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ABSTRACT Mechanical fault diagnosis is essential in ensuring the safety of production and economic devel-

opment. In the field of fault diagnosis, deep learning has been extensively used due to its excellent feature

learning ability. However, it still suffers from several issues; for example, 1) simultaneous requirements of

features from multiple aspects, including sparsity and robustness, are hardly met due to the limited feature

learning ability of a singlemodel, and 2)most methods deal with preprocessed signals instead of original time

domain signals because of the noise interference and deficiency of a single model. To solve these problems,

this study proposes a new deep fusion network for fault feature learning, which combines two types of deep

learning models, namely, sparse autoencoder and contractive autoencoder, which are respectively applied to

enhance features’ sparsity and robustness and thereby guarantee the representativeness of extracted features

and gain strong anti-interference ability. Consequently, fault diagnosis with original time domain signals

can be realized. Bearing and gearbox fault diagnosis experiments are conducted to verify the performance

of the presented network. Results show that the diagnosis accuracies for two cases are higher than those of

networks based on single contractive autoencoder and sparse autoencoder. These results demonstrate that

the proposed fusion network has superior feature learning ability relative to single model networks and can

deal with original time domain signals by simultaneously enhancing features’ sparsity and robustness.

INDEX TERMS Deep fusion network, feature learning, fault diagnosis, robustness and sparsity

enhancement.

I. INTRODUCTION

Health monitoring of rotating machines in engineering

systems can guarantee sustainable economic develop-

ment [1], [2]. Hen faults are not monitored, they may lead

to economic losses or even casualties [3], [4]. Thus, machine

fault diagnosis is crucial. The diagnostic process consists of

two major steps: extracting features and recognizing faults.

Methods based on signal analysis and processing, as well as

artificial intelligence (AI), are commonly used fault diagnosis

methods. There are various signal-analysis-and -processing-

based fault diagnosis methods [5], [6]. Multivariate statistical

process monitoring methods are effective in fault diagnosis.

The associate editor coordinating the review of this manuscript and

approving it for publication was Youqing Wang .

Wang et al. [7] gave a detailed discussion on these meth-

ods and pointed out several promising directions. In addi-

tion, to deal with the non-Gaussian features, Li et al. [8]

proposed a weighted preliminary-summation-based princi-

ple component analysis method for fault detection, which

improved the fault detection rate and shortened fault detection

time. The latter, which is an intelligent fault recognition

method, has recently attracted the attention of researchers.

Support vector machine (SVM) [9] and artificial neural net-

work (ANN) [10] are the commonly used traditional AI fault

diagnosis methods. Soualhi et al. [11] preprocessed bearing

signals with Hilbert-Huang transform and then used SVM

to detect faults. Zheng et al. [12] applied multiscale fuzzy

entropy and SVM for bearing fault detection. Li et al. [13]

applied ANN for fault classification based on 12 artificially
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extracted sensitive features. Moosavian et al. [14] detected

four different bearing fault conditions by combining discrete

wavelet transform and ANN. Despite the success of the

applications of these AI fault diagnosis methods, they are

still limited by their shallow architecture, which restricts

them from learning distinctive features automatically. This

limitation makes them rely heavily on preprocessing methods

for feature extraction. However, selecting the most suitable

features artificially is difficult and time-consuming [15].

As a solution, deep learning (DL) has been gradually

developed, resulting in methods such as deep belief network

(DBN), autoencoder (AE), and convolutional neural network

(CNN), all of which can extract essential features automat-

ically [16], [17] and are widely applied in fault diagno-

sis [18], [19]. Extensive research indicates that DL diagnosis

methods have superior learning ability and better diagnosis

performance than traditional AI methods. Zhang et al. [20]

proposed a deep CNN for bearing fault detection under

noisy environment and changing loads. Yuan et al. [21] suc-

cessfully combined Hilbert-Huang transform for preprocess-

ing and CNN for bearing fault recognition. Jia et al. [22]

applied AE for mechanical fault diagnosis with frequency

features obtained through Fourier transform. Guo et al. [23]

