
1

A New Deep Generative Network for

Unsupervised Remote Sensing Single-Image

Super-Resolution

Juan M. Haut, Student Member, IEEE, Ruben Fernandez-Beltran, Mercedes E. Paoletti, Student

Member, IEEE,

Javier Plaza, Senior Member, IEEE, Antonio Plaza, Fellow, IEEE, and Filiberto Pla

Abstract—Super-resolution (SR) brings an excellent op-

portunity to improve a wide range of different remote

sensing applications. SR techniques are concerned about

increasing the image resolution while providing finer spatial

details than those captured by the original acquisition
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instrument. Therefore SR techniques are particularly use-

ful to cope with the increasing demand remote sensing

imaging applications requiring fine spatial resolution. Even

though different machine learning paradigms have been

successfully applied in SR, more research is required to

improve the SR process without the need of external High-

Resolution (HR) training examples. This work proposes a

new convolutional generator model to super-resolve low-

resolution (LR) remote sensing data from an unsupervised

perspective. That is, the proposed generative network is

able to initially learn relationships between the LR and HR

domains throughout several convolutional, down-sampling,

batch normalization and activation layers. Then, the data

are symmetrically projected to the target resolution while

guaranteeing a reconstruction constraint over the LR input

image. An experimental comparison is conducted using

twelve different unsupervised SR methods over different

test images. Our experiments reveal the potential of the

proposed approach to improve the resolution of remote

sensing imagery.

Index Terms—Remote sensing, super-resolution, convo-

lutional neural networks.

I. INTRODUCTION

Remote sensing image acquisition technology is un-

der constant development and now provides improved
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imagery that are useful to tackle new challenges and

needs [1]. Nonetheless, the increasing demand of highly

accurate remote sensing imaging applications, such as

fine-grained classification [2], [3], target recognition [4],

[5], object tracking [6], [7] or detailed land monitoring

[8], still makes the spatial resolution of optical sensors

one of the most important limitations affecting remotely

sensed imagery. In general, the spatial resolution of

an instrument defines the pixel size covering the Earth

surface and, therefore, it describes the ability of the

sensor to capture small image details. Even though

the most technologically advanced satellites are able to

discern spatial information within a squared meter on

the Earth surface [9], the high cost of this acquisition

technology, together with the light physical limitations

when substantially decreasing the sensor pixel size, are

usually important constraints that make algorithmic-

based resolution enhancement techniques an excellent

tool for remote sensing imaging applications [10].

The general objective in super-resolution (SR) [11]–

[14] is to improve the image resolution beyond the sensor

limits. That is, increasing the number of image pixels

while providing finer spatial details than those captured

by the original acquisition instrument. Depending on the

number of input images, it is possible to distinguish

between two kinds of SR methods, single-image [15] and

multi-image [16]. Whereas single-image SR techniques

use a single image of the target scene to obtain the

super-resolved output, multi-image SR methods require

several scene shots simultaneously acquired at different

positions. In remote sensing, the single-image approach

is usually adopted because it provides a more general

scheme to super-resolve any kind of imaging sensor

without the need for a satellite constellation [17], [18].

The single-image SR approach can be considered as

an ill-posed problem since there is not a single solution

for any given low-resolution pixel, i.e. the solution is

not unique. This fact has been traditionally mitigated

by constraining the space of possible solutions using a

strong prior information extracted from a specific set of

images. In this sense, artificial neural networks (ANNs)

have become a powerful tool due to their ability to

learn image priors from any given dataset. Traditionally

used in the pattern recognition fied [19], ANNs have

been also intensively used for the analysis of remotely

sensed imagery [20]–[22], reaching a good performance

without prior knowledge on the input data distribution

and offering multiple training techniques.

With the great evolution of deep learning [23], [24]

(DL) techniques, the ANN architecture has evolved

from the simple linear perceptron classifier to deeper

architectures (multilayer stack of simple modules) called

deep neural networks (DNNs), allowing to create more

complex models which can extract more abstract infor-

mation (features) from the data than shallow ones [25].

DNNs are currently able to perform SR in a successfully

way [26]. In particular, convolutional neural networks

(CNNs) [23] stand out as a powerful image processing

tool due their effectiveness, especially for the analysis

of large sets of two-dimensional images. CNNs have

proven to produce high performance in a great variety of

tasks, such as image analysis and target detection [27]–

[30], pan-sharpening [31], [32], reconstruction of remote

sensing imagery [33] and also image SR [34]–[38]. How-

ever, these supervised techniques require sufficient high-

resolution (HR) training examples in order to perform

properly and generalize well. In addition, they usually

tend to over-fit quickly due to the models’ complexity

and the lack of training data. Note that obtaining rele-

vant remote sensing training data is expensive and time

consuming. Besides, the amount of available training

remote sensing datasets is rather limited, and normally

they suffer from a lack of image variations and diversity.

For these reasons, supervised learning is difficult to carry
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out, while unsupervised learning methods do not need

any external data to train. On the other hand, the CNN

is a very flexible model that can be adapted to different

learning models, such as convolutional autoencoders

(AEs) [39], [40], convolutional deep belief networks

(DBNs) [41], convolutional generative adversarial neural

networks (GANs) [42], convolutional recurrent neural

networks (CRNN) [43] or fully convolutional networks

(FCN) [44], among others. In particular, we highlight

the hourglass network [45], [46], whose topology is

symmetric, related to the convolution-deconvolution ar-

chitecture, and also to the encoder-decoder, characterized

by a first step of pooling down to a low resolution

(composed by convolutional and max pooling layers) and

a second step of upsampling to a higher resolution and

combining features across multiple resolutions.

Following the hourglass approach, a new unsupervised

neural network model is proposed in this work in order

to super-resolve remote sensing images. The novelty of

the proposed approach lies on using a generative random

noise to introduce a higher variety of spatial patterns

which can be promoted to a higher scale throughout the

network according to a global reconstruction constraint.

Even though the relevance of generating new spatial

variations when super-resolving remotely sensed data in

a unsupervised manner, this is, to the best of our knowl-

edge, the first time an unsupervised generative network

model has been successfully formulated to super-resolve

remote sensing imagery. Specifically, a convolutional

generator network has been adopted, where from a given

image XLR ∈ R
C×W×H , a higher resolution version

XHR ∈ R
C×t·W×t·H is generated (being W < t ·W

and H < t ·H , with t being a factor of resolution).

In addition, the algorithm has been adapted to be effi-

ciently executed in parallel on graphics processing units

(GPUs)1 and presents some methodological improve-

ments to make the model more efficient and effective.

To summarize, the main contributions of this work can

be highlighted as follows:

• An hourglass convolutional neural network model

is developed to perform unsupervised super-

resolution.

• In particular, a convolutional generator model has

been implemented to super-resolve low-resolution

remote sensing images.

• Starting from generative random noise, the model

is able to reconstruct the image, promoting it to

a higher scale according to a global reconstruction

constraint.

• Experiments over three datasets, with 2 scaling

factors and 12 different SR methods, reveal the

competitive performance of the proposed model

when super-resolving remotely sensed images.

The remainder of the paper is organized as follows.

Section II presents an overview of single-image SR

methods and their limitations. Section III describes the

methodology employed by the proposed convolutional

generator model. Section IV validates the proposed ap-

proach by performing comparisons with different single-

image SR methods. Finally, Section V concludes the

paper with some remarks and hints at plausible future

research lines.

II. BACKGROUND

A. Brief single-image SR overview

Broadly speaking, single-image SR algorithms can be

categorized into three different groups [53], [54]: image

1The use of high performance computing methods (HPC), including

parallelization with accelerators such as field programmable gate arrays

(FPGAs) and GPUs [47]–[49], or the distribution with clusters and

clouds [50], [51], have demonstrated great utility for the classification

of remote images [52].
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Fig. 1. Super-resolution based on image reconstruction (RE).

reconstruction (RE), image learning (LE) and hybrid

(HY) methods. RE methods aim at reconstructing HR

details in the super-resolved output assuming a specific

degradation model along the image acquisition process,

which is typically defined by the concatenation of three

operators: blurring, decimation and noise. Therefore, RE

methods can be usually defined in terms of the three

following stages (Fig. 1): Stage 1, where the LR input

image (ILR) is upscaled to the target resolution (ILRI)

using a regular interpolation kernel function. In Stage 2,

some physical features are extracted from ILR to estimate

the singularities of the spatial details. Finally, Stage 3

aggregates both the interpolated image (ILRI) and the

extracted LR features to obtain the final reconstructed

result ISR.

Each particular RE method makes its own assumptions

about the imaging model and the reconstruction process

to relieve the ill-posed nature of the SR problem. Some

of the most popular RE approaches are iterative back

projection (IBP) [55], gradient profile prior (GPP) [56],

and point spread function (PSF) deconvolution [57]–

[59]. The rationale behind IBP is based on iteratively

refining an initial interpolation result by means of min-

imizing the reconstruction error between the LR input

image and a simulated low-resolution version of the

super-resolved result. GP takes advantage of the fact

that the shape of the gradient profiles tends to remain

invariant across scales, therefore LR gradient can be

used to reconstruct the output image sharpness. PSF

deconvolution methods tackle the upscaling problem

from a deblurring point of view, that is, they initially

estimate the imaging model PSF and then they try to

remove the interpolated image blur.

Regarding LE methods, this type of techniques are

able to provide a more powerful SR scheme because

they learn the relationships between LR and HR domains

from an external training set containing ground-truth HR

images. As Fig. 2 shows, RE methods can be divided

into three stages: In Stage 1, the relations between LR

and HR components are learned from a specific training

set. Stage 2 aims at estimating the HR components that

are related to the LR input image structures. Finally,

Stage 3 combines the estimated HR components to

generate the final super-resolved result. Over the past

years, different machine learning paradigms have been

successfully applied in LE-based SR. Sparse coding [60],

neighborhood embedding [61] and mapping functions

[62], [63] are among the most popular methods. In

a nutshell, sparse coding-based techniques take advan-

tage of the fact that natural images tend to be sparse

when they are characterized as a linear combination of

small patches. The neighborhood embedding approach

assumes that small image patches of LR images describe

a low-dimensional non-linear manifold with a similar

local geometry to their HR counterparts. Mapping-based

techniques cope with the SR task as a regression problem

between the HR and LR domains.

