseudocovariance of φdecor
i j and φdecor

kl is then expressed as

c̃ov
(
φdecor

i j , φdecor
kl

)
=

ρik + ρ jl − ρil − ρ jk

2
(5)

where ρi j is the correlation coefficient between radar mea-

surements si and s j . The pseudocovariance is then used to

approximate the true covariance of φdecor
i j and φdecor

kl

cov
(
φdecor

i j , φdecor
kl

)

=
σi j√

1 − ρi j

· c̃ov
(
φdecor

i j , φdecor
kl

)
·

σkl√
1 − ρkl

(6)
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where the scaling factor σi j/(1 − ρi j)
1/2 implies that

cov(φdecor
i j , φdecor

i j ) = σ 2
i j . We can also derive γ (φdecor

i j , φdecor
kl )

from (6)

γ
(
φdecor

i j , φdecor
kl

)
=

ρik + ρ jl − ρil − ρ jk

2
√

1 − ρi j

√
1 − ρkl

. (7)

For ease of discussion, hereinafter, we refer to the model

suggested in [6] as the “Hanssen model,” the model sug-

gested in [27] as the “Agram–Simons model,” and the model

suggested in [28] as the “Samiei–Esfahany model.” We omit

discussions of models suggested in [13], [14], and [26] to

avoid redundancy as these models are well represented by the

aforementioned three models.

B. New Model for γ (φdecor
i j , φdecor

kl )

In the following, we present a new covariance model based

on surface scattering characteristics. Consider a series of radar

signals s1, s2, . . . , sn acquired at different times observing the

same target. We adopt the style of analysis presented in [10]

si = (
√

ρ∞C +
√

1 − ρ∞ Di )e
iψi (8)

where ψi represents propagation phases (e.g., deformation

signal and atmospheric delay) at time ti , C represents PSs

that remain coherent, and Di represents DSs at time ti that

decorrelate gradually over time. For the sake of simplicity

and without loss of generality, we let C = 1, E[Di ] = 0

and E[|Di |2] = 1 so that the expected intensity of si is unity.

ρ∞ acknowledges the contribution from PSs [34]. Examining

the properties of the DSs in detail

Di D j
∗ = ρd

i j + Ri j (9)

E
[
Di D j

∗] = ρd
i j (10)

where ρd
i j describes the correlation between DSs D at times

ti and t j and Ri j describes the remaining uncorrelated part of

Di D j
∗ and has an expected value of zero. Let zi j represent

the interferometric measurement between signals si and s j

zi j = si s j
∗

=
(
ρ∞ + (1 − ρ∞)Di D j

∗

+
√

ρ∞(1 − ρ∞)
(

Di + D j
∗))ei(ψi −ψ j ). (11)

The correlation ρi j between signals si and s j is

ρi j =
|E[zi j ]|√

E[|si |2]E[|s j |2]
= ρ∞ + (1 − ρ∞)ρd

i j . (12)

Note that ρd
i j can be of any generic form that describes tem-

poral decorrelation of DSs. For example, with an exponential

decay model ρd
i j = exp(−|ti − t j |/τ), (12) takes the form of

the generic decorrelation model presented in [34], [35]

ρ(t) = ρ∞ + (1 − ρ∞)e− t
τ (13)

where τ is the characteristic correlation time of the surface.

Substitute (9) and (12) into (11)

zi j =
(
ρi j + (1 − ρ∞)Ri j

+
√

ρ∞(1−ρ∞)
(

Di +D j
∗))ei(ψi−ψ j ). (14)

The first term of (14) represents coherent signals between

times ti and t j , which is the expected value of zi j , and

the second and third terms are associated with decorrelation

during this time period

zi j − E[zi j ] =
(
(1 − ρ∞)Ri j

+
√

ρ∞(1 − ρ∞)
(

Di +D j
∗))ei(ψi −ψ j ) (15)

where zi j − E[zi j ] represents the zero-mean complex decor-

relation noise component in the interferometric measurement

zi j .

The covariance of the complex decorrelation noise compo-

nents in zi j and zkl is then

cov (zi j , zkl ) = E[(zi j − E[zi j ])(zkl − E[zkl ])∗]
=

(
ρikρ jl − ρ∞

2
)
ei(ψi −ψ j −ψk+ψl ). (16)

The detailed derivation of (16) is shown in Appendix A.