and Tang et al. [24] proposed an adaptive learning rate algo-

rithm for CNN and DBN to improve the convergence rates

during training and achieved excellent fault diagnosis per-

formance. However, most DL methods are still combined

with preprocessing methods, that is, the inputs of the network

are not original vibration signals [21]–[24]. Shao et al. [25]

constructed a new DL network combining two types of DL

models for fault diagnosis, and the results showed that the

diagnosis accuracy of the proposed method is 8% and 5%

higher than that of the network constructed with one of the

types of DL models, respectively. It shows that a single DL

model has a limited feature learning ability. Thus, prepro-

cessing methods are usually combined with DL networks

consisting of single type of DL model to help mine repre-

sentative features. In addition, noise is a major threat for DL

methods to extract discriminative features without prepro-

cessing, especially when the DL networks are constructed

with single type of DL model. Thus, the reasons for the

above-mentioned DLmethods’ drawback can be summarized

as follows: 1) a single DL model has limited feature learning

ability and cannot extract features from different aspects, and

2) original vibration signals are overwhelmed by noise, and

thus, applying a single DL model to extract discriminative

features with original signals is difficult. Considering that

the collected signals are original vibration signals in the time

domain and command for timeliness of fault diagnosis, auto-

matic fault diagnosis must be realized directly with original

time domain signals. Research shows that among DLmodels,

the contractive autoencoder (CAE) is superior in grasping

internal factors that can directly extract robust features [26]

and is thus suitable for dealing with noise-overwhelmed sig-

nals. Similarly, the sparse autoencoder (SAE) is claimed to be

superior in extracting sparser features, highly discriminative,

and useful for classification [27]. Thus, this study is based

on AE and presents a deep fusion feature learning network

that combines the CAE and SAE to extract robust and sparse

features and then directly realize fault diagnosis with original

collected signals overwhelmed with noise. First, multiple

CAEs are stacked to deal with original signals for robust

feature extraction. Second, multiple SAEs are stacked to

deal with the extracted robust features for sparse and dis-

criminative feature extraction. Finally, a softmax classifier

is used for fault recognition on the basis of these learned

features. Considering the important role of bearings and gear-

boxes in machinery, we investigate two fault diagnosis cases

with bearing and gearbox signals to verify the validity and

superiority of the proposed fusion fault diagnosis network

relative to single models. Moreover, network architecture and

parameter selection are fully discussed. The following are the

summaries of the most contributions of this paper.

1) A new type of deep fusion fault feature learning and

diagnosis network combining the CAE and SAE is proposed

to automatically enhance the robustness and sparsity of the

mined features.

2) The fusion fault diagnosis network can realize fault

diagnosis with original time domain signals without prepro-

cessing. Thus, it exhibits better diagnosis performance than

networks based on traditional models.

The remainder of this paper is organized as follows.

Section 2 briefly introduces the theoretical knowledge

on SAE and CAE. Section 3 discusses the structure

and diagnosis procedure of the proposed fusion network.

Section 4 presents the cases of bearing and gearbox fault

diagnosis to verify the effectiveness and preponderance

of the proposed network. Section 5 comprises discus-

sions about network architecture and parameter selection.

Section 6 presents the conclusions.

II. BRIEF INTRODUCTION TO SPARSE AUTOENCODER

AND CONTRACTIVE AUTOENCODER

A. BASIC AUTOENCODER

The AE is a typical DL model for unsupervised feature

learning that contains three layers as shown in Fig. 1. The

first two layers make up the encoder network, and the latter

two layers comprise the decoder network. The second layer,

which is also referred to as the hidden layer, aims to learn the

compressed features of original inputs.

For datasets
{

x
d
}M

d=1
, if xd denotes one of the input vec-

tors, then the compressed vector hd and reconstruction vector

x̂
d are calculated as in

h
d = f (W (1)

x
d + b

(1)) (1)

x̂
d = f (W (2)

h
d + b

(2)) (2)

where W (1) and W (2) are weight matrixes, b(1) and b(2) are

bias vectors, and f denotes the activation function.

