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A NEW DEGREE BOUND FOR VECTOR INVARIANTS

OF SYMMETRIC GROUPS

P. FLEISCHMANN

Abstract. Let R be a commutative ring, V a finitely generated free R-module
and G ≤ GLR(V ) a finite group acting naturally on the graded symmetric
algebra A = S(V ). Let β(V,G) denote the minimal number m, such that the
ring AG of invariants can be generated by finitely many elements of degree at
most m.

For G = Σn and V (n, k), the k-fold direct sum of the natural permutation
module, one knows that β(V (n, k),Σn) ≤ n, provided that n! is invertible in
R. This was used by E. Noether to prove β(V,G) ≤ |G| if |G|! ∈ R∗.

In this paper we prove β(V (n, k),Σn) ≤ max{n, k(n − 1)} for arbitrary
commutative rings R and show equality for n = ps a prime power and R = Z
or any ring with n · 1R = 0. Our results imply

β(V,G) ≤ max{|G|, rank(V )(|G| − 1)}
for any ring with |G| ∈ R∗.

1. Introduction

Let R be a commutative ring, V a finitely generated free R-module and G ≤
GLR(V ) a finite group. Then G acts naturally on the symmetric graded algebra

A := SR(V ) =

∞⊕
i=0

SR(V )i,

where SR(V )i denotes the i-th symmetric power of V . Notice that the action of G
preserves degrees; hence the algebra AG of invariants inherits the grading from A.

It has been a classical problem of 19th century algebra to construct minimal
sets of generators for the ring of invariants AG or sets of generators with minimal
degree.

In [3] (1916) E. Noether gave two different constructive proofs for the fact that
AG is finitely generated by invariants of degree at most |G|, if Q ⊆ R. Both proofs
can be made to work over any ring R having the property that the factorial |G|! of
the group order is invertible (e.g. see [7], [2]).

In [4] (1926), Noether presented a proof for the fact that AG is finitely generated
whenever R is a noetherian ring. No assumption whatsoever on invertibility of
|G| is needed, but the price one has to pay for this generality is that the proof is
no longer constructive. It essentially uses the fact that submodules of noetherian
modules are finitely generated. The first proof in [3] uses a classical result of H.
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1704 P. FLEISCHMANN

Weyl [8] on vector invariants of the symmetric groups. To state this and to show
how it is applied, we have to introduce some notation:

Let V := V (n) = Rn be the free R-module with the natural permutation action
of Σn on it. For k ∈ N we define V (n, k) := V ⊕k = V ⊕· · ·⊕V to be the k-fold direct
sum with diagonal action of Σn and AR(n, k) := S(V (n, k)) to be the symmetric
R-algebra over V (n, k). Let {x1, ..., xn} be a basis of V (n); then for k ∈ N the set
{x11, ..., xn1, ..., x1k, ..., xnk} is a basis of V ⊕k.

A monomial X := xa11
11 · ... · xan1

n1 · ... · xa1k

1k · ... · xanknk ∈ S(V ⊕k) is of mul-
tidegree md(X) := (d1, ..., dk) ∈ Nk if dj =

∑n
i=1 aij and of (total) degree

d(X) :=
∑k

j=1 dj . Clearly AR(n, k) =
⊕

m∈Nk AR(n, k)m, where AR(n, k)m is the

set of R-linear combinations of monomials with multidegree m and the AR(n, k)m’s
are Σn-submodules. An element of AR(n, k)a is called homogeneous of multidegree
m.

Now let G = {e = g1, g2, . . . , gn} be an arbitrary finite group of order n and let
W = Rw1⊕· · ·⊕Rwk be an RG-module of rank k. Consider the Cayley embedding
G ↪→ Σn, g 7→(gi 7→gj := ggi). Then

ν : AR(n, k) → SR(W ), xi` 7→gi(w`)

is a G-equivariant algebra epimorphism which preserves degrees. In fact,

ν(g(xi`)) = ν(xj`) = gj(w`) = ggi(w`) = gν(xi`).