Lastly, HY techniques work towards reaching an

agreement between RE and LE approaches. In particular,

they perform a training process but only using the

LR input image. The rationale behind HY methods

is based on the patch redundancy property pervading

natural images, which assumes that natural images tend

to contain repetitive structures within the same scale and

over scales as well. Taking this principle into account, it

is possible to find patches which appear in a lower scale,

December 10, 2018 DRAFT



5

Fig. 2. Super-resolution based on image learning (LE).

without any blurring or decimation, and then extracting

their corresponding HR counterparts from the higher

scale image. Eventually, the super-resolved image can be

generated using the LR/HR relationships learned across

scales. In particular, HY methods generally follow the

scheme shown in Fig. 3: In Stage 1, the self-learning

process is conducted, that is, several lower scale images

are initially generated from ILR and then those patches

which tend to appear across scales are extracted. Stage 2

projects the input LR image to the target resolution using

the relations previously learned. Finally, the final super-

resolved result is generated in Stage 3 considering some

sort of reconstruction constraint.

Logically, each specific HY approach defines its own

assumptions about the imaging model and the patch

searching criteria. For example, the work presented in

[64] approximates the blur operator by a Gaussian kernel

and the patch redundancy process is conducted by an

approximation of the nearest neighbor search. Other

works propose different kinds of modifications over this

scheme. It is the case of [65] which introduces a model

extension to enable patch geometric transformations

across scales. Therefore, the number of patch matches

can be increased and consequently the amount of learned

LR/HR relationships. In other works, such as in [66], the

blur operator is estimated at the same time as the SR

output is generated through an optimization process.

B. SR limitations in remote sensing

Each single-image SR methodology has shown to

be particularly effective under specific conditions [15],

[54]. RE methods are able to reduce the noise as

well as the blur and aliasing inherent to interpolation

kernel functions. However, the lack of relevant high-

frequency information in the LR input image limits their

effectiveness to small magnification factors, which can

be an important limitation for many of the currently

operational (moderate) resolution satellites [67].

LE-based techniques potentially overcome these draw-

backs by learning the relationships between LR and HR

domains from an external training set. Nonetheless, the

availability of suitable HR training examples can also be

a serious constraint for many satellites. Note that ground-

truth HR images are usually not available in real sce-

narios, and this may lead to an unrepresentative training

phase with a biased super-resolved result. Eventually, the

application of LE-based SR methods in actual ground

segment production environments is rather limited [68].

HY methods offer the advantage of not requiring any

external training set to learn the LR/HR relationships by

taking advantage of the patch redundancy property over

scales. However, the probability of finding patches sat-

Fig. 3. Super-resolution based on hybrid algorithms (HY).
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isfying this property decreases with the input resolution,

and therefore the amount of useful LR/HR connections

over scales highly depends on the input image.

With all these considerations in mind, unsupervised

RE and HY methods are especially attractive to remote

sensing. While supervised approaches use a training set

of HR images to learn the relationships between the

LR and HR domains [69]–[71], unsupervised approaches

only make use of the target LR image to generate the

corresponding super-resolved output result. Moreover,

supervised network architectures implement a regressor

function to project general LR image patches onto the

HR domain. However, in a real-life remotely sensed data

production environment there is not actual HR captured

by the sensor. In this sense, unsupervised methods do

not require the availability of HR images to train a

general SR model, super-resolving each specific LR

input image without using any other external data and

providing the opportunity to offer new super-resolved

data products in satellite and airborne missions that use

relatively inexpensive sensors without the need of using

any external HR training set. Nevertheless, the number

of works in the remote sensing literature dealing with

the unsupervised SR problem is rather constrained, and

this is precisely the gap that motivates this work.

In [72], authors propose a SR approach using a back-

propagation neural network as a regression function,

and basing on (i) spectral unmixing, (ii) super-resolution

mapping and (iii) self-training, which is exploited taking

advantage of the embedding provided by the spectral

unmixing process itself. However, this approach could

be highly affected by the spectral simplex geometry

of the input image [73]. In contrast, a hybrid (also

called self-learning) SR scheme has been proposed in

this work to super-resolve remote sensing data from an

unsupervised perspective, basing on a new end-to-end

convolutional generator model. The rationale behind the

proposed approach is based on learning the relationships

between the LR and HR domains by down-sampling the

original input image to a lower scale and then using the

learned relations at a lower scale to project the LR input

image to the target resolution. However, the amount of

spatial information that it is possible to retrieve from a

down-sampled LR image may be limited, so a random

generative noise has been additionally introduce together

with a global reconstruction constraint to activate a

higher amount of consistent spatial variations along the

SR process. That means, random spatial variations are

initially generated to be introduced in the self-learning

process in order to mitigate the ill-posed nature of the

SR problem. Regarding the proposed network global

scheme, it provides a similar end-to-end framework to

other deep learning-based approaches, e.g. [69]–[71],

where the original LR image is used to learn the down-

sampling filters at the same time that they are also used

to generate the super-resolved output.

III. METHODOLOGY

Traditionally, a generator network is an algorithm for

image generation, where given a random variable z, the

model is able to learn internal relationships (represented

by the model parameters θ) to generate an image X =

fθ(z), i.e. a regression problem. This allows us to learn

the distribution of the data and the correlations between z

and X . We can follow this approach in order to perform

SR over remote sensing images, where z ∈ R
C×W×H is

random noise and X ∈ R
3×W ′×H′

is the desired RGB

high resolution image.

Given a LR image XLR ∈ R
3×W×H the SR’s goal is

to improve the image resolution beyond the sensor limits

obtaining a HR version XHR ∈ R
3×t·W×t·H from XLR,

where t is the resolution factor and W < t·W , H < t·H .

In order to do this, a deep model based on CNNs has

been implemented. This kind of networks are composed
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Fig. 4. The proposed 2D-CNN architecture model follows a symmetric topology. The input image z goes through a first step of down-sampling

composed by blocks (d(1), d(2), ..., d(N)) of several CONV, down-sampling, BATCH-NORM and activation layers, where each n
(j)
d

and k
(j)
d

(with j = 1, 2) are the number of filters and kernel sizes of each down-sampling connection d(i). Then, symmetrically, data goes through the

up-sampling step, where the output of each block u(i) (with number of filters n
(j)
u and kernel size k

(j)
u , j = 1, 2 and composed by CONV,

BATCH-NROM, up-sampling and activation layers) is combined with the features of the corresponding di through a skip connection si, which

also has a number of filters n
(1)
s and a kernel size k

(1)
s and is composed by a CONV, a BATCH-NORM and an activation layers.

by layers that are applied over defined regions of the

input data, i.e. they are local-connected to the input,

transforming the input volume to an output volume of

neuron activations which will serve as input to the next

layer. The fact that each layer is not completely con-

nected to the previous layer (only with a patch/window

defined as the receptive field) is a great advantage for

data analysis, reducing the number of connections in the

network, where each layer composes feature extraction

stages working as a filter or kernel over patches of the

input volume.

Depending on the treatment of the data, CNNs can

be classified into three categories. Supposing that x(i) ∈

R
C = [x

(i)
1 , x

(i)
2 , ..., x

(i)
C ] is a pixel with C spectral bands

of image X ∈ R
C×W×H , with i = 1, 2, ...,W ·H , while

P (j) ∈ R
b×p×p is a patch of X , where p is the width

and height (with p ≤ W and p ≤ H) and b the number

of spectral bands of the patch (with b ≤ C). 1D-CNN

models take separately as input data each pixels vector

x(i), extracting only spectral information [74]. On the

other hand, 2D-CNNs extract spatial information, taking

as input data the entire image X [75] or image patches

P (j) [76], where C and b are set to small values, i.e. the

spectral information is not very relevant compared to the

spatial information. Finally, 3D-CNNs extract spectral-

spatial information, taking normally as input data patches

P (j) of the original image X [29], [30], where C and

b are set to large values, i.e. the spectral information is

very relevant and it is combined with spatial information.

Usually, for panchromatic and RGB remote sensing

images, a 2D-CNN approach is taken while 1D- and 3D-

CNNs are usually for multi- and hyperspectral images.

This paper works with RGB remote sensing datasets, so

a 2D-CNN architecture has been implemented to take
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advantage of the spatial information contained in the

images. It is composed by five different kinds of layers,

described below:

• Convolution layer (CONV): this kind of layer is

composed by a block of neurons where each slice

(also called filter or kernel) shares its weights and

biases between all the neurons that compose it.

Given a CONV layer C(i), its output volume O(i)

(also called feature maps) can be calculated follow-

ing equation 1 as the dot product between the n(i)

slices’ weights W (i) and biases B(i) (being n(i) the

number of depth slices, also known as number of

filters or kernels) and a small region of the input

volume O(i−1), i.e. a rectangular section of the

previous layer C(i−1), defined by the kernel size

k(i) of the current layer C(i):

O(i) = (O(i−1) ·W (i))f,l +B(i) =

k(i)
∑

m=1

k(i)
∑

n=1

(

o
(i−1)
f−m,l−n · w

(i)
m,n

)

+B(i) (1)

being o
(i−1)
f,l the feature (f, l) of the feature map

O(i−1) ∈ R
W,H , with f = 1, 2, ...,W and l =

1, 2, ..., H , and w
(i)
m,n the weight (m,n) of weight

matrix W (i) ∈ R
k(i),k(i)

.

As result, O(i) ∈ R
n(i),W ′,H′

forms a data cube

whose depth is defined by the number of kernels

n(i) (that indicates the number of output feature

maps) and its width and height are calculated as:

W ′ =
(Wk + 2P )

S
+ 1 and H ′ =

(Hk + 2P )

S
+ 1

respectively, where P indicates the padding (zeros)

added to the input data borders and S indicates the

stride of the kernel over the data. W and H are

respectively the width and height of the previous

feature maps O(i−1) ∈ R
n(i−1),W,H .

• Batch normalization layer (BATCH-NORM): nor-

mally it is placed behind the convolution layer and

it applies the normalization defined by equation 2

over the batch data:

y =
x−mean[x]
√

Var[x] + ǫ
· γ + β (2)

where γ and β are learnable parameter vectors, and

ǫ is a parameter for numerical stability.

• Activation layer: after CONV and BATCH-NORM

layers, the activation layer or non-linearity layer

embeds a non-linear function that is applied over

the output of previous layer, as the rectified linear

unit (ReLU) [77], [78]. In this case, the LeakyReLU

function is implemented [79]:

f(x) =







x if x > 0

αx if x ≤ 0

(3)

where α is a small non-zero parameter, normally

0.001.