L(xd , x̂d ) represents the reconstruction error between

x̂
d and xd and is expressed as in

L(xd , x̂d ) =
1

2

∥

∥

∥
x
d − x̂

d
∥

∥

∥

2
(3)
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FIGURE 1. AE architecture.

Considering the over-fitting problem,weight decay penalty

term is added to form the overall cost function, which can be

obtained as in

JAE (W , b) =

[

1

M

M
∑

d=1

L(xd , x̂d )

]

+
λ

2

nl−1
∑

l=1

Sl
∑

i=1

Sl+1
∑

j=1

(W
(l)
ji )

2

(4)

where λ is the penalty coefficient; nl and sl are the numbers of

network layer and neurons in layer l, respectively; and W
(l)
ji

is the connecting weight between neuron i and j in layers

l + 1 and l.

Continuous encoding and decoding using the back propa-

gation (BP) algorithm until the cost function is minimized to

a certain acceptable extent results in the optimal parameters
{

W
(1), b(1),W (2), b(2)

}

. hd calculated as in (1) is referred

to as the feature of the original input extracted by the AE

because it contains useful information about the original input

vector xd . The minimization of the cost function is also called

the training process of the AE.

B. SPARSE AUTOENCODER AND

CONTRACTIVE AUTOENCODER

The AE simply copies the inputs. Although the features

can perfectly reconstruct inputs without errors, they are not

guaranteed as discriminative and representative enough for

classification. Therefore, the SAE is proposed.

The SAE and AE share the same structure, but their cost

functions differ. The cost function of the SAE adds a sparsity

penalty term, which causes the inactivity of hidden neurons

and defined as in
S2

∑

g=1

KL(ρ||ρ̂g) =

S2
∑

g=1

(

ρ log
ρ

ρ̂g
+ (1 − ρ) log

1 − ρ

1 − ρ̂g

)

(5)

where ρ is the sparsity parameter that denotes an extremely

small value given artificially. ρ̂g denotes the average

activation value of hidden neuron g and is defined as in

ρ̂g =
1

M

M
∑

d=1

hdg (6)

The cost function of the SAE can be calculated as in

JSAE (W , b) = JAE (W , b) + β

S2
∑

g=1

KL(ρ||ρ̂g) (7)

where β is the penalty coefficient.

The training process of the SAE is the same as that of

the AE. After the training process, the features learned by the

SAE not only contain most of the valid information of the

original inputs but also prevent redundancy to achieve better

sparsity than those learned by the AE. Therefore, the SAE

can extract more discriminative features by enhancing their

sparsity.

The CAE is proposed to extract robust features. The cost

function of the CAE is obtained as in

JCAE (W , b) =
1

M

M
∑

d=1

[

L(xd , x̂d ) + γ

∥

∥

∥
Jf (x

d )

∥

∥

∥

2

F

]

(8)

where Jf (x
d ) denotes the Jacobian matrix defined as in

Jf (x
d ) =




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· · ·
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
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











(9)

where e denotes the number of hidden layer neurons as shown

in Fig. 1. The second term in (8) denotes the contractive

penalty term, which is equivalent to the Frobenius norm of

Jf (x
d ). γ is the penalty coefficient that controls the relative

weight of the reconstruction error and contractive term.

During the training process, the CAE aims to grasp the

internal factor to directly and automatically learn robust fea-

tures [28], [29] by suppressing the impacts of inputs’ changes

on learned features.

In practical applications, multiple AEs, SAEs, or CAEs

are stacked under deep architectures to transform inputs into

abstract and essential features several times because a model

only realizes feature transformation once. Fig. 2 shows the

architecture of the stacked AE. The first two layers is the

encoder network of AE1 for extracting feature1 at a low

level. The second and third layer is the encoder network of

AE2 for extracting feature2 and so on. Through multiple

feature transformations, the most abstract and essential high-

level features can be mined at the penultimate level and are

then used for classification. Multiple SAEs or CAEs can also

be stacked the same way to a stacked SAE or CAE network.