Now, for completeness, we repeat Noether’s original 1916 argument showing that
the restriction

ν : AR(n, k)Σn → SR(W )G

is surjective whenever n is invertible in R: In this case, for any f = f(w1, . . . , wk) ∈
SR(V )G we can define

F :=
1

n
(f(x11, x12, . . . , x1k) + · · ·+ f(xn1, xn2, . . . , xnk)) ∈ AR(n, k)Σn

and get

ν(F ) =
1

n
(f(g1(w1), g1(w2), . . . , g1(wk)) + · · ·+ f(gn(w1), gn(w2), . . . , gn(wk))

=
1

n
(g1f(w1, w2, . . . , wk) + · · ·+ gnf(w1, w2, . . . , wk) = f.

Let β(W,G) denote the minimum number m such that SR(W )G is generated
by finitely many invariants of degree at most m and βR(G) := max{β(W,G)},
where W ranges through all RG-modules that are finitely generated and free as
R-modules. We see immediately that |G| ∈ R∗ implies

β(W,G) ≤ β(V (n, k),Σn).

For any f = f(x1, . . . , xn) ∈ S(V (n)) and m = (m1, . . . ,mk) ∈ Nk we define
Pol(f)m to be the AR(n, k)m-part of the element

f(x11 + · · ·+ x1k, . . . , xn1 + · · ·+ xnk).

Notice that Pol(f)m ∈ AR(n, k)G if f ∈ S(V (n))G for any G ≤ Σn; moreover
Pol(f)m = 0 whenever

∑
imi exceedes the degree of f ∈ S(V (n)).

Now Weyl’s theorem states that, if R = K is a field containing Q, then

AK(n, k)Σn = K[Pol(ei)m | i = 1, ..., n, m ∈ Nk],
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where ei is the i-th elementary-symmetric polynomial. Since (ei)m = 0 if m =
(m1, ...,mk) and

∑
jmj > i, AK(n, k)Σn is generated by a finite number of elements

of degree ≤ n.
Recently, new proofs for this result have been given by D. Richman and others,

which work over any commutative ring R with n! ∈ R∗ (see [2]), In this case Weyl’s
theorem implies β(V (n, k),Σn) ≤ n = |G|; hence βR(G) ≤ |G|.

But, as we will see, Weyl’s theorem no longer holds in positive characteristic
≤ n. Hence although the restriction ν : AR(n, k)Σn → SR(V )G is surjective in the
more general situation where only |G| is invertible in R, a proof of βR(G) ≤ |G| in
this generality is not known at the moment of this writing (see [2] and [6] for proofs
in the case of solvable groups).

It is the aim of this paper to analyze vector invariants of Σn in the situation
where R is an arbitrary commutative ring for example the ring of rational integers
Z.

In [1], Campbell, Hughes and Pollack prove β(V (n, k),Σn) ≤ max{|G|, k · (n2)},
and thus obtain β(V,G) ≤ max{|G|, rank(V ) · (|G|2

)} for any commutative ring R
with |G| ∈ R∗.

I will prove that β(V (n, k),Σn) ≤ max{n, k(n− 1)} for arbitrary commutative
rings R, with equality if n = ps, a prime power, and R = Z or p · 1R = 0. This will
imply

β(V,G) ≤ max{|G|, rank(V )(|G| − 1)}
if |G| is invertible in R. It also implies, for the ‘global bounds’ over R = Z or
R = K, a field of characteristic p,

βR(Σps) = ∞.

Hence in this case there is no finite global bound at all, even for the smallest
nontrivial group Σ2.

2. Multiplication in invariant rings

Let R, V , A and G be as in the introduction and U ≤ G a subgroup. Then we
have the following homomorphism of R-modules:

TG
U : AU → AG, a 7→

∑
g∈[G:U ]

ga,

where [G : U ] denotes an arbitrary cross-section of (left) U -cosets in G, i.e. G =⊎
g∈[G:U ] gU . This is called the (relative) trace homomorphism. It preserves

(multi)degrees and if the index |[G : U ]| is invertible in R, then TG
U is an epimor-

phism. (Since a ∈ AU , its relative trace TG
U (a) does not depend on the choice of

coset representatives).
We will give a ‘Mackey formula’ for the product of relative traces which is par-

ticularly useful in the case of invariant rings of permutation modules.
Let U, V ≤ G be subgroups and suppose we are given a a cross-section [U : G : V ]

of U, V -double cosets with G =
⊎
g∈[U :G:V ] UgV and for each g ∈ [U : G : V ] a cross-

section [UgV : V ] ⊆ U of V -cosets with UgV =
⊎
t∈[UgV :V ] tgV . Then [UgV : V ] is

also a cross-section [U : U∩ gV ] of U∩ gV -cosets in U , i.e. U =
⊎
t∈[UgV :V ] tU∩ gV .

