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Summary: Form-invariance is the most practical and desired property of weighted distributions.
Weighted distributions commonly arise as univariate probability models in many fields of applica-
tions, for example, survival data analysis in medical science. However, the explicit global definition
of “form-invariance” seems to be absent (to our knowledge) in spite of the fact that there is a grow-
ing use of such distributions during the last three decades. Therefore, in this note an effort is made
to provide a new definition of form-invariance with reference to the matrix variate distributions.
Obviously this definition and related implications are applicable to the multivariate and univariate
distributions (as it should be), even though not necessarily to all families of probability distributions
that exist, but definitely to those that are commonly used in practice. To demonstrate the validity
of the last statement certain results, based on our new definition of form-invariance, are proved as
the characterizations of the class of matrix elliptical distributions. Also considered in this note are
certain extensions of our results, as may seem appropriate within the scope of the theory of matrix
variate distributions. The concept of form-invariance is extended to marginal and conditional struc-
tures, as well as to the sum of independent matrix variates from elliptical distributions.

1. Introduction

During the last three decades the weighted versions of some commonly used univariate distributions
were adopted as models in the analysis of size-biased data (meaning that the probability of inclusion
of the observation depends on the magnitude (size) of that observation). For example, in medical
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science the researcher often has to deal with data that are available as size-biased or more commonly
as the length-biased data. Bivariate weighted distributions are not that common but arise in some
applications. There are some practical situations arising from image processing data where there
seems to be an application for matrix variate weighted distributions.

The weighted distribution is defined as follows:

Let X ∼ f (x;θ) where θ is a scalar or vector of parameters; f (x;θ) is referred to as the original
distribution. Let w(x)> 0 be the function of x with E[w(X)]< ∞. Then, the weighted version of the
original distribution denoted by g(x;θ) is defined as g(x;θ) ∝ w(x) f (x;θ).

In practice, if the collected data are known to be size-biased, then instead of f (x;θ) the distri-
bution g(x;θ) is considered as a model with an appropriate weight function w(x) and the inference
about the parameter θ is now based on g(x;θ).

Obviously, unless g(x;θ) has certain desirable properties it cannot serve the purpose of conduct-
ing statistical inference on parameter θ . One such desirable property is referred to as the form-
invariance of g(x;θ) when it is compared with the form of f (x;θ) as a function of variable X .
However, there is no precise global definition or criterion of form-invariance in the related literature.

Therefore, in this note, as mentioned above, in view of the possible occurrence of size-biasedness
in matrix variate data, we provide a new definition of the form-invariance of matrix variate weighted
distributions. This definition, as to be expected, is applicable to the form-invariance of the weighted
univariate and multivariate distributions as special cases of the matrix variate distribution. Since the
nature of the discussion in this paper is mostly of mathematical nature, we will briefly describe a
practical situation, where the weighted matrix variate distribution arises as a model for the available
data.

The clustering of objects/subjects is required in many fields of applications such as medical
science, psychology, marketing, physiology and many others. A typical scenario, in general, is as
follows:

Suppose p-dimensional data are available on each of the N subjects that are to be classified
into clusters and suppose the number of clusters is k1. Various methods are used for clustering,
for example, the k-means method (refer to Johnson and Wichern (2006) for clustering methods).
Suppose the researcher is interested in using the k-means (nearest -neighbour) method. In order to
apply the k-means method, the researcher is required to specify the number of variables to be used for
clustering. Unfortunately, the choice of variables and the related precision of the clustering scheme,
present a complicated problem, if the number of variables p is large. In particular, different methods
are suggested for the choice of variables that should be used for clustering of subjects. Therefore,
the researcher has to settle on a subset of variables in one way or another, hoping that this subset will
work for the true clusters of N subjects. One simple solution is to use all the p-variables and obtain
k1 clusters. However, this is not an optimal solution due to the fact that, if the clustering problems
are undertaken in a completely new field of research and if the implications of the variables in the
clustering task is an important part to the experiment conducted for collecting the data on these p-
variables, then there is a need for pinning down the most appropriate minimal subset of variables.
(For example, such situations arise in the cluster analysis of different types of body tissues known
to be responding to different kinds of impulses applied to them in neurological studies.) To arrive at
such a minimal subset of q-variables (q < p) , the following data analysis method is considered.
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• Step I. Use all the p-variables and obtain the fixed number of clusters (k = k1) and the fre-
quency distribution ( # of subjects in each cluster).