• Down-sampling/Up-sampling layer: the proposed

model also implements down-sampling and up-

sampling layers at certain locations of the archi-

tecture. The first one reduces the spatial resolu-

tion of the input volumes by reducing the width

and height with a resolution factor t. A max

pool function is generally implemented to perform

the down-sampling, however the proposed model

down-samples the input data setting the strides of

certain CONV layers to S = 2. Additionally, the

up-sampling layers try to reconstruct the data size

using the bilinear function given a scaling factor.

The proposed methodology provides a novel approach

to effectively super-resolve remote sensing data from

an unsupervised perspective. Specifically, our model

receives the random noise-vector z as input data, which

is resized into a cube matrix R
C×t·W×t·H in order

to feed the network, where W and H are the width

and height of the original LR remote sensing image,

C = 3 is the number of spectral channels, and t is the
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resolution factor. Following a fully-connected hourglass

architecture [45], [80], z goes through two main steps

composed by several blocks:

1) The down-sampling step is composed by N blocks

of layers, called d(i) (i = 1, 2, ...N ), where the

input of each one is the feature maps of the

previous one. Each d(i) is composed by an ini-

tial CONV layer C
(1)
d that performs the down-

sampling step by its stride S = 2, dividing the

output volume size by two. This output volume

feeds the BATCH-NORM layer and the non-linear

LeakyReLU activation function. The output of the

neuron activations feeds the second CONV layer

C
(2)
d without down-sampling (i.e. S = 1) and

also followed by a BATCH-NORM layer and the

LeakyReLU activation function. C
(1)
d and C

(2)
d

have their own number of filters (n
(1)
d and n

(2)
d )

and their own kernel size (k
(1)
d and k

(2)
d ).

In fact, each block d(i) is reducing the space

information, i.e. generating a low spatial resolution

data that will feed the second up-sampling step.

2) The up-sampling step is symmetric to down-

sampling one and it is also composed by N blocks

of layers, called u(i) (i = N, ..., 2, 1), where the in-

put of each one is the output of the previous one. In

this case, each u(i) is composed by several stacked

layers. The first one is a BATCH-NORM layer,

followed by the first CONV layer C
(1)
u (which

maintains the size of the data, i.e. S = 1) and

its BATCH-NORM and LeakyReLU function. The

output of the neuron activations feeds the second

convolutional layer C
(2)
u (which also maintains the

size of the data). After the BATCH-NORM and the

activation function, the output will finally feed the

bilinear up-sampling layer with factor equal to 2.

Again, C
(1)
u and C

(2)
u have their own number of

filters (n
(1)
u and n

(2)
u ) and their own kernel size

(k
(1)
u and k

(2)
u ).

Both steps, down-sampling and up-sampling, are sym-

metrical and connected by skip connections, i.e. the input

of each up-sampling block u(i) is combined with the

corresponding d(i) through the skip connection s(i) (i =

1, 2..., N ) composed by a CONV layer C
(1)
s , with its

number of filters n
(i)
s and its kernel size k

(i)
s , a BATCH-

NORM layer and the activation function, LeakyReLU.

In fact, the output of s(i) is concatenated to the input of

u(i). The chosen topology is depicted in Fig. 4. At the

end of the topology, an output block is added, composed

with a CONV layer and a sigmoid function at the end.

As result, a HR image XHR
o ∈ R

3×t·W×t·H is generated

as output of the network.

In particular, the SR’s goal is to generate a HR image

from a LR one, minimizing the following cost function:

min ‖ φ(XHR)−XLR ‖2 (4)

In fact, our remote sensing datasets are composed by HR

images. However, we cannot use them because they can-

not be considered as ground-truth to perform SR. In or-

der to solve this, a LR version is generated from each HR

image by a down-sampler φ : R3×t·W×t·H → R
3×W×H ,

so XLR = φ(XHR). In our case the down-sampler φ

has been implemented using Lanczos3 resampling [81],

where pixels of the original image XHR are passed into

an algorithm that averages their color/alpha using sinc

functions. With this LR version we can perform the SR

task. However, the model is generating a HR image,

XHR
o . In order to solve this, the down-sampler function

φ is applied over XHR
o . At the end, equation 4 can be

rewritten as:

min ‖ φ(XHR)−φ(XHR
o ) ‖2→ min ‖ XLR−XLR

o ‖2

(5)

The cost function defined by equation 5 is optimized

iteratively by the model via Adam optimizer [82]. The
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proposed method is summarized in Algorithm 1. Also,

in Fig. 8 we can observe the XHR
o image generated by

the model at each epoch.

Algorithm 1 Unsupervised remote sensing single-image

super-resolution algorithm

1: procedure SR MODEL(XLR, t) ⊲

XLR ∈ R
C×W×H original low resolution remote

sensing image, t resolution factor

2: z ← Random noise with size C × t ·W × t ·H

3: repeat

4: XHR
o ←model net(z)

5: XLR
o ← φ

(
XHR

o

)
⊲ φ is Lanczos3

6: loss = MSE(XLR, XLR
o )

7: ADAM Optimizer(loss)

8: z ← XHR
o

9: until Reach maximum epoch

10: return XHR
o

11: end procedure

In order to test the proposed model, two networks have

been implemented. The first one performs a 2x SR over

a LR image XLR ∈ R
3×W×H , i.e. the resolution factor

is set to t = 2, obtaining a XHR ∈ R
3×2·W×2·H HR

image, and the second one performs a 4x SR, i.e. t = 4

obtaining a XHR ∈ R
3×4·W×4·H HR image. Following

the scheme presented in Fig. 4, both models have been

implemented with the topology described in Tables I and

II.

A. Metrics

In order to compare the properties of the obtained

XHR
o image with regard to the original remote sensing

image XHR, several evaluation metrics have been used.

For the sake of simplicity, we rename XHR
o = Xo and

XHR = X , being x
(i)
o and x(i) the i-th pixels of Xo

and X respectively.

TABLE I

NETWORK TOPOLOGY FOR 2X SUPER-RESOLUTION. THE

UP-SAMPLING PHASE HAS BEEN PERFORMED WITH A

SCALE-FACTOR SET TO 2.

Block ID CONV ID
Kernel size Number of kernels

Stride
k
(j)
d

/k
(j)
u /k

(j)
s n

(j)
d

/n
(j)
u /n

(j)
s

Down-sampling connections

d(1)
C

(1)
d

3× 3 256 2

C
(2)
d

3× 3 256 1

d(2)
C

(1)
d

3× 3 256 2

C
(2)
d

3× 3 256 1

Bottle-neck connection

d(3)
C

(1)
d

3× 3 256 2

C
(2)
d

3× 3 256 1

Up-sampling connections

u(2)
C

(1)
u 5× 5 256 1

C
(2)
u 1× 1 256 1

u(1)
C

(1)
u 5× 5 256 1

C
(2)
u 1× 1 256 1

Output connections

u(0)

C
(1)
u 5× 5 256 1

C
(2)
u 1× 1 256 1

C
(3)
u 1× 1 3 1

Skip connections

s(1) C
(1)
s 1× 1 3 1

s(2) C
(1)
s 1× 1 3 1

Following equation 6, where nsamples is the number

of pixels of X and Xmax and Xmin are the maximum

and minimum values of image X , respectively, the

normalized root mean square error (NRMSE) measures

the distance between the data predicted by a model, Xo,

and the original data observed from the environment X

that we want to model.

NRMSE(X,Xo) =

√

1
nsamples

·
∑nsamples

i=0

(

x(i) − x
(i)
o

)2

(Xmax −Xmin)
(6)

Peak signal-to-noise ratio (PSNR) [83] represents a

better image quality than NRMSE. This metric is defined

as the standard index for SR, being MAXf the maximum

signal value that exists in the original X image. A higher

PSNR value indicates that the reconstructed image Xo
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TABLE II

NETWORK TOPOLOGY FOR 4X SUPER-RESOLUTION. THE

UP-SAMPLING PHASE HAS BEEN PERFORMED WITH A

SCALE-FACTOR SET TO 2.

Block ID CONV ID
Kernel size Number of kernels

Stride
k
(j)
d

/k
(j)
u /k

(j)
s n

(j)
d

/n
(j)
u /n

(j)
s

Down-sampling connections

d(1)
C

(1)
d

3× 3 256 2

C
(2)
d

3× 3 256 1

d(2)
C

(1)
d

3× 3 256 2

C
(2)
d

3× 3 256 1

d(3)
C

(1)
d

3× 3 256 2

C
(2)
d

3× 3 256 1

d(4)
C

(1)
d

3× 3 256 2

C
(2)
d

3× 3 256 1

d(5)
C

(1)
d

3× 3 256 2

C
(2)
d

3× 3 256 1

Bottle-neck connection

d(6)
C

(1)
d

3× 3 256 2

C
(2)
d

3× 3 256 1

Up-sampling connections

u(5)
C

(1)
u 3× 3 256 1

C
(2)
u 1× 1 256 1

u(4)
C

(1)
u 3× 3 256 1

C
(2)
u 1× 1 256 1

u(3)
C

(1)
u 3× 3 256 1

C
(2)
u 1× 1 256 1

u(2)
C

(1)
u 3× 3 256 1

C
(2)
u 1× 1 256 1

u(1)
C

(1)
u 3× 3 256 1

C
(2)
u 1× 1 256 1

Output connections

u(0)

C
(1)
u 3× 3 256 1

C
(2)
u 1× 1 256 1

C
(3)
u 1× 1 3 1

Skip connections

s(1) C
(1)
s 1× 1 3 1

s(2) C
(1)
s 1× 1 3 1

s(3) C
(1)
s 1× 1 3 1

s(4) C
(1)
s 1× 1 3 1

s(5) C
(1)
s 1× 1 3 1

is of higher quality.

PSNR(X,Xo) = 20 · log10
MAXf

RMSE(X,Xo)
(7)

Spectral angle mapper (SAM) [84] calculates the

angle between the corresponding pixels of the super-

resolved image Xo and original image X in the domain

[0, π].

SAM(X,Xo) =
1

nsamples

·

nsamples∑

i=0

arccos
x(i) · x

(i)
o

∥
∥x(i)

∥
∥ ·
∥
∥
∥x

(i)
o

∥
∥
∥

(8)

The universal image quality index, also called Q-

index, gathers three different properties in the image

evaluation: (a) correlation, (b) luminance and (c) con-

trast.