The correlation coefficient between complex interferometric

measurements is therefore

γ (zi j , zkl ) =
|cov (zi j , zkl )|√

E[|zi j − E[zi j ]|2]E[|zkl − E[zkl ]|2]

=
ρikρ jl − ρ∞

2

1 − ρ∞2
. (17)

We find via numerical simulation that the relation between

γ (φdecor
i j , φdecor

kl ) and γ (zi j , zkl ) exhibits a power-law behavior

(see Appendix B)

1 − γ
(
φdecor

i j , φdecor
kl

)
≈ [1 − γ (zi j , zkl )]

1
2 . (18)

Combining (17) and (18), we have

γ
(
φdecor

i j , φdecor
kl

)
= 1 −

√
1 − ρikρ jl

1 − ρ2
∞

. (19)

Note that since we need ρi j in (19), this model is only

practically applicable to multilooked interferograms in which

estimates of correlation coefficients ρi j can be obtained.

III. DECORRELATION REDUCTION IN UNWRAPPED

INTERFEROMETRIC PHASE STACKS:

A STACKING EXAMPLE

Typical SBAS-like time-series algorithms estimate desired

geophysical parameters by linearly combining a set of unwrap-

ped interferometric phase measurements over the same reso-

lution unit on the ground

P = W8 (20)

where P represents the estimated geophysical parameters,

W is the weighting or inversion matrix, and 8 = {φi j} is

the set of unwrapped interferometric phases involved in the

estimation.

Each φi j can be represented as the sum of deformation,

atmospheric noise, and decorrelation noise [4], [18], [19]

φi j = φdef
i j + φatm

i j + φdecor
i j . (21)

Note that we have not included phase noise terms such as

digital elevation model (DEM) error or thermal noise because

they are either deterministic terms that can be reasonably
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well modeled and removed or typically negligible uncorrelated

noise terms. We have also omitted an integer ambiguity term

that accounts for phase unwrapping errors. We assume that

phase unwrapping is performed consistently and accurately in

space and time. Modeling of phase unwrapping errors requires

detailed mapping of terrain-dependent backscatterers and is

beyond the scope of this article. Deformation is a deterministic

process. Atmospheric noise and decorrelation noise, on the

other hand, are stochastic variables with assumed zero means

and are independent of each other because they represent

unrelated physical processes. Therefore, the covariance matrix

for a set of interferometric measurements 8 = {φi j} can be

expressed as

Cov(8) = Cov(8atm) + Cov(8decor). (22)

The covariance matrix for atmospheric noise is well researched

[7], [9], [36]. In this article, we focus on the covariance

matrix for decorrelation phase Cov(8decor). Assuming that no

atmospheric noise is present, we can propagate measurement

uncertainties to uncertainties in the estimated parameters

Cov(P) = W Cov(8decor) W T . (23)

So far, we have described four models for Cov(8decor):

the Hanssen model, the Agram–Simons model, the Samiei–

Esfahany model, and the proposed model. In this section,

we illustrate their differences by feeding each model into (23)

and then comparing their respective predictions of Cov(P).

To achieve that, we need to first specify P and W . While

there are many different deformation scenarios and time-series

processing schemes in real applications, we find that a simple

stacking exercise over a transient event is sufficient for our

purposes.

A. Simulation Setting: Stacking Over a Transient Event

Consider a radar target that decorrelates over time. Assume

that a transient deformation event took place and we have

M consecutive radar measurements acquired over the surface

before the event s1, . . . , sM and M measurements acquired

after the event sM+1, . . . , s2M . Therefore, we have a total of

M2 interferograms that span the transient event

{φ1,M+1, . . . , φ1,2M , . . . φM,M+1, . . . φM,2M }.

Out of these M2 interferograms, there is a maximum of M

interferograms formed using unique pairs of radar measure-

ments. One such combination is

{φ1,M+1, φ2,M+2, . . . , φM,2M }.

The M interferograms with unique pairs of radar measure-

ments are often referred to as “independent interferograms” in

the literature in the context of atmospheric noise mitigation [7],

[36], [37]. Since these interferograms are not necessarily truly

independent, we adopt the term “nonrepeating stack” instead.