• Step II. Select a subset of the p-variables consisting of q-variables using a suitable criterion
supported by the objective of the study and the experimental conditions.

Note that the selection of variables automatically causes selection biasedness, due to the ex-
perimental conditions and the nature of the collected /available data.

Cluster analysis with k1 clusters is conducted for these q-variables.

• Step III. Now, from the analyses done in Steps I and II for each of N subjects, we have two
observations for each cluster frequency (namely the frequency with p-variables and the other
with q-variables).

• Step IV. The cross-classification for each of the N subjects results in a k1× k1 contingency
table- in which the cell frequencies are the values of the discrete random variables (r.v.s.), say
Xi j’s. The resulting frequencies are the realizations of the r.v.s. arranged as a k1× k1 matrix,
having a certain matrix variate distribution. Further, these frequencies, when expressed as
proportions or the normalized r.v.s., are transformed into continuous variables defined on the
corresponding support space.

Now, if we can identify the original distribution of such a discrete matrix variate distribution or
of the corresponding matrix of proportions, we can associate a matrix weight function and derive
a weighted version of the original distribution. This can be used for further analysis as may seem
appropriate for the practical situation under consideration.

Remark 1 The contingency table (similar to those referred to in Step IV) and its variants are studied
in machine learning (artificial intelligence) in order to minimize the misclassification errors. Such
a matrix is referred to as a confusion matrix. The Bayesian analysis of the confusion matrix is
often considered in related studies. The discussion about confusion matrices can be found in text
books on machine learning and related applications. Here, we are suggesting the use of weighted
matrix variate distributions as a method of correcting the misclassification errors. We may further
add that in certain applications of univariate weighted distributions, one can consider the posterior
distribution as a weighted version of the original distribution. In this respect, the above discussion,
with reference to a confusion matrix, is an extension of similar univariate cases (see Bayarri and
Berger, 1998).

For the convenience of the readers, the main features of our new definition are listed below.

(a) It is valid for scalar as well as vector variates with no change in their structure or basis.

(b) It can be used for non-positive definite matrices. Considering item (a), it can even be applied
to negative random variables.

(c) The Student’s t-distribution, commonly used in statistical inference, belongs to the form-
invariance class.
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Some preliminary results from the theory of matrix variate distributions are listed in Section 2.
The main definition and related implications and applications are listed in Section 3. A few relevant
extensions of the results obtained in Sections 2 and 3 are discussed in Section 4.

2. Preliminaries

For the purpose of this note we consider the matrix variate elliptically contoured (MEC) distribu-
tions.

Let X be an n× p random matrix, which can be expressed in terms of its elements, column and
rows as

X = (xi j) = (x1, · · · ,xp) = (x(1), · · · ,x(n))′. (1)

Here x(1), · · · ,x(n) can be regarded as a sample of size n from a p-dimensional population.
Four classes of matrix variate elliptical distributions are defined and discussed in Dawid (1977)

and Gupta and Varga (1993). In view of the objective of this paper we specifically consider the
following case:

Definition 1 The n× p random matrix X has a MEC distribution if its density has the form

g(X)= dn,p|ΦΦ|−
p
2 |Σ|−

n
2 f
{

ΣΣ
−1(X−1µµ

′)′Φ−1(X−1µ
′)
}

(2)

where µµ ∈ Rp and ΣΣ is a p× p semi-positive definite matrix. This distribution is denoted by
X∼ En,p (µµ,Φ⊗Σ, f ) . For notational convenience we may also use En,p (µµ,Φ,ΣΣ, f ) when needed.

Definition 1 imposes the condition f (AB) = f (BA) on the density generator f for any p× p
positive definite symmetric matrices A and B. Throughout this paper, without loss of generality, we
will be using the full form of the tr operation from the argument of f (·).
Two well-known examples of MEC distributions are:

(a) Matrix Variate Normal (MN) Distribution
X ∈ Rn×p has MN distribution, with mean M = 1µµ ′, row and column covariance matrices Φ

and ΣΣ respectively, denoted by X∼ Nn,p(M,Σ,ΦΦ), if its density is given by

f (X) =
|Φ|−

p
2 |ΣΣ|− n

2

(2π)
np
2

exp
{
−1

2
tr
[
ΣΣ
−1(X−M)′Φ−1(X−M)

]}
.