Q(X,Xo) =

nbands∑

j








a
︷ ︸︸ ︷
σIR

σX σXo

b
︷ ︸︸ ︷

2 X Xo

(X)2 (Xo)2

c
︷ ︸︸ ︷

2 σX σXo

(σX)2 (σXo
)2








j

(9)

An extension of Q-index is the structural similar-

ity (SSIM) [85], a well-known quality metric used to

measure the similarity between two images. It is a

combination of three factors (loss correlation, luminance

distortion and contrast distortion).

SSIM(X,Xo) =
(2µXµXo

+ c1) ∗ (2σXXo
+ c2)

(
µ2
X + µ2

Xo
+ c1

)
∗
(
σ2
X + σ2

Xo
+ c2

)

(10)

Erreur relative globale adimensionnelle de synthese

(ERGAS) [86] measures the quality of obtained Xo

taking into account the scaling factor to evaluate the

super-resolved image.

ERGAS(X,Xo) =

100

nsamples

√
√
√
√ 1

nbands

nsamples∑

i=0

(

RMSE(x(i), x
(i)
o )

x(i)

)2

(11)

IV. EXPERIMENTS

A. Experimental Configuration and Datasets

In order to test the performance of the proposed

model, several experiments have been conducted using

two different hardware environments:

• A GPU environment composed by a 6th Genera-

tion Intel R© CoreTMi7-6700K processor with 8M of
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Cache and up to 4.20GHz (4 cores/8 way multi-

task processing), 40GB of DDR4 RAM with a serial

speed of 2400MHz, a GPU NVIDIA GeForce GTX

1080 with 8GB GDDR5X of video memory and 10

Gbps of memory frequency, a Toshiba DT01ACA

HDD with 7200RPM and 2TB of capacity, and an

ASUS Z170 pro-gaming motherboard. The software

environment is composed by Ubuntu 16.04.4 x64 as

operating system, Pytorch [87] 0.3.0 and compute

device unified architecture (CUDA) 8 for GPU

functionality.

• A CPU enviroment composed by Intel Core i7-4790

@ 3.60GHz, 16GB of DDR3 RAM with a serial

speed of 800MHz, a Western Digital HDD with

7200RPM and 1TB of capacity. The software en-

vironment is composed by Windows 7 as operating

system and Matlab R2013a.

It should be noted that our proposed method has

been executed on the GPU environment, while the other

methods have been executed in the CPU environment.

Although our method uses Pytorch and CUDA, its par-

allelization can still be further optimized and, therefore,

the difference in computation times with regard to the

other methods was not very significant.

Additionally, the employed database is composed by

multiple RGB images from three different remote sens-

ing repositories with the aim of testing the SR approach

process under different sensor’s acquisition conditions

and including different kinds of small perturbations. No

additional levels of noise have been considered due to the

design of the proposed SR approach, given by the noise-

free scheme of Eq. 4, presented in other approaches

such as [69]–[71], [88]. The employed repositories are

described below, and are publicly available on this repos-

itory2.

2https://github.com/mhaut/images-superresolution

1) UCMERCED [89]: It is composed by 21 land use

classes, including agricultural, airplane, baseball

diamond, beach, buildings, chaparral, dense resi-

dential, forest, freeway, golf course, harbor, inter-

section, mediumdensity residential, mobile home

park, overpass, parking lot, river, runway, sparse

residential, storage tanks, and tennis courts images.

Each class consists of 100 images with 256× 256

pixels, and a pixel resolution of 30.

2) RSCNN7 [90]: this data set contains 2800 images

with seven different classes. The dataset is rather

challenging due to the wide differences of the

scenes which have been captured under changing

seasons and varying weathers and sampled with

different scales. The resolution of individual im-

ages is 400× 400 pixels.

3) NWPU-RESIS45 [91]: the remote sensing image

scene classification (RESISC) dataset has been

created by Northwestern Polytechnical University

(NWPU). This dataset has 45 scenes with a total

number of 31500 images, 700 per class. The size

of each image is 256× 256 pixels.

Fig. 5. Dataset used in the experiments, comprising the following

images: agricultural, agricultural2, airplane, baseball, bridge, circular-

farmland, harbor, industry, intersection, parking, residential and road.

From these images, a LR version has been generated

from their corresponding HR counterparts following a
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two-step procedure [92]: (i) an initial blurring step and

(ii) a final decimation process. In particular, a Lanc-

zos3 windowed sinc filter has been used for blurring

the corresponding HR images, then these images have

been down-sampled according to the considered scaling

factors (2 and 4 respectively). Regarding the blurring

step, it should be noted that the Lanczos3 kernel size has

been adapted to the scaling factor using the following

expression, w = (4 ∗ s + 1), where w represents the

filter width and s is the considered scaling factor. For

the down-sampling process, image rows and columns

have been selected from the top-left corner using a stride

equal to the considered scaling factor. The goal behind

this pre-processing step is to generate LR images from

ground-truth HR ones maintaining the acquisition sensor

properties but considering a lower spatial resolution. In

this way, it has been possible to conduct a full-reference

assessment protocol in experiments.

The performance of the proposed approach has been

compared to the results obtained by 11 different un-

supervised SR methods available in the literature, as

well as the bi-cubic interpolation kernel function [81]

used as a up-scaling baseline. These SR methods have

been considered for the experimental discussion because

of they provide an unsupervised SR scheme in the

same way the proposed approach does, using the LR

input image to generate a super-resolved output result.

Additionally, two different scaling factors, 2× and 4×,

have been tested over the considered image dataset

(Sec. A). Table III provides a brief description of the

SR techniques considered in the experimental part of

the work.

All the tested methods have been downloaded from

the following website3 and they have been used con-

sidering the default settings suggested by the methods’

3http://www.vision.uji.es/srtoolbox/

TABLE III

METHODS CONSIDERED FOR THE EXPERIMENTS. FURTHER

DETAILS CAN BE FOUND IN THE CORRESPONDING REFERENCES.

Identifier SR type Method description Reference

BCI Baseline Bi-cubic interpolation kernel [81]

IBP Reconstruction Iterative back projection [55]

GPP Reconstruction Gradient profile prior [56]

SRI Hybrid Scale patch redundancy [64]

LSE Hybrid Scale patch redundancy [93]

GPR Reconstruction Gaussian Process Regression [94]

BDB Hybrid Scale patch redundancy [66]

DLU Reconstruction Point Spread Funtion deconvolution [57]

DRE Reconstruction Point Spread Funtion deconvolution [58]

FSR Reconstruction Point Spread Funtion deconvolution [95]

TSE Hybrid Transformed scale patch redundancy [65]

UMK Reconstruction Unsharp masking [59]

Ours Generative-HY The proposed approach -

authors for each particular scaling ratio [54]. Note that

this configuration provides the most general scenario to

super-resolve a wide range of image types taking into

account the tested image diversity.

B. Results

Tables V-VII present the quantitative assessment of

the considered SR methods in terms of seven different

quality metrics. Specifically, each table contains the

super-resolved results of four test images and, for each

image, the SR results are provided in rows consider-

ing two different scaling factors, 2× and 4×, which

are shown in columns. Besides, Table IV provides the

average results for the whole image collection in order

to provide a global view.

In addition to the quantitative evaluation provided by

the considered metrics, some visual results are provided

as a qualitative evaluation for the tested SR methods.

Specifically, Figs. 6-7 show the super-resolved results

obtained for harbor and road test images considering 2×

and 4× scaling factors, respectively. Besides, Fig. 8
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TABLE IV

AVERAGE SR RESULTS. THE BEST RESULT FOR SCALING RATIO AND METRIC IS HIGHLIGHTED IN BOLD FONT.

Image Method
Ratio 2x Ratio 4x

TIME NRMSE PSNR ERGAS Qindex SSIM SAM TIME NRMSE PSNR ERGAS Qindex SSIM SAM

Average

BCI 0.01 0.0506 28.11 5.975 0.7915 0.8406 0.0160 0.01 0.0837 23.59 4.913 0.4769 0.6067 0.0233

IBP 0.15 0.0455 29.01 5.353 0.8200 0.8667 0.0174 0.48 0.0793 24.05 4.668 0.5474 0.6575 0.0260

GPP 25.30 0.0501 28.20 5.934 0.7870 0.8409 0.0178 17.46 0.0823 23.74 4.830 0.4847 0.6155 0.0244

SRI 337.77 0.0395 30.23 4.599 0.8337 0.8805 0.0167 335.30 0.0823 23.62 4.830 0.5490 0.6631 0.0272

LSE 1015.26 0.0510 27.83 5.874 0.7995 0.8546 0.0181 345.41 0.0865 23.15 4.925 0.5008 0.6454 0.0293

GPR 227.82 0.0693 25.29 8.179 0.6330 0.7215 0.0194 100.26 0.0888 23.03 5.202 0.4288 0.5734 0.0250

BDB 189.08 0.0904 22.80 10.660 0.6143 0.7093 0.0233 302.67 0.1341 19.26 7.873 0.2610 0.4569 0.0316

DLU 0.10 0.0458 28.96 5.374 0.8171 0.8642 0.0175 0.10 0.0811 23.87 4.767 0.4958 0.6220 0.0246

DRE 0.05 0.0458 28.96 5.374 0.8171 0.8642 0.0175 0.05 0.0811 23.87 4.767 0.4958 0.6220 0.0246

FSR 0.69 0.0575 26.85 6.825 0.7462 0.8170 0.0184 1.81 0.1015 21.81 5.974 0.2965 0.5190 0.0265

TSE 17.64 0.0397 30.18 4.626 0.8527 0.8902 0.0150 17.27 0.0742 24.73 4.386 0.5695 0.6820 0.0237

UMK 0.01 0.0457 28.97 5.367 0.8176 0.8647 0.0176 0.01 0.0789 24.11 4.648 0.5318 0.6465 0.0253

Ours 294.19 0.0376 30.57 4.366 0.8351 0.8836 0.0163 156.71 0.0704 25.21 4.193 0.5483 0.6776 0.0236

presents the visual evolution of the super-resolved result

along the network iterations.

C. Discussion

According to the quantitative assessment reported in

Tables V-IV, it is possible to rank the global performance

of the tested SR methods into three different categories:

(a) high performance: for the proposed approach, TSE

and SRI, (b) moderate performance: for IBP, DLU, DRE

and UMK, and (c) low performance: for GPP, LSE, GPR,

BDB and FSR.