In contrast, we refer to the previous group of measurements

with all possible measurements as a “repeating stack.” Note

that in practice, a repeating stack does not have to include all

available interferograms. Assuming that no atmospheric noise

is present

φi j = φdef + φdecor
i j (24)

where φdef corresponds to phase change caused by the tran-

sient event and is present in every interferogram that spans the

event.

To retrieve signals associated with the transient deformation

event φdef , we can average either stack. Both stacking strate-

gies are widely adopted in the literature [37]–[41]. By stacking

a nonrepeating stack, we have

8nrp = [φ1,M+1, φ2,M+2, . . . , φM,2M ]0

W =
[

1

M

1

M
. . .

1

M

]

P = W8nrp. (25)

Similarly, by stacking a repeating stack, we have

8rp = [φ1,M+1, . . . , φ1,2M , . . . φM,M+1, . . . φM,2M ]0

W =
[

1

M2

1

M2
. . .

1

M2

]

P = W8rp. (26)

B. Construction of Cov(8decor)

We are interested in determining σ 2(P) for both stacks.

Adopting the Cramer–Rao bound [33]

σ 2(φi j) =
1 − ρ2

i j

2ρ2
i j

as phase variances, we construct Cov(8decor) using (1) with

γ (φdecor
i j , φdecor

kl ) given by each of the four models.

We also need to specify a temporal decorrelation model

ρ(t). Here, we choose the generic decorrelation model (13).

The parameters in (13) are highly dependent on land cov-

ers, wavelength, and climate [34], [35]. In this simulation,

we examine the impacts of correlation time constant τ and

persistent correlation ρ∞ on Cov(8decor). We also examine

the impacts of different numbers of radar measurements (2M)

and acquisition intervals on the performance of decorrelation

noise reduction.

C. Comparison Between Existing and the Proposed

Decorrelation Covariance Models

Fig. 1 shows the predictions of σ 2(P) from both the existing

and the proposed models for surfaces with varying decorrela-

tion rates and fixed persistent coherence (ρ∞ = 0.1). We use

the ratio between characteristic correlation time τ and SAR

acquisition interval 1t to represent apparent surface correla-

tion time—higher ratio means slower apparent decorrelation.

We set M = 25. The Hanssen model (green lines) predicts

larger phase variance with nonrepeating stacking regardless of

surface decorrelation rates, the Agram–Simons model (blue

lines) predicts zero or small differences between two stacking

strategies with either rapidly or very slowly decorrelating

surfaces, and both the Samiei–Esfahany model (magenta lines)
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Fig. 1. Predicted uncertainty associated with decorrelation noise after
nonrepeating stacking and repeating stacking using the Hanssen model,
the Agram–Simons model, the Samiei–Esfahany model, and the proposed
model.

and the proposed model (red lines) predict significantly higher

noise reduction from repeating stacking when τ/1t < 15

and similar noise reduction performances from either stacking

strategy when τ/1t > 15. In addition, we observe that the

following conditions hold.

1) The Agram–Simons model predicts the highest phase

noise (i.e., the least reduction in decorrelation noise) for

both nonrepeating and repeating stacking. This means

that the Agram–Simons model suggests high correla-

tion between decorrelation noise components. In con-

trast, the Hanssen model, which assumes independence

between decorrelation noise components, predicts the

lowest uncertainty. The Samiei–Esfahany model sug-

gests higher correlation than that suggested by the

proposed model but lower than that suggested by the

Agram–Simons model (within the range of τ/1t plotted

in Fig. 1).

2) Predictions from the Samiei–Esfahany, the Agram–

Simons model, and the proposed model all show a

peak around τ/1t ≈ 6, whereas predictions from the

Hanssen model show a steady decrease with increasing

apparent correlation time τ/1t . Two factors influence

the predicted phase variance: 1) the average phase noise

level in interferograms and 2) the degree of correlation

between decorrelation noise components. The higher

the average phase noise, the higher the predicted phase

variance; the higher the degree of correlation between

decorrelation noise terms, the higher the predicted phase

variance. When τ/1t is small, the correlation between

decorrelation noise terms is negligible in all three mod-

els, and when τ/1t is large, the average phase noise

level is low. Therefore, the predicted phase variances

in all three models are low at both ends of τ/1t but

high in the middle. Since there is no correlation in the

Hanssen model, the predicted phase variance decreases

monotonically with τ/1t .