(b) Matrix Variate Student-t (MT) Distribution
X ∈ Rn×p has MT distribution, with mean M = 1µ ′, row and column scale matrices ΦΦ and ΣΣ

respectively and ν degrees of freedom denoted by X∼ Tn,p(M,Σ,ΦΦ,ν), if its density is given
by

f (X) =
|Φ|−

p
2 |Σ|− n

2

gn,p

∣∣In +ΣΣ
−1(X−M)′Φ−1(X−M)

∣∣− n+p+ν−1
2 ,
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where

gn,p =
(π)

np
2 Γp

(
ν+p−1

2

)
Γp

(
ν+n+p−1

2

) .

Remark 2 For ΦΦΦ = β

2 I, n = 1, the distribution in (b) above simplifies to the new mixture represen-
tation for multivariate t, proposed by Iranmanesh et al. (2012). For other possible examples, refer to
Arashi et al. (2013).

The MEC distribution can always be expressed in an integral form of a matrix variate normal
distribution with weight function as given in the following theorem.

Theorem 1 Let X∼ En,p (µµ,In⊗ΣΣ, f ) where the density g(X) of X is defined by

g(X) = |ΣΣ|−
n
2 h
[
trΣΣ
−1(X−1µ

′)′(X−1µµ
′)
]
.

If h(t), t ∈ [0,∞) has the inverse Laplace transform ( denoted by L [h(t)]), then we have

g(X) =
∫

∞

0
w(z) fN(µµµ,z−1In⊗ΣΣΣ)(X)dz (3)

where fN(µ,z−1In⊗Σ)(X) stands for the density of the n× p random matrix X distributed as a matrix
variate normal with the mean matrix 1µµµ ′ and the covariance matrix z−1In⊗ΣΣ, and w(z) is the
weight function given by

w(z) = (2π)np/2 z−np/2L [h(2z)] . (4)

For the proof refer to Gupta and Varga (1993).

Remark 3 In Theorem 1 it is stated that f is the density of Nn,p
(
µµ,z−1In⊗ΣΣ

)
, it can also be verified

from the proof that f can have one of the following densities:

(a) Nn,p
(
µµ,z−1In,ΣΣ

)
or

(b) Nn,p
(
µµµ,In,z−1ΣΣΣ

)
or

(c) Nn,p

(
µµµ,z−

1
2 In,z−

1
2 ΣΣ

)
.

This fact enables us to adopt any of these representations when needed for practical use.

3. Characterization

In this section, we define a form-invariance structure for matrix variate distributions. Then we obtain
a characterization of the class of distributions that satisfies our definition.
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Definition 2 The random matrix X ∈ Rn×p, having the density function g, has a form-invariance
distribution if its density can be expressed as

g(X; )Σ) =
∫

∞

0
δ (t−1)g(X; t−1

Σ)dt, (5)

where ΣΣ is the column covariance matrix and δ (·) is the Dirac delta or impulse function having the
property

∫
R h(x)δ (x)dx = h(0), for every Borel-measurable function h(·).

In the following result we show that all matrix variate elliptical distributions satisfy Definition 2.
In other words we characterize the class of distributions that synchronizes Definition 2.

Theorem 2 As a result of Definition 2, all matrix variate elliptical distributions defined in Definition
1, satisfy the regularity condition (5).

Proof. Suppose that X∼ En,p(µµ,ΦΦΦ⊗ΣΣΣ, f ). Then using Theorem 1 we have,∫
∞

0 δ (t−1)gE(µ,t−1Φ⊗Σ, f )(X)dt

=
∫

∞

t=0 δ (t−1)
(∫

∞

z=0 w(z)gN(µ,t−1z−1Φ⊗ΣΣ)(X)dz
)

dt

=
∫

∞

z=0 w(z)
(∫

∞

t=0 δ (t−1)gN(µµ,t−1z−1ΦΦ⊗ΣΣΣ)(X)dt
)

dz

=
∫

∞

z=0 w(z)gN(µµ,z−1ΦΦ⊗Σ)(X)dz
= g(X;ΣΣ),

where the third equality comes from the fact that, based on Theorem 1, the weight function for the
MN distribution is the Dirac delta function. The proof is complete. �
Theorem 2 shows that all matrix variate elliptical distributions are form-invariant. Thus all matrix
spherical distributions (taking µµ = 0n×p, Φ = In and ΣΣ = Ip) are also form-invariant in the sense of
Definition 2. Next, we record some further results similar to those of Theorem 2.