When considering a 2× scaling factor, the proposed

approach (together with the hybrid methods TSE and

SRI) provides a significant improvement with respect to

the BCI baseline. Specifically, the proposed approach

obtains the best performance for NRMSE, PSNR and

ERGAS metrics, whereas TSE exhibits the best result

for Q-index, SSIM and SAM. Although TSE and SRI

also achieve, on average, a remarkable improvement

over the baseline, the proposed approach provides a

more consistent performance because it obtains the best

average result for NRMSE, PSNR and ERGAS met-

rics, and the second best value for Q-index, SSIM and

SAM. It can be observed that the average PSNR gain

provided by the proposed approach is 0.39 dB for 2×

and 0.48 dB for 4×. Regarding the methods providing a

moderate improvement (b), the PSF deconvolution-based

techniques, DLU, DRE and UMK, provide a similar

average performance and IBP is able to obtain a slightly

better quantitative result over all the considered metrics.

Within the low performance method group (c), it is

possible to see that GPP and LSE methods provide a

result similar to the one obtained by the baseline, and

GPR, BDB and FSR obtain even a worse result.

A similar trend can be observed when considering a

4× scaling factor. In this case, the proposed approach

is, on average, the best method according to NRMSE,

PSNR and ERGAS metrics. TSE obtains the best Q-

index and SSIM results, and both methods obtain a

similar average result for the SAM metric. It should be

noted that SRI performance has worsened when using

a 4× ratio, however it still obtains the third best Q-

index and SSIM results. With respect to the rest of the

moderate (b) and low performance methods (c), they
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(a) HR (b) BCI (21.73 dB) (c) IBP (23.43 dB) (d) SRI (25.82 dB)

(e) DLU (23.40 dB) (f ) UMK (23.44 dB) (g) TSE (25.63 dB) (h) Proposed (26.84 dB)

Fig. 6. SR results obtained using the methods shown in captions over the test image harbor with a 2× scaling factor. For each result, PSNR

(dB) values appear in brackets. The best PSNR value is highlighted in bold.

obtain similar results with regards to the ones obtained

with a 2× factor. Overall, the proposed approach and

TSE have shown to obtain the best quantitative perfor-

mance followed some way behind by SRI. However, the

differences among these methods are relatively small,

which motivates a thorough discussion over qualitative

results to find out each method singularities.

According to the visual results presented in Figs. 6-7,

each SR method tends to foster a particular kind of visual

feature on the super-resolved output. Some methods, like

TSE or SRI, are able to obtain sharper edges, while

others, like DLU or UMK, seem more robust to noise by

generating smoother super-resolved textures. In terms of

visual perceived quality, the proposed approach achieves

a remarkable performance. For instance, the boat detail

in Fig. 6(h) is certainly the most similar to its HR coun-

terpart in Fig. 6(a). Even though the result provided by

SRI (Fig. 6(d)) seems to obtain a slightly better contrast

on some parts of the image, the proposed approach is

able to introduce more high-frequency information in

the boat structure. In addition, it is possible to see that

the proposed approach also introduces some shadow fine

details which are not present in the others methods’

results.

When considering a 4× ratio, the proposed approach

shows even better capability to recover high-frequency

information while preserving HR details to avoid unde-

sirable visual artifacts in the super-resolved output. For

instance, it is the case of the result provided by SRI

in Fig. 7(d) which provides a remarkable sharpness on

edges, however it generates a kind of ghosting effect and

also alters several shapes in the image. Despite the fact

that TSE (Fig. 7(g)) is able to overcome some of these

limitations, the proposed approach certainly provides a

more competitive visual result. That is, the proposed

approach generates a super-resolved image with sharper
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(a) HR (b) BCI (20.57 dB) (c) IBP (21.86 dB) (d) SRI (22.36 dB)

(e) DLU (21.32 dB) (f ) UMK (21.93 dB) (g) TSE (23.86 dB) (h) Proposed (25.69 dB)

Fig. 7. SR results obtained using the methods shown in captions over the test image road with a 4× scaling factor. For each result, PSNR (dB)

values appear in brackets. The best PSNR value is highlighted in bold.

edges and it is also able to reduce the aliasing effect

present in the TSE result. Another illustrative difference

can be found in the asphalt surface, where the proposed

approach removes the noise appearing in other output

results.

Regarding computational time, we can observe some

important differences among the tested methods. In

particular, three groups can be identified when super-

resolving LR input images: (i) BCI, IBP, DLU, DRE,

FSK and UMK, with an average time consumption per

image under a second, (ii) GPP and TSE, with a time

between 10 and 120 seconds, and (iii) the proposed

approach, SRI, LSE, GPR and BDB which require more

than 120 seconds per image. Even though the proposed

approach is not one of the most computationally efficient

methods, it shows a computational cost comparable to

that of SRI which, on average, has shown to be among

the best methods together with TSE and the proposed

approach.

D. Advantages and limitations of the proposed approach

When comparing the proposed approach performance

with respect to the best ones obtained in the experiments,

we can observe the high potential of the proposed deep

generative network to super-resolve remote sensing data.

To date, the hybrid approach used by SRI and TSE has

shown to be one of the most effective ways to learn

useful LR/HR patch relationships under an unsupervised

SR scheme. However, this straightforward approach of

searching patches across scales is rather constrained to

the quality of the spatial information appearing in the LR

input image. That is, the super-resolved result often tends

to suffer from ghosting artifacts and watering effects as

the magnification factor increases (Fig. 7).

Even though TSE deals with this issue by allowing

patch geometric transformation on the searching patch
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criteria, i.e. patches can occur in a lower scale as

they are or even transformed, this process does not

actually introduce any new spatial information in the

output result which eventually may limit the SR process,

especially in the remote sensing field. Note that remotely

sensed imagery are usually a highly complex kind of

data because they are usually fully-focused multi-band

shots with plenty of different spatial details within the

same image. As a result, the generation of a consistent

spatial variability becomes a key factor to improve the

unsupervised remote sensing SR process.

Precisely, this is the objective of the proposed ap-

proach. In particular, the presented deep generative net-

work learns the relationships between the LR and HR

domains throughout several convolutional and down-

sampling layers starting from the LR input image. How-

ever, this process is affected by random noise which is

also restricted by the cost function, i.e. equation (5),

to guarantee a global reconstruction constraint over the

LR input image. That is, the random noise generates

new spatial variations as possible solutions to relieve

the ill-posed nature of the SR problem, while the cost

optimizer controls that only these variations consistent

with respect to the input LR image are promoted though

the network to generate the final SR result. Fig. 8 depicts

the SR process conducted by the proposed network

over the parking test image considering a 4× scaling

factor. As we can see, the reconstructed super-resolved

result is initially noise; however, the spatial structures

are recovered from a coarser to finer level of details as

the network iterates.

In a sense, the proposed approach is able to recover

a richer variety of high-frequency patterns for a given

LR image due to its generative nature. In other words,

the proposed deep generative network provides a more

flexible unsupervised SR scheme than the current hybrid

techniques, because it is able to introduce some spatial

variations that are impossible to retrieve from the LR

input image. In fact, it is possible to better appreciate the

proposed approach effectiveness when only considering

the PSNR metric, which is the most widely used quality

index in SR. Figs. 9-10 show the PSNR gain obtained

by the three best methods, i.e. the proposed approach,

TSE and SRI, with respect to the BCI baseline. As we

can appreciate, the proposed approach provides some

remarkable PSNR improvements in 2×, however the

PSNR gain is consistently higher when considering a

4× ratio. Note that, with this scaling factor, the level

of uncertainty significantly increases and it is then when

the generative process of the proposed approach becomes

more effective by introducing a higher variety of spatial

details.

Although the results obtained by the proposed ap-

proach are encouraging, there are two points which

deserve to be mentioned when comparing the proposed

approach performance to the one obtained by the most

effective unsupervised SR methods; the performance on

some metrics and the computational cost.

On the one hand, the proposed approach performances

on some metrics, specifically Q-index, SSIM and SAM,

seem not to be superior than the corresponding TSE re-

sults. For instance, Table VII shows that the TSE obtains

the best SSIM result for the 4× road image (0.8290)

whereas the proposed approach achieves the second best

SSIM value (0.8247). However, the proposed approach

provides the best PSNR result (25.69 dB) which is

substantially higher than the TSE one (23.86 dB). In

spite of the small SSIM differences, it is possible to

see the proposed approach advantages when considering

the qualitative results. That is, Fig. 10 certainly shows

that TSE magnifies the aliasing effect in the fist line of

pedestrian crossing and also generates a kind of watering

effect on surfaces whereas the proposed approach is able

to obtain a more natural as well as reliable result even
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(a) It.0 (b) It.100 (14.73 dB) (c) It.200 (20.69 dB) (d) It.400 (21.48 dB)

(e) It.800 (21.89 dB) (f ) It.1000 (21.97 dB) (g) It.2000 (22.13 dB) (h) It.3900 (22.18 dB)

Fig. 8. SR process conducted by the proposed approach over the parking test image with a 4× scaling factor. Each sub-figure represents the

obtained XHR
o images at each epoch of the model, following Algorithm 1.