III. PROPOSED DEEP FUSION FEATURE

LEARNING NETWORK

In this study, a new deep fusion fault feature learning and

diagnosis network combining stacked SAE and CAE is pro-

posed to enhance the sparsity and robustness of learned fea-

tures for high-precision fault diagnosis with original time

domain signals.

152554 VOLUME 7, 2019



Y. Qi et al.: New Deep Fusion Network for Automatic Mechanical Fault Feature Learning

FIGURE 2. Architecture of stacked AE.

FIGURE 3. Architecture of feature-enhanced fusion diagnosis network.

The key of the network structure is to determine whether

to enhance the sparsity or robustness of features first, that

is, to place the stacked SAE or CAE in the front layers

of the network. As inputs are original time domain signals

containing a large amount of noise, CAEs are placed in the

front layers of the network for robustness enhancement of

features firstly, and then SAEs are placed behind for sparsity

enhancement. Finally, a softmax classifier is stacked on the

top layer for different health condition classification based

on the mined features. Fig. 3 shows a fusion feature enhanced

diagnosis network combining U CAEs and T SAEs.

Similar to other DL networks based on single type of

model, the training process of the fusion network also

involves pre-training and fine-tuning. Pre-training is applied

for weight initialization, whereas fine-tuning is applied to

learn the most suitable transformation relationship between

extracted high-level features and ideal labels based on ini-

tialized weights, which is crucial for the precision of the

classification. In detail, all CAEs and SAEs are individually

pre-trained one by one. Similarly, the softmax classifier is

pre-trained according to the error between the actual out-

puts and the ideal labels. Then, the weights are initialized,

and the whole network is fine-tuned with BP algorithm to

obtain optimal parameters, which can correctly reflect the

transformation relationship between the inputs and the ideal

output labels. So far, the proposed fusion network is now

well-trained. After each iteration, the weight W
(l)
ij and basis

b
(l)
i can be respectively updated as in

W
(l)
ij = W

(l)
ij − α

∂J (W , b)

∂W
(l)
ij

(10)

b
(l)
i = b

(l)
i − α

∂J (W , b)

∂b
(l)
i

(11)

where α denotes the learning rate.

In this study, the sigmoid activation function is used;

thus,
∂hdj

∂xdi
in (9) can be further expressed as in

∂hdj

∂xdi
= hdj (1 − hdj )W

(1)
ji (12)

Thus, the Frobenius norm of Jf (x
d ) is simplified as in

∥

∥

∥
Jf (x

d )

∥

∥

∥

2

F
=

n
∑

i=1

e
∑

j=1

[

hdj (1 − hdj )W
(1)
ji

]2
(13)

For the hidden layer of the SAE, the inhibition or activation

of the hidden neuron g can be determined by sparsity param-

eter ρ. If the activation value hg is greater than ρ, then this

neuron can be considered as active; otherwise, it is inactive.

Thus, the sparsity of the features learned in the hidden layer

can be defined as in

Sp =
Noinactive

Noall
(14)

where Noinactive and Noall respectively denote the number of

inactive neurons and all neurons of the hidden layer.

Fig. 4 shows the diagnosis flow chart of the proposed

fusion diagnosis network. The inputs of the network are

original signals collected in the time domain without pre-

processing. First, these inputs are randomly divided into two

parts, one part for training and another for testing the con-

structed network. Second, the proposed fusion network is

trained with training datasets through pre-training and fine-

tuning. Finally, the diagnosis performance of the well-trained

fusion network can be validated using testing datasets.

IV. EXPERIMENTAL VALIDATION

A. CASE 1: BEARING FAULT DIAGNOSIS

1) DATA INTRODUCTION

Datasets containing different health conditions collected from

a bearing fault simulation test rig are used to verify the

VOLUME 7, 2019 152555
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FIGURE 4. Diagnosis flow chart of the proposed fusion network.

FIGURE 5. Bearing test rig.