Here, as in the following, gV denotes gV g−1.
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1706 P. FLEISCHMANN

Proposition 2.1. Let U, V ≤ G be subgroups and [U : G : V ] be an arbitrary
cross-section of U, V -double cosets in G. Then for each a ∈ AU and b ∈ AV we
have

TG
U (a) · TG

V (b) =
∑

g∈[U :G:V ]

TG
U∩ gV (agb).

Proof. First notice that the summands on the right hand side do not depend on the
choice of double coset representatives. Indeed if u ∈ U and v ∈ V , then we have

TG
U∩ ugvV (a(ugvb)) = TG

U∩ ugV ((ua)(ugb)) = TG
U∩ ugV (u(agb)) = TG

U∩ gV (agb).

Now we choose [U : G : V ] and [UgV : V ] such that G =
⊎
g∈[U :G:V ],t∈[U :U∩ gV ] tgV

and conclude that

TG
U (a) · TG

V (b) = TG
U (a · TG

V (b)) =
∑

d∈[G:U ],h∈[G:V ]

d[a(hb)]

=
∑

g∈[U :G:V ],t∈[U :U∩ gV ],d∈[G:U ]

d[a(tgb)]

=
∑

g∈[U :G:V ],t∈[U :U∩ gV ],d∈[G:U ]

dt[a(gb)]

=
∑

g∈[U :G:V ]

TG
U∩ gV (a(gb)).

From now on we suppose that G ≤ Σn and V := V (n), i.e. that V is a permu-
tation module of G. It is well known that in this case the orbit sums of monomials
form a free R-basis of AG, so the formulae above, applied to momomials, completely
describe multiplication in AG.

More precisely, for any monomial a ∈ A let Ga denote the stablizer Ga := {g ∈
G| ga = a} and a+

G denote the G-orbit sum
∑

g∈[G:Ga]
ga. (We write a+ if G is

clear from the context.) Then we have

Corollary 2.2.

a+
G · b+G =

∑
g∈[Ga:G:Gb]

|Gagb|
|Ga ∩ gGb| (ag(b))

+
G.

3. The ‘row-lex’ order of matrices

Let the set of k-vectors over N be ordered lexicographically, i.e. by the rule
a = (a1, a2, ..., ak) < b = (b1, b2, ..., bk) if and only if there is 1 ≤ j0 ≤ k with
aj = bj for j < j0 and aj0 < bj0 . We say that b (strictly) dominates a iff
ai ≤ bi for all i = 1, . . . , k, with at least one ai < bi. Notice that a < b whenever
b strictly dominates a, but a < b does not imply that a is dominated by b (e.g.
(1, 2, 2) < (2, 1, 1) ). We will identify the set M := M(n, k) of monomials in
A := AR(n, k) with the set Matn,k(N0) of nonnegative n, k-matrices using the
bijection

c : M(n, k) →Matn,k(N0), x
a11
11 · ... · xan1

n1 · ... · xa1k

1k · ... · xanknk 7→(aij).

Now we define a total order on the set M := M(n, k) of monomials in the following
way (we call this the ‘row-lex’ order): a = (aij) < b = (bij) if and only if d(a) < d(b)
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or d(a) = d(b) and md(a) < md(b) or md(a) = md(b) and there is a row index
i0 ∈ N such that the row vectors ai = bi for all i < i0 and ai0 < bi0 . Hence the
matrices are ordered first by total degree, then multidegree and, if these coincide
by the ‘row-lexicographic’ order. This amounts to the total order of variables xij
given by x11 > x21 > · · · > xn1 > x12 > x22 · · · > x(n−1)n > xnn. Notice that the
action of Σn on M corresponds to the permutation of rows of a = (aij), i.e. σa :=
(aσ−1(i),j) = σ̂ ◦ (aij), where σ̂ := σ(δij) is the permutation matrix corresponding
to σ ∈ Σn. Moreover the product of monomials is given by componentwise addition
of matrix entries:

ab = c = (cij) with cij = aij + bij ;

hence md(ab) = md(a)+md(b). For a, b, c ∈ M we have ab ≥ a with equality if and
only if b = 1 (the zero matrix), and a < b ⇐⇒ ac < bc. For f =

∑
a∈M raa ∈ A

we define HT (f) to be the highest monomial a with respect to “<” that appears in
f with nonzero coefficient ra. Now we get a preorder (i.e. a transitive relation) on
A by defining f to be less than g ∈ A (f ≺ g) if and only if HT (f) < HT (g). We
also define f � g ⇐⇒ f = g or f ≺ g. For a ∈ M the orbit sum a+ will usually
be written by displaying its highest element, a = max aG. We get immediately:

Lemma 3.1. Let a, b ∈ M with a := max aG and b := max bG. Then Gab =
Ga ∩Gb and

(ab)+ − a+b+ ≺ (ab)+.