Fig. 2 shows how varying ρ∞ or the number of SAR mea-

surements (2M) impacts predicted phase noises with respect

to different apparent decorrelation rates τ/1t . Fig. 2(a) shows

that increasing ρ∞ decreases the dependence of predicted

uncertainty on surface decorrelation rate as contributions from

Fig. 2. Influence of (a) ρ∞ and (b) number of SAR measurements with
respect to different apparent decorrelation rates on predicted uncertainty using
the proposed model.

PS increases. Fig. 2(b) shows that for a slowly decorrelat-

ing surface (τ/1t = 10), increasing M increases predicted

uncertainties, whereas for a rapidly decorrelating surface

(τ/1t = 0.1), increasing M reduces predicted uncertainty.

Increasing M is equivalent to increasing the observation

window length. For rapidly decorrelating surfaces, longer

observational window provides additional measurements that

are at a comparable noise level (determined by ρ∞) with the

original stack. Since these measurements are almost inde-

pendent of the original stack, increasing M reduces noise.

In contrast, for slowly decorrelating surfaces, long temporal

span interferograms provide highly correlated measurements

at a higher noise level. Therefore, increasing M increases

noise. The contrasting impacts of M with respect to surface

decorrelation rates again reflect the two factors that influence

the predicted phase variance: 1) the average phase noise level

in interferograms and 2) the degree of correlation between

decorrelation noise terms. Increasing M raises the average

noise level in interferograms but reduces the degree of correla-

tion between decorrelation noise components. Therefore, when

SAR measurements are sampled at a comparable interval with

the surface correlation time (τ/1t = 1), the predicted uncer-

tainty first increases and then decreases when increasing M .

D. Implication for Stacking Strategies

Ultimately, our goal is to effectively reduce decorrelation

noise. Knowledge of Cov(8decor) can help us determine opti-

mal processing strategies. In our simple example of stacking

over a transient event, we compared the performances of

two common stacking practices: nonrepeating stacking and

repeating stacking. If the target decorrelates exponentially

over time, Fig. 1 shows the predictions of performance of

either stack on decorrelation reduction with the given con-

figuration of M = 25 and ρ∞ = 0.1. For example, if radar

measurements are not sampled ten times the rate of surface

decorrelation (τ/1t < 10), the proposed model suggests the

use of repeating stack because the performance differences

between the two stacks are significant. On the other hand,

if τ/1t > 10, the performance differences between the

two stacks are insignificant, nonrepeating stack becomes a

better choice because it involves computation of fewer inter-

ferograms and hence is more efficient. Fig. 2(b) shows that
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for rapidly decorrelating surfaces, it is preferable to have

long observation windows, though the rate of noise reduction

declines with increasing M . In comparison, for surfaces that

exhibit slow decorrelation rates, a small subset of interfero-

metric pairs is sufficient to achieve satisfactory results.

In real applications, the weighting matrix W can take on

more complicated forms than the ones shown in (25) and (26).

Moreover, there are often constraints on M . Nevertheless,

the same procedure as described above can be followed to

guide the choice of W and the set of interferometric pairs to

be used.

IV. VALIDATION WITH REAL DATA

In this section, we compare and assess all four decorrelation

phase covariance models—the Hanssen model, the Samiei–

Esfahany model, the Agram–Simons model, and the proposed

model—with C-band Sentinel-1 data collected in both Cas-

cadia and Death Valley. Similar to Section III, we construct

Cov(φdecor
i j , φdecor

kl ) using (1) with γ (φdecor
i j , φdecor

kl ) given by

each of the four models. Note that we adopt the correlation

forms of the models to avoid estimation bias caused by

phase variance estimation—the Samiei–Esfahany model uses

the Cramer–Rao bound to estimate phase variances, while all

three other models use observed phase variances. Since the

Cramer–Rao bound only holds for high coherence targets and

hence underestimate phase variances of the stacks, we modify

the original Samiei–Esfahany model (3) by adopting observed

phase variances instead. We estimate observed phase variances

of individual interferograms σ 2(φi j) and of averaged stacks

σ 2(φdecor
nrp ) and σ 2(φdecor

rp ) by calculating phase variances inside

50 pixel by 50 pixel boxes (15 by 15 km2 in area), assuming

that the spatial variances of atmospheric noise and phase

unwrapping errors are negligible in the box. It is reasonable

to assume that areas with moderate to high correlations are

reliably unwrapped. Low correlation areas, on the other hand,

are prone to phase unwrapping errors. We assume that phase

unwrapping errors are either uniform or sparsely distributed

inside a small estimation window and hence contribute little

to the overall phase variance.