TABLE 1. Description of bearing datasets.

performance of the presented diagnosis network. Fig. 5 shows

the test rig, which includes a drive motor, bolt-nut loading

system, a normal bearing, a testing bearing, an accelerome-

ter, and a data acquisition system. The defect with a width

of 0.4 mm is artificially set at the inner race, outer race,

and rolling element through wire cutting. During sampling,

the accelerometer is placed on the test bearing pedestal and

located in the direction of 12 points. The speed of the motor

without load is 961 rpm, the sampling frequency is 10 kHz,

and the sampling points are 1000. Four health condition sig-

nals are collected: inner race fault (IF), outer race fault (OF),

ball fault (BF), and normal condition (N) as shown in Fig. 6.

The detailed data information and label settings are shown

in Table 1.

FIGURE 6. Bearing time domain signals: (a) IF, (b) OF, (c) BF, and (d) N.

2) VALIDATION RESULTS AND ANALYSIS

The inputs of the fusion network are original time domain

signals, thus the input size is 1000. It is finally determined that

the fusion network consists of three hidden layers, including

two CAEs and one SAE. Contractive coefficient and sparsity

parameter are respectively set to 10−4 and 0.1. Table 2 shows

other specific network parameters, and Fig. 7 shows the

diagnostic result after testing. By observation, only four IF

samples are misdiagnosed as normal. The diagnosis accuracy

for the IF testing samples is 96%, whereas the other three

health condition testing samples are all classified correctly.

Thus, the overall testing accuracy is 99%.

FIGURE 7. Bearing fault diagnosis result of fusion network.

TABLE 2. Parameter settings of the fusion network.

Comparisons between our proposed fusion network and

the standard deep SAE and CAE network, as well as other

152556 VOLUME 7, 2019
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commonly used diagnosis methods such as deep AE net-

work and traditional AI methods with shallow architecture

are conducted to demonstrate the advantage of our proposed

fusion network in feature enhancement and fault diagnosis.

The architecture and parameter settings of the deep SAE,

CAE, and AE networks are the same as those of the proposed

network. ANN is a typical traditional AI method with shallow

architecture; thus, it is set to be a single hidden layer network

with a hidden size of 600. In addition, ANN with 3 hidden

layers is also used for comparison. Epsilon-SVR and radial

basis function kernel are adopted in this study. In addition,

Fast Fourier Transform (FFT) is used as the preprocessing

method and combined with one-hidden-layer ANN and SVM

for comparison. Table 3 presents the diagnosis accuracies of

the abovementioned methods. In sum, the proposed fusion

network achieves the highest diagnosis accuracy when deal-

ing with original time-domain signals.

Making a concrete analysis, the first four methods are DL

methods, whereas the remaining five belong to traditional AI

methods with shallow architecture. When dealing with origi-

nal collected signals, the diagnosis accuracies achieved by the

DL methods are at least 20% higher than those achieved by

SVM and ANN because deep architectures are conducive to

the multi-transformation of features. In conclusion, DLmeth-

ods possess a powerful feature learning ability, and the fea-

tures automatically mined by these methods are essential and

representative enough for classification.

In addition, deep CAE and SAE networks both perform

better than the deep AE network, especially deep CAE. The

diagnosis accuracies achieved by the deep CAE and SAE

networks are 8.25% and 2.25% higher than that achieved by

the deep AE network, respectively. This result indicates that

adding specific robustness or sparsity constraints to the AE is

beneficial to enhance the robustness or sparsity of features

and extract more expressive features. Moreover, for time

domain signals with much noise, the robustness enhancement

of features is sometimes more important. Meanwhile, the

diagnosis accuracy of the fusion network consisting of CAE

and SAE is 6.5% and 12.5% higher than that of the networks

based on single CAE and SAEmodel, respectively, which val-

idates that networks based on a single type of DL model has

the limited feature learning ability. Therefore, the proposed

fusion diagnosis network has the stronger feature learning

ability and is able to combine the advantages of both CAE

and SAE so as to enhance the robustness and sparsity of

mined features and achieve a higher diagnosis accuracy than

deep CAE and SAE networks when dealing with original

signals. When the original signals are preprocessed by FFT,

the diagnosis accuracies of SVM and one-hidden-layer ANN

increase about 40%, which fully validates that preprocessing

methods are beneficial for discriminative feature extraction.