Fig. 9. PSNR (dB) results when considering a 2× scaling factor.

though some image materials seem less contrasted. For

the proposed approach, we adopt a cost function based

on the mean-squared-error (MSE) in the way many other

deep learning-based SR methods do in the supervised

scheme, e.g. [69]–[71]. Logically, our model has a differ-

ent nature because of its unsupervised scheme, however

it seem reasonable to make this consideration because the

PSNR index, which is based on the MSE, is one the most

Fig. 10. PSNR (dB) results when considering a 4× scaling factor.

commonly used metric in SR. Somehow, this definition

of the cost function may constrain the performance on

some metrics because the network optimizer works for

minimizing the MSE and other kinds of metric features

are not taken into account in this optimization process,

which eventually may led to a super-resolved solution

with an excellent PSNR performance but with some

small divergences in other figures of merit.
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On the other hand, the computational cost of the

proposed approach may also become a limitation in some

specific scenarios. According to the quantitative results

shown in Table IV, the proposed approach takes over

300 and 150 seconds to process each input image con-

sidering a 2× and 4× ratios respectively. Even though

the proposed approach has shown not to be one of the

most computationally efficient methods, three important

considerations have to be done to this extent. First,

the computational burden is not only a drawback of

the proposed approach but also of any deep learning

architecture because this kind of technology usually

provides a more powerful framework to cope with new

challenges and tasks. Second, the implementation of

our model has not been optimized to really exploit

the GPU hardware resources in order to substantially

reduce the resulting computational time. That is, we

make use of standard functions but further efforts could

be addressed to generate a much more optimized version

of the code. Third, we use a general configuration of

4, 000 iterations as a security margin to guarantee a

good network convergence, however this value could be

reduced in order to significantly improve the proposed

approach computational efficiency. Fig. 11 shows the

evolution of the PSNR metric with respect to the number

of iteration for harbor, circular-farmland, industry and

road test images with a 4× ratio. As it is possible to see,

the network is able to achieve a PSNR result that is very

close to the optimal value after 2,000 iterations, therefore

it would be possible to reduce the number of iterations

in order to significantly decrease the proposed approach

computational time. In Fig. 12, we also show the PSNR

evolution over time to highlight the fact that the proposed

approach is able to rapidly converge to the optimal PSNR

value. It should be noted that we use a unique network

settings in this work, therefore 4, 000 iterations are used

to guarantee a good general parameter convergence, that

Fig. 11. PSNR evolution for harbor, circular-farmland, industry and

road test images considering a 4× scaling ratio versus iteration.

Fig. 12. PSNR evolution for harbor, circular-farmland, industry and

road test images considering a 4× scaling ratio versus time.

is, without adapting the network to each input image.

V. CONCLUSIONS AND FUTURE LINES

In this work, we have presented a new convolutional

generator model to super-resolve LR remote sensing

data from an unsupervised perspective. Specifically, the

proposed approach is initially able to learn relationships

between the LR and HR domains while generating con-

sistent random spatial variations. Then, the data is sym-

metrically projected to the target resolution, guaranteeing

a reconstruction constraint over the LR input image.

Our experiments, conducted using several test images,

2 scaling factors and 12 different SR methods available

in the literature, reveal the competitive performance of

the proposed approach when super-resolving remotely

sensed images.
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One of the main conclusions that arises from this

work is the potential of deep generative models to cope

with the unsupervised SR problem, because of their

capabilities to introduce new spatial details not present in

the input LR image. As opposed to the common (hybrid)

SR trend, which only relies on the patch relationships

learned across scales, the proposed approach extends

this scheme by introducing some spatial variations that

allow the network to retrieve new spatial patterns that

are consistent with the input LR image.

According to the conducted experiments, the proposed

approach obtains a competitive global performance over

the considered remote sensing test images in terms of

both quantitative and qualitative SR results. Regarding

the NRMSE, PSNR and ERGAS metrics, the SR frame-

work proposed in this work obtains, on average, the

best performance. When considering Q-index, SSIM and

SAM, TSE tends to provide the best average result, but

the proposed approach is still able to perform among the

best methods, especially when considering a 4× scaling

factor.

Although the proposed approach results are encour-

aging as a generative SR model in remote sensing, the

method still has some limitations which provide room

for improvement by conducting additional research on

unsupervised SR. Specifically, our future work will be

aimed at the following directions: (i) extending the cost

function to simultaneously take into account several

image quality metrics and also to extend it with the aim

of implementing a noise reduction scheme for a different

kind of input data, (ii) adapting the convolutional kernel

size to each specific input image, and (iii) reducing the

model computational cost by designing new strategies to

actively control the number of iterations depending on

the input image.
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TABLE V

SR RESULTS FOR TEST IMAGES FROM 1 TO 4. THE BEST RESULT FOR EACH IMAGE, SCALING RATIO AND METRIC IS HIGHLIGHTED IN BOLD

FONT.

Image Method
Ratio 2x Ratio 4x

TIME NRMSE PSNR ERGAS Qindex SSIM SAM TIME NRMSE PSNR ERGAS Qindex SSIM SAM

agricultural

BCI 0.04 0.0792 24.96 6.174 0.5814 0.5683 0.0171 0.00 0.0957 23.31 3.719 0.2660 0.2681 0.0208

IBP 0.13 0.0775 25.14 6.050 0.6255 0.6151 0.0176 0.35 0.0947 23.41 3.683 0.3473 0.3440 0.0214

GPP 15.99 0.0800 24.87 6.245 0.5836 0.5706 0.0180 11.66 0.0953 23.35 3.705 0.2790 0.2785 0.0212

SRI 211.50 0.0792 24.96 6.183 0.6242 0.6216 0.0180 212.77 0.0948 23.39 3.695 0.3906 0.3782 0.0223

LSE 763.52 0.0819 24.66 6.348 0.6086 0.6067 0.0187 259.15 0.1000 22.93 3.811 0.3014 0.3252 0.0235

GPR 167.33 0.0903 23.81 7.064 0.4016 0.4032 0.0197 88.07 0.0972 23.18 3.778 0.2458 0.2561 0.0217

BDB 147.94 0.0983 23.08 7.695 0.4428 0.4498 0.0215 250.55 0.1138 21.80 4.447 0.1351 0.1698 0.0255

DLU 0.10 0.0784 25.04 6.124 0.6148 0.6037 0.0177 0.07 0.0953 23.35 3.706 0.2827 0.2806 0.0213

DRE 0.07 0.0784 25.04 6.124 0.6148 0.6037 0.0177 0.03 0.0953 23.35 3.706 0.2827 0.2805 0.0213

FSR 0.55 0.0786 25.02 6.136 0.5879 0.5867 0.0180 0.62 0.1001 22.92 3.899 0.1695 0.2216 0.0225

TSE 13.84 0.0776 25.13 6.057 0.6495 0.6475 0.0168 13.18 0.0944 23.43 3.670 0.3357 0.3304 0.0209

UMK 0.05 0.0785 25.03 6.132 0.6154 0.6043 0.0177 0.01 0.0946 23.41 3.681 0.3238 0.3171 0.0213

Ours 232.87 0.0755 25.37 5.922 0.6513 0.6403 0.0173 127.75 0.0942 23.45 3.679 0.3366 0.3277 0.0211

agricultural2

BCI 0.01 0.0386 36.39 1.782 0.8263 0.8113 0.0053 0.01 0.0749 30.65 1.733 0.4539 0.4390 0.0080

IBP 0.10 0.0347 37.32 1.602 0.8616 0.8491 0.0071 0.35 0.0693 31.31 1.603 0.5905 0.5927 0.0092

GPP 19.90 0.0375 36.66 1.729 0.8299 0.8139 0.0071 14.52 0.0742 30.73 1.717 0.4642 0.4480 0.0092

SRI 229.18 0.0333 37.67 1.537 0.8644 0.8517 0.0071 210.29 0.0772 30.37 1.785 0.5790 0.5603 0.0094

LSE 762.90 0.0409 35.89 1.874 0.8378 0.8258 0.0071 259.40 0.0741 30.74 1.679 0.5799 0.6033 0.0111

GPR 163.57 0.0588 32.75 2.720 0.6357 0.6189 0.0073 85.87 0.0805 30.02 1.862 0.3927 0.3810 0.0093

BDB 145.97 0.0768 30.42 3.561 0.6350 0.6444 0.0079 247.64 0.1001 28.13 2.316 0.4000 0.4324 0.0099

DLU 0.07 0.0349 37.28 1.608 0.8599 0.8468 0.0071 0.06 0.0718 31.01 1.662 0.4981 0.4782 0.0092

DRE 0.03 0.0349 37.28 1.608 0.8598 0.8468 0.0071 0.03 0.0718 31.01 1.662 0.4981 0.4782 0.0092

FSR 0.47 0.0419 35.68 1.938 0.7970 0.7897 0.0071 0.58 0.0884 29.20 2.054 0.2691 0.3158 0.0096

TSE 11.99 0.0312 38.24 1.439 0.8820 0.8709 0.0055 11.92 0.0583 32.81 1.346 0.6393 0.6313 0.0078

UMK 0.01 0.0350 37.26 1.613 0.8600 0.8483 0.0071 0.01 0.0683 31.45 1.578 0.5646 0.5480 0.0091

Ours 232.62 0.0324 37.92 1.501 0.8732 0.8612 0.0057 127.47 0.0554 33.26 1.284 0.6571 0.6436 0.0080

airplane

BCI 0.00 0.0323 30.02 3.058 0.8125 0.8958 0.0092 0.00 0.0536 25.63 2.534 0.5385 0.7508 0.0145

IBP 0.12 0.0297 30.76 2.811 0.8345 0.9079 0.0104 0.36 0.0511 26.04 2.420 0.5969 0.7637 0.0158

GPP 15.76 0.0320 30.11 3.030 0.8066 0.8935 0.0104 12.16 0.0525 25.81 2.484 0.5426 0.7550 0.0151

SRI 208.46 0.0256 32.04 2.429 0.8444 0.9173 0.0095 208.54 0.0535 25.65 2.533 0.5849 0.7647 0.0174

LSE 770.02 0.0314 30.26 2.950 0.8227 0.9036 0.0112 259.70 0.0592 24.76 2.751 0.5480 0.7546 0.0176

GPR 170.60 0.0437 27.40 4.132 0.6756 0.8194 0.0113 77.84 0.0570 25.10 2.695 0.4891 0.7239 0.0156

BDB 144.17 0.0581 24.92 5.490 0.6850 0.8133 0.0139 245.76 0.0929 20.84 4.391 0.3362 0.6170 0.0188

DLU 0.07 0.0298 30.71 2.825 0.8321 0.9063 0.0105 0.06 0.0517 25.93 2.449 0.5532 0.7556 0.0151

DRE 0.03 0.0298 30.72 2.825 0.8321 0.9063 0.0105 0.03 0.0517 25.93 2.449 0.5532 0.7556 0.0151

FSR 0.45 0.0373 28.77 3.533 0.7657 0.8721 0.0107 1.25 0.0686 23.48 3.246 0.3353 0.6706 0.0168

TSE 12.86 0.0256 32.06 2.421 0.8639 0.9249 0.0089 12.30 0.0455 27.04 2.156 0.6139 0.7920 0.0145

UMK 0.01 0.0298 30.72 2.822 0.8327 0.9066 0.0106 0.01 0.0505 26.14 2.392 0.5851 0.7634 0.0153

Ours 232.25 0.0252 32.17 2.395 0.8487 0.9178 0.0088 127.17 0.0426 27.61 2.026 0.6046 0.7889 0.0129