Similar to Section III, we form both nonrepeating and

repeating stacks that span over a given time interval in both

regions and predict residual decorrelation noise after averaging

each stack using both the proposed and existing decorrelation

phase covariance models. We estimate ρi j using sampled local

averages over 300 m × 300 m windows. We then compare

predicted residual decorrelation noise with observed residual

decorrelation noise.

Both Cascadia and Death Valley exhibit exponential decay

in correlation with time, but with contrasting decorrelation

rates (see Fig. 3). For the Cascadia region, we form a nonre-

peating stack consisting of 40 interferograms and a repeating

stack consisting of 1600 interferograms. For the Death Valley

region, we form a nonrepeating stack consisting of 28 interfer-

ograms and a repeating stack consisting of 784 interferograms.

By averaging the respective stacks, we obtained φnrp and φrp

for both regions.

Comparisons between phase variances associated with φnrp

and φrp are shown in Fig. 4(a) and (b). We obtained σ 2(φdecor
nrp )

Fig. 3. Examples of observed temporal variations of correlation in the
Cascadia and the Death Valley regions. (a) Scatter plots of correlation versus
time in locations A–D. (b) A and B are located in the heavily vegetated
Cascadia region. (c) C and D are located in the desert of Death Valley. A and
B both exhibit a characteristic decorrelation time of roughly 30 days and an
asymptotic coherence ρ∞ of 0.1. C and D, on the other hand, show much
longer decorrelation time of approximately 400 days and 200 days and higher
asymptotic coherence ρ∞ of 0.2 and 0.6, respectively.

Fig. 4. Predicted phase variance and prediction errors after nonrepeating
stacking versus repeating stacking in (a) and (c) Cascadia region and (b) and
(d) Death Valley region. Data (circles) show that for the Cascadia region,
repeating stacking produces smaller phase variances, and for the Death Valley
region, similar phase variances, compared to nonrepeating stacking. Model
predictions are shown in (a) and (b), while their respective errors are shown
in (c) and (d) with the average prediction errors marked by solid lines.
Predictions from the proposed model (stars) match the data best in both cases.
The accuracy of each model prediction is summarized in Table I.

and σ 2(φdecor
rp ) at evenly distributed image grid points. For the

Cascadia region (τ/1t ≈ 1 or 2), the repeating stack yields

smaller uncertainties—on average 0.037 rad2) than the non-

repeating stack—on average 0.284 rad2 [see Fig. 4(a)—beige

circles], confirming predictions from the proposed model. For

the Death Valley region where the apparent correlation time

τ/1t > 20, nonrepeating and repeating stacking produce

comparable results—on average 0.105 rad2 and 0.102 rad2,

respectively [see Fig. 4(b)—beige circles], which are also

consistent with predictions from the proposed model.

Predictions from both existing and the proposed models are

shown in Fig. 4 and Table I. Predictions from the proposed

model (purple stars) match best with actual observations (beige

circles). Predictions from existing models are consistent with
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TABLE I

AVERAGE PREDICTION ERROR FOR EACH MODEL OVER TWO SURFACES.

WE DEFINE PREDICTION ERRORS AS THE DISTANCES (UNIT: [rad]2)
BETWEEN POSITIONS OF DATA POINTS (BEIGE CIRCLES) AND

POSITIONS OF THEIR CORRESPONDING PREDICTION POINTS

(PURPLE STARS, ORANGE SQUARES, CYAN DIAMONDS,
OR MAGENTA INVERTED TRIANGLES) IN FIG. 4

Fig. 5. Results from (a) nonrepeating and (b) repeating stacking over
the February 2016 slow slip event in the Cascadia region. The result from
repeating stacking suffers from less decorrelation noise than the result from
nonrepeating stacking. Areas with less coverage than 20 acquisitions are
masked. Phase measurements are converted to radar LOS measurements.
Results from (c) nonrepeating and (d) repeating stacking in the Death Valley
region. The differences between the two stacking results are minimal.

the simulation results in Section III. For example, in Cascadia

where the decorrelation rate is rapid, the Agram–Simons

model (cyan diamonds) has the highest estimation errors [see

Fig. 4(a) and (c)]. In the Death Valley region where the

decorrelation rate is on the order of years, the proposed model

and the Hanssen model have the lowest estimation errors

[see Fig. 4(d)]. However, predictions from the Hanssen model

systematically deviate from actual observations [see Fig. 4(b)].