This is the reason why most DL methods are combined

with preprocessing methods. Besides, it also shows the dif-

ficulty of feature extraction without preprocessing. Although

the one-hidden-layer ANN combined with FFT achieves a

1% higher diagnosis accuracy than our proposed method,

it takes some time for preprocessing and cannot get rid of

human interference. In general, the proposed fusion network

achieves superior diagnosis performance when dealing with

original collected time-domain signals.

To visualize the sparsity enhancement of mined features,

Fig. 8 illustrates the sparsity of the features learned in the third

hidden layer of the proposed network and that of deep AE and

CAE networks, that is, features extracted by SAE, AE, and

CAE. The sparsity of the features is calculated using (14).

About 60% of the extracted features in our proposed network

are inactive, and this percentage is higher than that of the

other two networks. Therefore, the SAE is proven to extract

sparser features than the AE and CAE. The proposed net-

work containing SAE is able to carry this characteristic of

enhancing the sparsity of features to make them increasingly

representative.

FIGURE 8. Sparsity of features extracted by different networks: (a) IF,
(b) OF, (c) BF, and (d) N.

3) FEATURE VISUALIZATION

The features of original signals and those extracted in differ-

ent hidden layers are visualized using principle component

analysis (PCA) to validate the feature learning ability of

the proposed fusion network. Fig. 9 shows the visualiza-

tion result. By observation, the features of original signal

cluster have the lowest quality among all features. However,

by transforming the features thrice, the features learned in

the third hidden layer cluster improve and become beneficial

for classification. This phenomenon fully proves that the

proposed network based on DL can automatically extract

discriminative features. Moreover, this finding illustrates that

deep architecture is beneficial in learning essential features

with multiple feature transformations.
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FIGURE 9. Feature visualization with bearing datasets.

B. CASE 2: GEARBOX FAULT DIAGNOSIS

1) DATA INTRODUCTION

Another scenario that can verify the performance of the

proposed fusion network is the gearbox fault diagnosis

case. Gearbox signals are collected from an experimen-

tal platform shown in Fig. 10. The platform comprises

five forward gears and one reverse gear. The third gear

is used as the testing gear. By installing an acceleration

sensor on the shell and setting the speed to 1600 rpm,

vibration signals, including normal (N), slight wear (SW),

medium wear (MW), and broken tooth (BT), are collected

during the whole running cycles as shown in Fig. 11.

The sampling frequency is 3 kHz, and the sample size

is 300.

FIGURE 10. Gearbox platform.

FIGURE 11. Gearbox time domain signals: (a) SW, (b) MW, (c) BT,
and (d) N.

2) VALIDATION RESULTS AND ANALYSIS

The fusion network consists of one CAE and two SAEs, and

the respective sizes of each layer from the input to the output

layer are 300, 200, 100, 50, and 4. The contractive coeffi-

cient and sparsity parameter are set to 10−4 and 0.1, respec-

tively. The learning rate and iteration number of each layer

in Table 2 are applied in this case. Table 4 shows the detailed

information of the gearbox datasets. After training and test-

ing, the proposed fusion network misdiagnoses only four

samples, and the testing accuracy is 98.75%. Fig. 12 shows

the detailed diagnostic result.

Table 5 shows the testing results of the other comparative

methods conducted in Case 1. The deep CAE, SAE, and AE

have the same parameters and structure as the fusion network

used in this case. The hidden size of the one-hidden-layer

ANN is 150.

By observation, the proposed fusion network performs the

best in gearbox fault diagnosis when dealing with original

collected signals, achieving an accuracy that is about 8%, 5%,

and 10% higher than that of the deep CAE, SAE, and AE net-

work, respectively. It fully validates that the fusion network

152558 VOLUME 7, 2019
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FIGURE 12. Gearbox fault diagnosis result of fusion network.

TABLE 3. Diagnosis accuracies of different methods.