baseball

BCI 0.00 0.0229 33.43 2.531 0.8554 0.8828 0.0261 0.00 0.0440 27.77 2.393 0.5387 0.6451 0.0405

IBP 0.11 0.0207 34.33 2.314 0.8780 0.9024 0.0270 0.35 0.0422 28.13 2.312 0.6121 0.6946 0.0414

GPP 16.72 0.0229 33.43 2.542 0.8545 0.8829 0.0268 11.97 0.0434 27.89 2.361 0.5476 0.6472 0.0407

SRI 210.27 0.0211 34.17 2.383 0.8714 0.8963 0.0275 207.94 0.0474 27.12 2.633 0.5808 0.6655 0.0432

LSE 769.38 0.0254 32.54 2.819 0.8481 0.8786 0.0276 260.18 0.0498 26.69 2.695 0.5390 0.6541 0.0464

GPR 158.75 0.0334 30.16 3.692 0.7213 0.7856 0.0275 76.68 0.0466 27.26 2.543 0.4936 0.6181 0.0409

BDB 144.95 0.0442 27.73 4.973 0.7232 0.7731 0.0306 245.32 0.0751 23.12 4.189 0.3146 0.4817 0.0459

DLU 0.06 0.0207 34.32 2.318 0.8774 0.9018 0.0270 0.07 0.0429 27.99 2.335 0.5624 0.6584 0.0408

DRE 0.03 0.0207 34.32 2.318 0.8774 0.9018 0.0270 0.03 0.0429 27.99 2.335 0.5624 0.6584 0.0408

FSR 0.52 0.0287 31.47 3.186 0.8081 0.8490 0.0275 0.83 0.0554 25.76 3.038 0.3548 0.5581 0.0422

TSE 12.69 0.0187 35.18 2.083 0.9038 0.9197 0.0237 11.92 0.0409 28.41 2.224 0.6085 0.6967 0.0395

UMK 0.01 0.0206 34.34 2.314 0.8779 0.9022 0.0270 0.01 0.0419 28.20 2.286 0.5990 0.6854 0.0410

Ours 231.37 0.0197 34.75 2.206 0.8935 0.9107 0.0248 127.15 0.0400 28.59 2.195 0.5971 0.6775 0.0400
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TABLE VI

SR RESULTS FOR TEST IMAGES FROM 5 TO 8. THE BEST RESULT FOR EACH IMAGE, SCALING RATIO AND METRIC IS HIGHLIGHTED IN BOLD

FONT.

Image Method
Ratio 2x Ratio 4x

TIME NRMSE PSNR ERGAS Qindex SSIM SAM TIME NRMSE PSNR ERGAS Qindex SSIM SAM

bridge

BCI 0.01 0.0420 27.54 6.547 0.7783 0.8709 0.0074 0.01 0.0603 24.40 4.701 0.4862 0.7153 0.0100

IBP 0.12 0.0390 28.18 6.079 0.7855 0.8913 0.0091 0.35 0.0588 24.62 4.581 0.5182 0.7577 0.0121

GPP 18.40 0.0422 27.50 6.576 0.7549 0.8708 0.0093 13.10 0.0597 24.48 4.657 0.4752 0.7249 0.0115

SRI 210.07 0.0359 28.89 5.601 0.7975 0.9044 0.0088 209.12 0.0606 24.35 4.722 0.5165 0.7667 0.0153

LSE 770.12 0.0412 27.70 6.359 0.7569 0.8837 0.0096 260.15 0.0600 24.44 4.566 0.4527 0.7528 0.0151

GPR 185.47 0.0525 25.60 8.184 0.6234 0.7910 0.0099 89.35 0.0631 24.00 4.909 0.4293 0.6821 0.0118

BDB 144.85 0.0725 22.80 11.308 0.5311 0.7520 0.0128 246.05 0.0869 21.22 6.785 0.2427 0.6368 0.0141

DLU 0.06 0.0391 28.16 6.092 0.7831 0.8902 0.0091 0.06 0.0593 24.54 4.622 0.4821 0.7263 0.0115

DRE 0.03 0.0391 28.16 6.092 0.7832 0.8902 0.0091 0.03 0.0593 24.54 4.622 0.4821 0.7263 0.0115

FSR 0.66 0.0470 26.56 7.328 0.6947 0.8472 0.0098 1.17 0.0698 23.13 5.439 0.2694 0.6789 0.0127

TSE 12.33 0.0361 28.86 5.623 0.8280 0.9068 0.0076 12.30 0.0559 25.05 4.361 0.5475 0.7720 0.0109

UMK 0.01 0.0391 28.16 6.093 0.7834 0.8903 0.0091 0.01 0.0584 24.67 4.556 0.5073 0.7508 0.0117

Ours 231.72 0.0362 28.82 5.681 0.7812 0.9010 0.0094 126.79 0.0556 25.09 4.365 0.4815 0.7554 0.0119

circular-farmland

BCI 0.00 0.0290 30.75 5.429 0.8571 0.8901 0.0180 0.00 0.0481 26.35 4.506 0.5906 0.7094 0.0286

IBP 0.12 0.0263 31.60 4.923 0.8823 0.9103 0.0204 0.35 0.0462 26.71 4.320 0.6379 0.7372 0.0350

GPP 16.67 0.0288 30.81 5.392 0.8545 0.8900 0.0211 11.32 0.0469 26.58 4.390 0.5997 0.7173 0.0302

SRI 206.04 0.0239 32.44 4.472 0.8902 0.9193 0.0193 207.14 0.0484 26.30 4.529 0.6410 0.7476 0.0366

LSE 772.64 0.0297 30.55 5.490 0.8645 0.8964 0.0209 259.57 0.0480 26.37 4.370 0.6109 0.7433 0.0378

GPR 160.94 0.0401 27.95 7.499 0.7136 0.7911 0.0243 76.44 0.0513 25.79 4.812 0.5441 0.6786 0.0313

BDB 144.76 0.0578 24.77 10.822 0.6824 0.7656 0.0302 246.43 0.0951 20.44 8.889 0.3422 0.5214 0.0462

DLU 0.07 0.0264 31.57 4.942 0.8805 0.9089 0.0205 0.06 0.0467 26.62 4.371 0.6047 0.7202 0.0307

DRE 0.03 0.0264 31.57 4.942 0.8805 0.9089 0.0205 0.03 0.0467 26.62 4.371 0.6047 0.7202 0.0307

FSR 0.47 0.0345 29.23 6.467 0.8120 0.8655 0.0224 1.20 0.0618 24.19 5.850 0.4218 0.6255 0.0348

TSE 12.45 0.0227 32.87 4.252 0.9039 0.9270 0.0168 12.33 0.0400 27.96 3.741 0.6776 0.7725 0.0269

UMK 0.01 0.0264 31.57 4.939 0.8808 0.9092 0.0206 0.01 0.0457 26.80 4.277 0.6285 0.7349 0.0331

Ours 231.78 0.0231 32.72 4.357 0.8964 0.9191 0.0186 126.49 0.0393 28.11 3.707 0.6542 0.7577 0.0288

harbor

BCI 0.00 0.0909 21.73 11.416 0.8244 0.8936 0.0336 0.01 0.1795 15.81 11.307 0.4593 0.5842 0.0465

IBP 0.13 0.0747 23.43 9.363 0.8446 0.9239 0.0340 0.34 0.1677 16.41 10.523 0.5244 0.6419 0.0513

GPP 17.28 0.0866 22.15 10.872 0.8161 0.9007 0.0358 12.28 0.1761 15.98 11.091 0.4668 0.5973 0.0482

SRI 203.16 0.0567 25.82 7.128 0.8715 0.9523 0.0321 210.48 0.1707 16.25 10.727 0.5554 0.6826 0.0549

LSE 767.89 0.0908 21.73 11.119 0.8335 0.9117 0.0349 260.34 0.1800 15.79 10.988 0.5009 0.6283 0.0564

GPR 185.44 0.1396 18.00 17.509 0.6608 0.7532 0.0400 80.39 0.1905 15.30 11.981 0.4069 0.5463 0.0489

BDB 144.61 0.1797 15.81 22.522 0.6390 0.7491 0.0508 252.04 0.2811 11.92 17.763 0.2495 0.4221 0.0626

DLU 0.07 0.0750 23.40 9.398 0.8424 0.9222 0.0343 0.07 0.1733 16.12 10.913 0.4750 0.6043 0.0495

DRE 0.03 0.0750 23.40 9.398 0.8424 0.9221 0.0345 0.03 0.1733 16.12 10.913 0.4749 0.6043 0.0495

FSR 0.33 0.1062 20.38 13.322 0.7707 0.8672 0.0369 1.81 0.2187 14.10 13.869 0.2914 0.4727 0.0510

TSE 13.27 0.0580 25.63 7.294 0.8949 0.9539 0.0289 12.79 0.1648 16.56 10.375 0.5594 0.6712 0.0499

UMK 0.00 0.0746 23.44 9.341 0.8428 0.9227 0.0343 0.01 0.1680 16.39 10.562 0.5104 0.6321 0.0511

Ours 231.16 0.0505 26.84 6.352 0.8731 0.9592 0.0320 127.59 0.1491 17.43 9.422 0.5517 0.7096 0.0485

industry

BCI 0.01 0.0226 33.38 1.660 0.8162 0.9220 0.0028 0.01 0.0445 27.49 1.636 0.4595 0.7720 0.0046

IBP 0.25 0.0196 34.63 1.438 0.8536 0.9365 0.0046 0.87 0.0418 28.03 1.538 0.5380 0.8066 0.0067

GPP 53.63 0.0218 33.67 1.607 0.8110 0.9211 0.0047 34.96 0.0432 27.74 1.590 0.4666 0.7775 0.0062

SRI 729.33 0.0182 35.28 1.335 0.8542 0.9375 0.0045 710.10 0.0471 26.99 1.734 0.5287 0.8027 0.0072

LSE 1756.30 0.0286 31.34 2.082 0.8031 0.9191 0.0049 601.97 0.0556 25.56 2.009 0.4517 0.7828 0.0086

GPR 438.63 0.0347 29.65 2.553 0.6489 0.8479 0.0051 177.01 0.0500 26.47 1.839 0.4229 0.7488 0.0064

BDB 320.45 0.0475 26.92 3.497 0.6824 0.8513 0.0060 465.03 0.1038 20.13 3.820 0.2000 0.6283 0.0093

DLU 0.20 0.0197 34.58 1.446 0.8516 0.9355 0.0046 0.19 0.0428 27.83 1.574 0.4767 0.7798 0.0062

DRE 0.09 0.0197 34.58 1.446 0.8516 0.9355 0.0046 0.11 0.0428 27.83 1.574 0.4767 0.7798 0.0062

FSR 1.19 0.0287 31.30 2.109 0.7494 0.8975 0.0048 3.53 0.0586 25.09 2.151 0.2682 0.7219 0.0067

TSE 33.38 0.0171 35.79 1.259 0.8752 0.9495 0.0028 31.35 0.0395 28.52 1.453 0.5431 0.8239 0.0056

UMK 0.01 0.0196 34.60 1.444 0.8524 0.9357 0.0046 0.01 0.0414 28.11 1.523 0.5176 0.7986 0.0064

Ours 483.64 0.0194 34.69 1.432 0.8328 0.9301 0.0043 244.28 0.0361 29.29 1.334 0.4635 0.7961 0.0060December 10, 2018 DRAFT
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TABLE VII

SR RESULTS FOR TEST IMAGES FROM 9 TO 12. THE BEST RESULT FOR EACH IMAGE, SCALING RATIO AND METRIC IS HIGHLIGHTED IN

BOLD FONT.