Proof. First note that Ga ∩ Gb ⊆ Gab, so we only have to prove the opposite
inclusion. Suppose then that g ∈ G but g 6∈ Ga ∩ Gb. Then without loss of
generality we may assume g 6∈ Ga. Hence ga ≺ a and g(ab) = g(a)g(b) ≺ ab.
Therefore g 6∈ Gab, and so Gab = Ga ∩Gb. Obviously the lead term of a+b+ is ab;
to finish the proof of the lemma it suffices to show that ab is also the lead term of
(ab)+. Suppose g ∈ G with g 6∈ Gab; then we can assume that g 6∈ Gb, and hence
g(ab) = g(a)g(b) � a(g(b)) ≺ ab.

Remark 3.2. Notice that, by 2.2, we have in fact

(ab)+ − a+b+ = −
 ∑
g∈[Ga:G:Gb]\Ga·Gb

|Gagb|
|Ga ∩ gGb| (ag(b))

+

 .

For j = 1, . . . , k let 1(j) ∈ M denote the matrix whose entries are all one in the
jth column and zero elsewhere. Let a ∈ M be such that for some column index j
and all i = 1, . . . , n the entries aij are positive. Then

a+ =


a11 . . . a1j − 1 . . . a1k

a21 . . . a2j − 1 . . . a2k

. . . . . . . . . . . . . . .
an1 . . . anj − 1 . . . ank


+

·


0 . . . 1 . . . 0
0 . . . 1 . . . 0
. . . . . . . . . . . . . . .
0 . . . 1 . . . 0


+

.

Hence AG can be generated by the 1(i)’s and orbit sums a+ such that each column
of a ∈M has a zero entry.
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If G = Σn and ã ∈ M, then max ãG has a particularly easy shape: let (a1 ≥
a2 ≥ · · · ≥ an) be the family of row vectors of ã and consider

b :=


b1
b2
. . .
bn

 6= a :=


a1

a2

. . .
an

 ,

where the unordered families (ai) and (bi) coincide. Let i0 := min{i | ai 6= bi};
then the families (ai)1≤i<i0 and (bi)1≤i<i0 coincide and bi0 must be one of the ai’s
with i > i0; hence bi0 < ai0 and b < a. We see that a is the maximal element in
the orbit aΣn = ãΣn .

4. Indecomposable invariants

The following definition as well as the lemma make sense for arbitrary invariant
rings of finite groups:

Definition 4.1. For d ∈ N let R(d) := R[b ∈ AG | d(b) < d]. An element a ∈ AG

is called indecomposable if and only if a 6∈ R(d(a)), and decomposable if a ∈
R(d(a)). (In particular, 0 is decomposable.)

Lemma 4.2. Let S ⊆ AG. Then the following are equivalent:
(i) AG = R[S];
(ii) For each a ∈M with a+ ∈ AG\S there is f ∈ R[S] with f = 0 or d(f) ≤ d(a)

such that a+ − f is decomposable.

Proof. (i) ⇒ (ii). We can take f = a+.
(ii) ⇐ (i). Let m ∈ M be of minimal degree d such that m+ ∈ AG\R[S]. Then

m+ 6∈ S, so c := m+ + f is decomposable for some f ∈ R[S] of degree ≤ d or
f = 0. In any case d(c) ≤ d and c ∈ R(d), so it is a linear combination of products
of elements b+ of degree < d. By minimality of d, each of these b+’s lies in R[S];
hence c and m+ lie in R[S], a contradiction. So R[S] = AG.

Remark 4.3.

β(V (n, k), G) = max{d | R(d) < AG} = min{d | R(d + 1) = AG}.
From now on let G := Σn and A := A(n, k).