TABLE 4. Description of Gearbox datasets.

TABLE 5. Testing accuracies of different methods.

consisting of different DL models is beneficial to strengthen

the feature learning ability as a single DL model has limited

the feature learning ability, especially when dealing with

original signals. Without preprocessing, the performances of

SVM and ANN are poor because of their shallow architecture

and limited feature learning ability. Generally, DL methods

are superior to traditional AI methods in automatic feature

learning with original signals. Moreover, adding robustness

or sparsity constraints to traditional AE is beneficial for

robust and discriminative feature extraction and improved

diagnosis performance. In general, the proposed fusion net-

work combining CAE and SAE has a stronger feature learn-

ing ability than other networks and is superior in extracting

more robust and sparser features. The automatically extracted

features are beneficial for dealing with original time domain

signals overwhelmed by noise. Although the one-hidden-

layer ANN combined with FFT achieves the same diagnosis

accuracy as our proposed method, it cannot meet the real-

time requirements. In sum, the proposed fusion network has

practical application value.

In addition, signals under different signal-to-noise ratios

(SNRs) are used for further validation. As Fig. 13 shows,

deep CAE and SAE network both perform better than

deep AE network under different SNRs, which illustrate

that adding robustness or sparsity constraints is beneficial

for feature extraction and fault diagnosis. Our proposed

fusion network can combine the advantages of the CAE

and SAE and achieves the highest diagnosis accuracy under

different SNRs.

FIGURE 13. Diagnosis accuracies of different DL methods under different
SNRs with gearbox datasets.

Fig. 14 shows the sparsity of the features extracted in the

second hidden layer of the proposed network and the deep

AE and CAE networks. About 60% of the features extracted

with our proposed network are inactive, and this percentage

is about 30% higher than the sparsity of the features extracted

by the other two networks. This result fully demonstrates the

ability of SAE to enhance the sparsity of learned features.

3) FEATURE VISUALIZATION

Fig. 15 shows the feature visualization results with gearbox

datasets. Similar to that in Case 1, the clustering situation

improves with the increase in the number of hidden layers.

Moreover, the features mined from the top layer are clear

enough to be classified to some extent. Therefore, the same

conclusions can be drawn with regard to the capability of the

proposed fusion network to automatically learn representa-

tive features through feature transformation. In conclusion,

multiple feature transformations are highly beneficial for

discriminative feature extraction.

V. DISCUSSION

A. NETWORK ARCHITECTURE DETERMINATION

The architecture of the fusion network is a key factor that

affects its performance in feature learning and fault diagnosis,
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FIGURE 14. Sparsity of features extracted by different networks:
(a) SW, (b) MW, (c) BT, and (d) N.

including the combination order of the CAE and SAE and

their individual quantities.

Take bearing datasets as an example, different combina-

tion orders and quantities under different numbers of hidden

layers are analyzed, and the testing accuracies are shown in

Fig. 16. ‘‘1CAE + 1SAE’’ denotes that the fusion network

consists of one CAE and one SAE, with the SAE stacked after

the CAE. The inputs are initially transformed by the CAE to

enhance the robustness of the features and then by the SAE

to enhance the sparsity. ‘‘1SAE + 1CAE’’ denotes that the

CAE is stacked after the SAE and that the inputs are first

transformed by the SAE and then by the CAE to enhance

the sparsity first and then robustness of the features. Other

representations have similar indications.

By observation, with the increase in the number of hid-

den layers, the highest diagnosis accuracy over different

combinations increases first and then decreases. Thus, it is

not the more hidden layers, the higher diagnosis accuracy.

In addition, it is observed that the highest diagnosis accuracy

achieved by the combination order ‘‘CAE + SAE’’ is higher

than that achieved by ‘‘SAE+ CAE’’ under the same number

of hidden layers. This result implies that using the CAE first

to enhance robustness is more suitable when dealing with

original time domain signals under immense noise interfer-

ence. According to the highest diagnosis accuracy, the archi-

tecture of the fusion network for bearing fault diagnosis is

determined to be ‘‘2CAE+ 1SAE’’. Fig. 17 shows the testing

accuracies under different combinations for gearbox datasets.