Finally, we use an example to illustrate the significant

reduction in decorrelation noise offered by including repeating

interferograms in the stack over rapidly decorrelating areas.

Fig. 5(a) and (b) shows stacks over a slow slip deformation

event [42], [43] that occurred in February 2016 in the Cascadia

region. As a comparison, nonrepeating and repeating stacking

results in Death Valley [see Fig. 5(c) and (d)] show minimal

differences. Slow slip events are usually hard to capture

in the Cascadia region with InSAR due to extremely low

signal-to-noise ratios. Atmospheric noise and decorrelation

are the two main limiting factors. With ten Sentinel-1 SAR

acquisitions before the slow slip event and ten Sentinel-1 SAR

acquisitions after, we formed a nonrepeating interferogram

stack consisting of ten interferograms and a repeating stack

consisting of 100 interferograms. It is apparent that the result

of using repeating stacking yields a much cleaner signal

pattern. Fig. 6 compares phase measurements along four

Fig. 6. Comparisons between nonrepeating and repeating stacking results
over profile lines A-A’, B-B’, C-C’, and D-D’. Repeating stacking (red dots)
produces similar mean measurements as with nonrepeating stacking (blue
dots) but with much 83% less phase variances. Equivalently, repeating stacking
produces measurements with 0.33-cm LOS uncertainties compared to 0.13 cm
after nonrepeating stacking.

profile lines between nonrepeating and repeating stacking.

Again, it is clear that while both stacking strategies produce

measurements of the same expected signal, repeating stacking

produces measurements with 80% less phase variance—the

uncertainty associated with decorrelation reduces from 0.33 to

0.13 cm in the line-of-sight (LOS) direction. With the same

number of independent acquisitions, atmospheric noise is

reduced to the same extent after either nonrepeating stacking

or repeating stacking. Therefore, the significant reduction

in phase noise reflects reduced decorrelation noise in the

repeating stack. It is worth noting that repeating stacking may

also contribute to the reduction of phase unwrapping errors.

Fig. 8 (Appendix C) shows that phase unwrapping errors are

more prevalent in longer temporal baseline interferograms. The

problem of phase unwrapping error reduction is analogous

to that of decorrelation noise reduction. On the one hand,

a repeating stack may help reduce phase unwrapping errors

because of its superior number of measurements. On the other

hand, a repeating stack includes more long temporal baseline

interferograms that are susceptible to phase unwrapping errors.

While detailed statistical models for phase unwrapping errors

are beyond the scope of this work, a reasonable assumption

for phase unwrapping errors in rapidly decorrelating areas is

to treat them as random variables, i.e., the amount of phase

unwrapping errors in a particular pixel varies independently

in different interferograms. Since decorrelation noise can be

treated as an independent noise term for rapidly decorrelating

surfaces, the addition of another random noise term does not

alter the statistical description for overall phase noise. There-

fore, in the Cascadia case, repeating stacking performs better

in reducing overall phase noise than nonrepeating stacking,

as expected from the proposed model.

V. CONCLUSION AND DISCUSSION

We have described a new decorrelation phase covariance

model for unwrapped interferogram phase stacks and com-

pared the proposed model with three existing models—

the Hanssen model, the Samiei–Esfahany model, and the

Agram–Simons model. Validations with Sentinel-1 data col-

lected in both the Cascadia region and Death Valley region

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on January 21,2021 at 22:11:37 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

show that our model best captures decorrelation noise prop-

agation in interferogram stacks. We demonstrated with a

simple stacking exercise that the proposed decorrelation phase

covariance model can facilitate the choice of SBAS-like

time-series processing strategies. The workflow applied to the

stacking example can be easily adapted to general SBAS-like

time-series algorithms in three steps.

1) Obtain the temporal decorrelation characteristics ρ(t) in

the area of interest. In some cases, we may have prior

knowledge or a good estimation of ρ(t). Otherwise,

estimate ρ(t) from the processed stack.

2) Construct the decorrelation phase covariance matrix

with (1) and (19) for the entire interferometric phase

stack 8. Phase variances can be estimated using the PDF

of interferometric phases [2], [29]–[32].