Definition 4.4. Let B1 denote the R-module spanned by those elements b+ ∈ AG

with b ∈ M such that the first column vector b1 of b lies in {0, 1}n and all rows of
b starting with 1 in the first column are of the form (1, 0, . . . , 0).

Lemma 4.5. For any a ∈ M we have

a+ ∈ (B1 ∩ AG
md(a)) + R(d(a+)).

This implies that if md(a) = (a1, a2, . . . , ak) with a1 > n or a1 = n and md(a) 6=
(n, 0, 0, . . . , 0), then a+ is decomposable, and if md(a) = (n, 0, 0, . . . , 0), then a+ −
r1(1) is decomposable for some r ∈ R.

Proof. We use induction with respect to the ≺ relation. Let a = max aG with
d(a+) = d and assume that all b+ with b+ ≺ a+ (and md(b) = md(a) = (a1, . . . , ak))
already lie in B1 ∩AG

md(a) + R(d). We can assume that at least one zero appears in

the first column of a. Now there are three cases to consider: the first column has
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three distinct entries, two distinct entries with the non-zero entry bigger than one,
and two distinct entries with the non-zero entry equal to one.

So we assume first that a11 ≥ a21 ≥ . . . as1 > c = a(s+1)1 = · · · = at1 > 0 =
a(t+1)1 = · · · = an1. Consider

a+ =



a11 b1
a21 b2
. . . . . .
as1 bs
c bs+1

c bs+2

. . . . . .
c bt
0 bt+1

. . . . . .
0 bn



+

,

where the bi are appropriate nonnegative k − 1 vectors satisfying bt ≤ · · · ≤ bs+1

and bn ≤ · · · ≤ bt+1. Let

a′ =



a11 − 1 b1
a21 − 1 b2
. . . . . .

as1 − 1 bs
c 0
c 0
. . . . . .
c 0
0 bt+1

. . . . . .
0 bn


and e =



1 0
1 0
. . . . . .
1 0
0 bs+1

0 bs+2

. . . . . .
0 bt
0 0
. . . . . .
0 0


;

then a′ = max a′G and e = max eG, and we get a+−a′i+e+ = (a′e)+−a′+e+ ≺ a+.

Hence a+ − a′+e+ ∈ B1 ∩AG
md(a) + R(d). Obviously a′+e+ ∈ R(d), so we conclude

that a+ ∈ B1 ∩AG
d + R(d).

So we can assume that

a =



c b1
c b2
. . . . . .
c bs
0 bs+1

0 bs+2

. . . . . .
0 bn
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with c > 1 and bn ≤ · · · ≤ bs+1. Now let

a′ =



c− 1 b1
c− 1 b2
. . . . . .
c− 1 bs

0 0
0 0
. . . . . .
0 0


and e =



1 0
1 0
. . . . . .
1 0
0 bs+1

0 bs+2

. . . . . .
0 bn


.

Again a′ = max a′G and e = max eG, and we conclude as above.
Finally we can assume that

a =



1 b1
1 b2
. . . . . .
1 bs
0 bs+1

0 bs+2

. . . . . .
0 bn


with bs ≤ · · · ≤ b1 and bn ≤ · · · ≤ bs+1. Now let

a′ =



1 0
1 0
. . . . . .
1 0
0 bs+1

0 bs+2

. . . . . .
0 bn


and e =



0 b1
0 b2
. . . . . .
0 bs
0 0
0 0
. . . . . .
0 0


.

Again a′ = max a′G and e = max eG, and we conclude as above.
If a1 > n or a1 = n and md(a) 6= (n, 0, . . . , 0), then, by definition, B1∩AG

md(a) = 0

and a+ must be decomposable. If md(a) = (n, 0, . . . , 0), then B1 ∩AG
md(a) = R1(1).

This finishes the proof.

Notice that we also have a right Σk-action on A by permuting ‘columns’ of
monomials. On M this action is described by right multiplication with k × n-
permutation matrices. Hence A is a RΣn-RΣk-bimodule; in particular Σk also acts
on the invariant ring AG.

Clearly the total degree of a monomial is not changed by column permutations;
hence if a, b ∈ M are largest in their Σn-orbits and a and b lie in the same Σk-orbit,
then a+ is decomposable if and only if b+ is decomposable. This observation leads
to the following result.