When the hidden layer number is 2 or 3, the highest diagnosis

accuracy achieved by the combination order ‘‘CAE + SAE’’

is higher than that achieved by ‘‘SAE+CAE’’.When the hid-

den layer number is increased to 4 or 5, the highest diagnosis

FIGURE 15. Feature visualization with gearbox datasets.

accuracy achieved by ‘‘CAE + SAE’’ is about equal to that

achieved by ‘‘SAE + CAE’’; however, the highest testing

accuracy decreases. Thus, according to the highest diagnosis

accuracy shown in Fig. 17, ‘‘1CAE + 2SAE’’ is the suitable

combination order for gearbox fault diagnosis, which also

illustrates that applying CAE first is more suitable when

dealing with noise-overwhelmed signals.

B. PENALTY PARAMETER SELECTION

Penalty parameters are also important factors that affect the

performance of feature learning and diagnosis. Table 6 and
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FIGURE 16. Diagnosis accuracies of different combinations with bearing
datasets: (a) 2 hidden layers, (b) 3 hidden layers, (c) 4 hidden layers, and
(d) 5 hidden layers.

TABLE 6. Diagnosis accuracies under different penalty parameters with
bearing datasets.

Fig. 18 show the diagnosis accuracies for bearing datasets

under different sparsity parameter ρ from 0 to 0.3 with a step

size of 0.05 and contractive penalty coefficient γ from 10−6

to 10−2 with a step size of 10.

By observation, when γ is greater than 10−4, the diag-

nosis accuracies are lower than 80% regardless of how the

sparsity parameter is selected, that is, the contractive penalty

coefficient dominates at this time. It is can be explained that

a large γ will weaken the weight of the data fidelity term

and cannot extract useful features. Therefore, γ should not

be extremely large. When γ is between 10−6 and 10−4, the

diagnosis accuracies are around 85%; particularly in the large

marked area, the diagnosis accuracies can exceed 95%, that

is, the sparsity parameter dominates. When ρ is set to be

large (0.3) or small (0), the diagnosis accuracies considerably

decrease because extremely redundant or sparse features are

FIGURE 17. Diagnosis accuracies of different combinations with gearbox
datasets: (a) 2 hidden layers, (b) 3 hidden layers, (c) 4 hidden layers, and
(d) 5 hidden layers.

FIGURE 18. Diagnosis accuracies under different penalty parameters with
bearing datasets.

not conducive for fault diagnosis. Finally, the model achieves

the highest diagnosis accuracy when the sparsity parameter

and contractive penalty coefficient are set to 0.1 and 10−4,

respectively. Similarly, different penalty parameters are dis-

cussed with gearbox datasets in Fig. 19 and the same conclu-

sion can be drawn.
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FIGURE 19. Diagnosis accuracies under different penalty parameters with
gearbox datasets.

VI. CONCLUSION

A deep fusion network that combines the CAE and SAE is

presented in this work for automatic feature learning and fault

diagnosis with original time domain signals. The fusion net-

work is capable of learning more robust and sparser features

automatically. First, a stacked CAE is used to transform the

original signals overwhelmed by noise to extract more robust

features automatically. Second, the stacked SAE further

transforms the extracted features into sparser and more dis-

criminative ones. Finally, the extracted high-level features are

classified by a classifier for fault recognition. The proposed

fusion network is verified with bearing and gearbox fault

diagnosis cases and achieves diagnosis accuracies of 99%

and 98.75%, respectively, which are about 6.5% and 8%

higher than those achieved by networks based on single CAE

network and about 12.5% and 5% higher than those of net-

works based on single SAE network. The results fully demon-

strate that compared with single CAE and SAE networks,

the proposed fusion network has stronger feature learning

ability and can effectively deal with time domain signals

under noise interference because of its induced enhancement

of features’ robustness and sparsity. Moreover, the discussion

on network architecture and parameter selection can provide

further guidance for future research.
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