3) Estimate residual decorrelation noise COV(P) using

(23) with different weighting matrices W . Determine the

optimal W and subset of interferometric pairs 8 in terms

of effective noise reduction and efficiency.

As we head into an era with an ever-growing SAR archive,

understanding and quantifying uncertainties associated with

decorrelation noise is of critical importance. A rigorous, com-

prehensive noise covariance model allows the InSAR commu-

nity to better assess uncertainties with InSAR measurements

and to extend InSAR applications from mid-to-high correlation

areas to low-correlation areas.

APPENDIX A

DERIVATION OF (16)

We model the DSs Di as complex Gaussian random vari-

ables. Di ’s can be represented as

Di = ρd
i−1,i Di−1 +

√
1 − ρd

i−1,i

2
ni (27)

where ni is a complex Gaussian random variables with an

expected intensity of unity and is uncorrelated with D’s and

n’s other than itself. With (27), we can derive that

ρd
i jρ

d
jk = ρd

ik (28)

E
(

Di D∗
j

)
= ρd

i j (29)

E(|Di |2|D j |2) = 1 + ρd
i j

2
. (30)

Now, we can derive (16)

cov(zi j − E[zi j ], zkl − E[zkl ])
= E[(zi j − E[zi j])(zkl − E[zkl ])∗]
= E

{
(1 − ρ∞)2 Ri j R∗

kl

+ ρ∞(1 − ρ∞)
(

Di D∗
k + Di Dl + D∗

j D∗
k + D∗

j Dl

)

+ (1 − ρ∞)
√

ρ∞(1 − ρ∞)
(

Ri j

(
D∗

k + Dl

)

+ R∗
kl

(
Di + D∗

j

))}
ei(ψi −ψ j −ψk+ψl )

=
(
(1 − ρ∞)2 E

(
Ri j R∗

kl

)

+ ρ∞(1 − ρ∞)
(
ρd

ik + ρd
jl

))
ei(ψi −ψ j −ψk+ψl )

=
(
(1 − ρ∞)2ρd

ikρ
d
jl

+ ρ∞(1 − ρ∞)
(
ρd

ik + ρd
jl

))
ei(ψi −ψ j −ψk+ψl )

=
(
ρikρ j l − ρ2

∞
)
ei(ψi−ψ j −ψk +ψl ). (31)

Fig. 7. Relation between γ (zi j , zkl ) and γ (φi j , φkl ) exhibits a power-law

behavior 1 − γ (φdecor
i j , φdecor

kl ) ≈ [1 − γ (zi j , zkl )](1/2).

Fig. 8. Three sample interferograms before and after unwrapping. (a) and
(d) Sample interferogram with 48 days temporal baseline. (b) and (e) Sample
interferogram with 264 days temporal baseline. (c) and (f) Sample interfer-
ogram with 480 days temporal baseline. Phase unwrapping errors manifest
as jumps/spikes of 2π rad. Phase unwrapping errors are more prevalent in
longer temporal baseline interferograms.

APPENDIX B

NUMERICAL SIMULATION OF (18)

To find the relation between γ (zi j , zkl ) and φi j , φkl , we sim-

ulate a series of complex Gaussian random variables with

decreasing correlation from 1 to 0. We then compute the

corresponding correlations between phases of these complex

Gaussian random variables (see Fig. 7).

APPENDIX C

SAMPLE INTERFEROGRAMS OF THE CASCADIA STACK

The nonrepeating stack of Cascadia consists of ten inter-

ferograms that have similar temporal baselines (on average

272 days). Fig. 8(b) and (e) shows the wrapped and unwrapped

phases from a nonrepeating stack interferogram with a tem-

poral baseline of 264 days. The repeating stack of Cascadia

consists of 100 interferograms, which includes interferograms
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with temporal baseline ranging from 48 to 480 days. Fig. 8(a)

and (d) shows the wrapped and unwrapped phases from an

interferogram with a temporal baseline of 48 days. Fig. 8(c)

and (f) shows the wrapped and unwrapped phases from an

interferogram with a temporal baseline of 480 days. Phase

unwrapping errors manifest as jumps of 2π radians. Fig. 8

shows that phase unwrapping errors are more prevalent in

longer temporal baseline interferograms.
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