4. More Properties

In this section, we extend the result for form-invariance to marginal and well as conditional struc-
tures. The sum of independent matrix elliptical variates is also considered.

Theorem 3 If X∼ En,p(µµ,ΦΦΦ⊗ΣΣ, f ) is form-invariant, then so is its transform, X′.

The proof follows directly using Theorem 2.1.3 of Gupta and Varga (1993) and Theorem 2.
Using Theorem 3, we will obtain more properties for X∼ En,p(µµ,ΣΣ⊗Φ, f ).

Theorem 4 If X∼ En,p(µ,ΦΦ⊗Σ, f ) is form-invariant and partition X,µµ and Σ as

X =

(
X1

X2

)
,µµµ =

(
µ1

µ2

)
, and ΣΣ =

(
ΣΣ11 Σ12

ΣΣ21 Σ22

)
,

where X1 is q×n,µµ1 is q×n, and Σ11 is q×q, 1≤ q < p, then X1 is also form-invariant.

Proof. By making use of Theorem 2.3.1 of Gupta and Varga (1993), X1 ∼ En,q(µµµ1,ΣΣ11⊗ΦΦ, f ).
Then the result follows from Theorem 1. �
A similar result using Theorem 4 can be also given by partitioning ΦΦ.
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Remark 4 Based on the results of Theorems 3 and 4, we have the following conclusions:

(a) Let n = q = 1, the scalar elliptical variate is form-invariant.

(b) Let q = 1, the vector elliptical variate is form-invariant.

Remark 5 As in Theorems 3 and 4, to show that a random matrix or its variate is form-invariant,
it is sufficient to show that its distribution is matrix elliptical and then use Theorem 2. In other
words, by making use of Theorem 2, if X ∈ Rn×p is form-invariant, then it has a matrix elliptical
distribution and in order to show that Y = δ (X),δ : Rn×p→ Rk×p is form-invariant, it is sufficient
to demonstrate that Y has a matrix variate elliptical distribution.

In the sequel, we propose a series of properties based on the result of Gupta and Varga (1993).

Theorem 5 (a) Let X be form-invariant. For any A and B of sizes q× p and m×n respectively,
the distribution of Y = AXB′ is form-invariant.

(b) Under the assumptions of Theorem 4, suppose rank(ΣΣΣ22)≥ 1. Then X1 |X2 is form-invariant.

(c) Let X∼ En,p(µ,ΦΦ⊗ΣΣ, f ), i = 1, . . . ,k be k independent form-invariant random elliptical ma-
trices. Then Y = ∑

k
i=1 Xi is form-invariant.

5. Discussion

Patil and Ord (1976) introduced a form-invariance property for the univariate case. If a weighted
distribution is form-invariant then the statistical inference (for example, the properties of estimators)
based on such distribution will not be unduly distorted. This is observed for some known univariate
distributions discussed in Patil and Ord (1976) and in many other papers on weighted univariate
distributions.

The concept of form-invariance for the matrix environment has not been addressed before.
Therefore, we proposed in this paper a new form-invariance definition for matrix variate distri-
butions. In general, our definition is not comparable to the one in Patil and Ord (1976) for the
univariate case.

However, due to the characterization result given as Theorem 2, for a random variable having a
form-invariant distribution, it is necessary that the inverse Laplace transform exists for the density
generator of its distribution. According to Definition 2, the form-invariance concept is an integral
operator which is applied to the original distribution.

The advantages of using this new definition are:

(a) there is no restrictions in our definition;

(b) it holds for scalar as well as vector variates with no change in its structure or basis and

(c) the support space for the random variable is not restricted to a non-negative variable.

Further research in this area is needed and is in progress. But, in view of the scope of this paper
the related results are not included here for brevity.
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