Theorem 4.6. For j = 1, . . . , k let 1(j) ∈ M denote the matrix whose entries are
all one in the j column and zero elsewhere, and define

Mn :={a+ ∈ AΣn | md(a) is dominated by (n− 1, . . . , n− 1)}
∪ {1(j) | 1 ≤ j ≤ k}.
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Then AΣn = R[Mn]. In particular,

β(V (n, k),Σn) ≤ max{n, k(n− 1)},
i.e. AΣn can be generated by elements of degree ≤ max{n, k(n− 1)}.
Proof. By 4.2 it suffices to show that for each element a ∈M with a+ not in Mn,
there is a suitable f ∈ R[Mn] with d(f) ≤ d(a) or f = 0 such that a+ − f is
decomposable. So suppose that a+ has multidegree (a1, . . . , an) with total degree
d and ai ≥ n. Since Mn and R(d) are stable under column permutations, we
can assume that i = 1. Now 4.5 tells us that a+ ∈ (B1 ∩ AG

md(a)) + R(d), and

that if a1 > n or a1 = n and md(a) 6= (n, 0, . . . , 0), a+ must be decomposable. If

md(a) = (n, 0, . . . , 0), then a+ − r · 1(1) is decomposable for some r ∈ R.

As mentioned in the introduction, we will now show that our new degree bound
is ‘best possible’ in the following sense:

Theorem 4.7. Let n = ps be the power of a prime p, and let R be Z or a ring with
p · 1R = 0. Then

β(V (n, k),Σn) = max{n, k(n− 1)}.
Proof. Let G = Σn, and let AR denote A if it is defined over R. Since V is a
permutation module, AΣn

R is a free R-module, spanned by orbit sums of monomials.

Hence AΣn

R = AΣn

Z ⊗Z R, and we have β(VR(n, k),Σn) ≤ β(VZ(n, k),Σn). Hence it

suffices to show that for each k ≥ 1 and R with p · 1R = 0 the element a+
k with

ak :=


1 0
1 0
. . . . . .
1 0
0 bn−1


and bn−1 = (n−1, . . . , n−1) ∈ Nk−1

0 is indecomposable in A(n, k)G. We use induc-

tion on k. We have a+
1 = en−1; notice that AR(n, 1)Σn = R[e1, . . . , en] is a poly-

nomial ring generated by the elementary symmetric polynomials ei, i = 1, . . . , n,
which are algebraically independent; hence the indecomposability of a+

1 is a con-
sequence of the main theorem on symmetric functions. Assume now that a+

k−1 is

indecomposable but a+
k is not. Then

a+
k ∈

∑
06=dk

A(n, k)Gdk · A(n, k)Gn−1
k
−dk ,

where n− 1k = (n−1, . . . , n−1) ∈ Nk and the dk are strictly dominated by n− 1k.
Now we consider the G-equivariant ring epimorphism s : AR(n, k) → AR(n, k − 1)
which is the identity on the xi` for ` < k and maps xik to 1 for i = 1, . . . , n. Notice
that for b ∈ M,

s(b+) =
|Gs(b)|
|Gb| (s(b))+G.

In particular,

s(a+
k ) =

|Gak−1
|

|Gak |
a+
k−1 = a+

k−1.
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It is easy to see from 4.5 that each h+ ∈ AG
(0,...,0,i) with 0 < i ≤ n − 1 is a linear

combination of products of elements of the form b+j with

bj =


0 1
0 1
. . . . . .
0 0
0 0


with 0 < j < n ones and n − j zeros in the last column. We get Gs(bj) = G, and
hence

|Gs(bj)|
|Gbj |

= |bGj | =
(

n
j

)
≡ 0 mod(p)

by Lucas’ congruences; hence s(h+) = 0 for each h+ ∈ AG
(0,...,0,i) with 0 < i < n.

Clearly we have s(A(n, k)Gdk) ⊆ A(n, k − 1)Gdk−1
; hence

a+
k−1 = s(a+

k ) ∈
∑

06=dk−1

A(n, k − 1)Gdk−1
· A(n, k − 1)Gn−1

k−1
−dk−1

.

Since s(A(n, k)G(0,...,0,i)) = 0 for 0 < i ≤ n − 1, all ‘surviving’ summands must

have dk−1 = (d1, . . . , dk−1) different from (0, . . . , 0) and strictly dominated by

(n − 1, . . . , n − 1). But this implies that a+
k−1 is decomposable, which is a con-

tradiction.
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