Image Method
Ratio 2x Ratio 4x

TIME NRMSE PSNR ERGAS Qindex SSIM SAM TIME NRMSE PSNR ERGAS Qindex SSIM SAM

intersection

BCI 0.00 0.1024 19.79 16.184 0.7327 0.7444 0.0323 0.00 0.1539 16.26 12.163 0.3438 0.3845 0.0405

IBP 0.13 0.0896 20.95 14.152 0.7961 0.8011 0.0339 0.34 0.1501 16.48 11.847 0.4446 0.4498 0.0437

GPP 19.19 0.1038 19.68 16.404 0.7325 0.7422 0.0340 12.55 0.1526 16.33 12.061 0.3599 0.3997 0.0413

SRI 209.92 0.0773 22.24 12.214 0.8347 0.8384 0.0331 213.57 0.1518 16.38 11.976 0.4589 0.4635 0.0449

LSE 768.00 0.0902 20.90 14.128 0.7965 0.8009 0.0337 259.93 0.1525 16.34 11.731 0.4126 0.4382 0.0456

GPR 153.27 0.1371 17.26 21.683 0.4889 0.5276 0.0366 74.79 0.1580 16.03 12.527 0.2949 0.3368 0.0419

BDB 146.49 0.1486 16.56 23.544 0.5540 0.5816 0.0396 247.34 0.1907 14.39 15.112 0.1617 0.2384 0.0482

DLU 0.06 0.0894 20.97 14.118 0.7938 0.7983 0.0339 0.07 0.1520 16.36 12.014 0.3728 0.4054 0.0414

DRE 0.03 0.0894 20.98 14.113 0.7938 0.7983 0.0340 0.03 0.1520 16.36 12.014 0.3728 0.4054 0.0414

FSR 0.60 0.1136 18.89 17.960 0.6849 0.7027 0.0351 1.36 0.1685 15.47 13.369 0.1733 0.2807 0.0433

TSE 12.73 0.0747 22.54 11.804 0.8449 0.8467 0.0313 12.40 0.1449 16.78 11.458 0.4516 0.4728 0.0408

UMK 0.01 0.0893 20.98 14.104 0.7943 0.7989 0.0341 0.01 0.1502 16.47 11.864 0.4199 0.4333 0.0426

Ours 230.74 0.0684 23.30 10.863 0.8496 0.8516 0.0332 126.27 0.1440 16.84 11.439 0.4467 0.4655 0.0405

parking

BCI 0.01 0.0566 24.94 6.919 0.7762 0.8054 0.0181 0.01 0.0824 21.68 5.040 0.4701 0.5754 0.0267

IBP 0.26 0.0530 25.52 6.473 0.8111 0.8338 0.0192 0.86 0.0801 21.93 4.896 0.5427 0.6099 0.0284

GPP 51.93 0.0564 24.97 6.897 0.7781 0.8069 0.0199 32.94 0.0816 21.77 4.990 0.4795 0.5812 0.0273

SRI 728.21 0.0489 26.21 5.981 0.8350 0.8558 0.0174 718.42 0.0851 21.41 5.199 0.5286 0.5946 0.0293

LSE 1762.70 0.0588 24.62 7.126 0.7812 0.8133 0.0214 601.40 0.0878 21.13 5.270 0.4753 0.5728 0.0331

GPR 364.76 0.0717 22.88 8.772 0.6078 0.6772 0.0230 143.54 0.0856 21.35 5.238 0.4167 0.5432 0.0285

BDB 326.70 0.0906 20.86 11.086 0.5741 0.6432 0.0269 476.06 0.1241 18.12 7.593 0.2304 0.3971 0.0376

DLU 0.19 0.0533 25.47 6.514 0.8077 0.8307 0.0194 0.19 0.0809 21.84 4.948 0.4909 0.5851 0.0275

DRE 0.09 0.0533 25.47 6.514 0.8077 0.8306 0.0194 0.10 0.0809 21.84 4.948 0.4909 0.5851 0.0275

FSR 1.43 0.0614 24.23 7.511 0.7404 0.7807 0.0211 3.63 0.0976 20.21 5.960 0.2700 0.4673 0.0322

TSE 31.00 0.0494 26.12 6.042 0.8422 0.8598 0.0174 32.04 0.0796 21.98 4.869 0.5384 0.6132 0.0276

UMK 0.01 0.0533 25.47 6.512 0.8086 0.8314 0.0195 0.01 0.0798 21.96 4.877 0.5273 0.6028 0.0279

Ours 482.46 0.0491 26.18 6.032 0.8243 0.8480 0.0187 244.20 0.0778 22.18 4.780 0.5238 0.6063 0.0272

residential

BCI 0.01 0.0371 28.62 3.957 0.8883 0.9094 0.0096 0.01 0.0696 23.14 3.715 0.6571 0.7094 0.0184

IBP 0.25 0.0331 29.59 3.540 0.9002 0.9244 0.0113 0.86 0.0659 23.63 3.517 0.6951 0.7359 0.0219

GPP 42.02 0.0367 28.71 3.920 0.8830 0.9078 0.0115 29.62 0.0679 23.36 3.624 0.6682 0.7201 0.0192

SRI 706.87 0.0287 30.85 3.062 0.9157 0.9394 0.0104 708.70 0.0722 22.83 3.856 0.6807 0.7375 0.0245

LSE 1751.80 0.0428 27.37 4.558 0.8706 0.9021 0.0131 601.85 0.0848 21.43 4.429 0.6397 0.7035 0.0309

GPR 390.19 0.0547 25.25 5.833 0.7838 0.8174 0.0135 148.06 0.0760 22.39 4.049 0.6011 0.6698 0.0203

BDB 312.90 0.0835 21.57 8.916 0.6965 0.7466 0.0185 463.51 0.1453 16.76 7.749 0.3084 0.4072 0.0342

DLU 0.19 0.0334 29.53 3.568 0.8987 0.9231 0.0114 0.19 0.0666 23.53 3.555 0.6733 0.7224 0.0193

DRE 0.09 0.0334 29.53 3.568 0.8987 0.9230 0.0114 0.09 0.0666 23.53 3.555 0.6733 0.7224 0.0193

FSR 1.26 0.0463 26.69 4.944 0.8448 0.8768 0.0126 3.88 0.0948 20.47 5.069 0.4598 0.5715 0.0234

TSE 32.21 0.0292 30.68 3.124 0.9242 0.9420 0.0096 31.44 0.0602 24.40 3.216 0.7402 0.7789 0.0205

UMK 0.01 0.0334 29.53 3.564 0.8989 0.9233 0.0115 0.01 0.0648 23.76 3.461 0.6919 0.7351 0.0204

Ours 478.78 0.0290 30.74 3.114 0.9029 0.9340 0.0124 243.60 0.0562 25.01 3.013 0.7278 0.7787 0.0194

road

BCI 0.01 0.0535 25.78 6.043 0.7491 0.8939 0.0122 0.01 0.0975 20.57 5.505 0.4591 0.7277 0.0211

IBP 0.12 0.0485 26.63 5.488 0.7676 0.9048 0.0145 0.35 0.0840 21.86 4.775 0.5206 0.7560 0.0250

GPP 16.08 0.0530 25.86 5.993 0.7395 0.8910 0.0145 12.41 0.0938 20.90 5.295 0.4674 0.7390 0.0225

SRI 200.28 0.0254 32.26 2.866 0.8018 0.9320 0.0124 206.48 0.0793 22.36 4.576 0.5428 0.7932 0.0217

LSE 767.82 0.0501 26.36 5.638 0.7701 0.9140 0.0143 261.27 0.0860 21.66 4.800 0.4977 0.7865 0.0261

GPR 194.94 0.0754 22.80 8.508 0.6341 0.8262 0.0152 85.12 0.1100 19.52 6.186 0.4090 0.6959 0.0230

BDB 145.12 0.1276 18.23 14.506 0.5256 0.7416 0.0207 246.28 0.2005 14.31 11.425 0.2109 0.5307 0.0266

DLU 0.06 0.0490 26.54 5.541 0.7637 0.9027 0.0146 0.07 0.0895 21.32 5.050 0.4774 0.7475 0.0228

DRE 0.03 0.0490 26.54 5.541 0.7637 0.9027 0.0146 0.03 0.0895 21.32 5.050 0.4774 0.7475 0.0228

FSR 0.39 0.0662 23.94 7.468 0.6991 0.8693 0.0145 1.88 0.1355 17.71 7.750 0.2758 0.6433 0.0232

TSE 12.89 0.0365 29.11 4.117 0.8204 0.9344 0.0110 13.25 0.0668 23.86 3.769 0.5787 0.8290 0.0191

UMK 0.01 0.0489 26.56 5.529 0.7641 0.9031 0.0147 0.01 0.0833 21.93 4.718 0.5064 0.7560 0.0236

Ours 230.88 0.0224 33.34 2.543 0.7939 0.9298 0.0108 131.82 0.0541 25.69 3.068 0.5351 0.8247 0.0186
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