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A new degree
for S1-invariant gradient mappings

E. N. DANCER

Department of Mathematics, University of New England,
Armidale, N. S. W. 2351, Australia

Ann. Inst. Henri Poincaré,

Vol. 2, n° 5, 1985, p. 329-370. Analyse non linéaire

ABSTRACT. - We construct a new degree for S 1-invariant gradient
maps where the classical degree gives little information. The main technical
result needed is a new result on generic homotopies. We apply this degree
to obtain a global bifurcation theorem which applies to cases where classical
results give limited information.
We apply our results to obtain a bifurcation theorem for periodic solu-

tions of Hamiltonian systems and for a problem in elasticity. We also
obtain new results on bifurcation for elliptic equations on domains with
an S~ 1 symmetry.

Keywords : S1-invariance, gradient maps, degree, global bifurcation, Hamiltonian

systems, elliptic equations.

RESUME. - Nous construisons un degre adapte a des applications
S1-invariantes de type gradient ou la notion classique de degre ne donne
que peu d’informations. On utilise pour cela un resultat nouveau sur les

homotopies generiques. On applique ce degre pour obtenir un resultat
de bifurcation globale.
Nous appliquons nos resultats pour obtenir un theoreme de bifurcation

de solutions periodiques de systemes hamiltoniens, et a un probleme
d’elasticite. Nous obtenons également de nouveaux resultats sur la bifur-
cation d’equations elliptiques dans des domaines pourvus d’une symétrie S 1.
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330 E. N. DANCER

In this paper, we construct a degree for S1-invariant gradient mappings
and consider its application to some bifurcation problems in Elasticity
and Hamiltonian Mechanics.

In more detail, we assume that E is a finite-dimensional normed linear
space and { Tg is a continuous linear representation of G = S~ on E.
We consider maps F : E --~ E which are S ~ -invariant and also are gradient
maps. Let ES~ denote the set of fixed points of the group action. If Q c E
is bounded, open and Sl-invariant and F(x) on (Q n 
we construct a special degree F, Q). The n is used to denote normal.
The reason for this will be apparent from the definition of the degree.
This degree does not agree with the usual Brouwer degree. In fact, the
Brouwer degree is necessarily zero for such maps. Our degree resembles
the Fuller index for periodic solutions of autonomous ordinary differential
equations in that it is only defined if F has no fixed points in Q n Egi.
Note that, as we discussed in [22 ], our degree can not be extended to all
S 1-invariant maps. We define our degree by generic arguments. In fact,
the main technical result needed to construct our degree is a theorem on
« generic » homotopies.
We extend our degree to infinite-dimensional Hilbert spaces and we

use it to obtain global bifurcation theorems. For suitable S 1-invariant
gradient mappings depending on a parameter, we obtain connected sets
of non-trivial solutions which bifurcate at an eigenvalue of the linearized
equation and continue globally. This contrasts with the case of general
gradient mappings where it is that there is bifurcation (by Rabinowitz [34 ])
but there may not be connected sets of solutions (as in Bohme [7]).
We apply our results to three examples. Firstly, we apply thm to an

example of Wolfe [40 ] involving elastic conducting rods. We obtain global
branches of solutions. Our results considerably improve those in [40 ].
Indeed, the original motivation for this work was to understand an earlier
example [39 ] of Wolfe.

Secondly, we use our degree to study periodic solutions of fixed period
of autonomous Hamiltonian systems. In particular, we obtain a bifurcation
theorem which extends one of Alexander and Yorke [3 ] and is related to
one of Fadell and Rabinowitz [24]. (We obtain a result under weaker
hypotheses; we obtain connected sets of solutions; our result is a global
result; but we do not obtain their multiplicity result, which was the main
part of their theorem.) Note that Chow, Maller-Paret and Yorke [11 ] proved
a closely related bifurcation theorem in a special case. We obtain better
global information than [77] ] and our result seems easier to apply than
their method in more general situations. Moreover, our proof seems more
natural. In particular, for convex Hamiltonians with isolated critical points
and a critical point at 0, we prove that the solution branches bifurcating
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331DEGREE FOR INVARIANT GRADIENT MAPS

from zero are always unbounded. We also discuss briefly some other appli-
cations to Hamiltonian systems.

Thirdly, we apply our results to nonlinear elliptic equations on domains
with a circular symmetry and obtain some new results.

It should be noted that the most usual trick when there are symmetries
does not work for S 1 symmetries. This is to choose a subgroup A of G and
consider for all g E A }. However, since S1 is abelian,
one easily sees that EA is invariant under the group action. Hence using EA
does not remove the symmetries (unless EA = Esi).

In § 1, we define our degree for S1-invariant gradient maps and study
some of its properties. However, we defer the proof of the main technical
lemma we need till § 7. In § 2, we discuss bifurcation theorems and, in § 3,
we consider generalizations to infinite dimensions. In § 4, we consider
applications to Elasticity while, in § 5, we consider applications to periodic
solutions of Hamiltonian systems. In § 6, we consider applications to non-
linear elliptic equations on domains with an S1-symmetry.

I should like to thank P. Wolfe for discussions on his elasticity problems.
Most of the results were announced in [22 ].
A convenient reference for group actions is Bredon [8 ].

§ I . THE BASIC DEGREE

In this section we construct our degree in finite dimensions. However,
we defer the proof of the main technical lemma still § 7.
Assume that E is a finite-dimensional normed linear space and { Tg 

is a continuous linear representation of S 1 on E. By this, we mean that Tg
is linear and bounded for ge S l, Tgh = TgTh for g, h E S 1, Te = I and the
map g - Tgx is continuous for each x E E. Note that the boundedness
assumption is redundant in finite dimensions. We will often write G instead
of SB If z E E, let Gz == { g E Sl : Tgz = z }. This is known as the isotropy
group and is a closed subgroup ofS1. It follows that Gz must be ( e ~ or S 1
or a finite cyclic group Z~ generated by a rotation through 2a~n -1. Here,
we think of S~ as { eit : 0  t  2x ~. Elements of E with Gz = G are said
to be fixed by G. If A ~ G, let EA == { X E E : Tgx = x for all g in A ~ .
We will use G(z) to denote the orbit { Tgz: g E G }. Note that G(z) is a smooth
manifold. A map F : E -~ E is said to be G-invariant if F(Tgx) = TgF(x)
for g E G, x E E. Similarly, a map F : E x R -~ E is said to be G-invariant
if F(Tgx, À) = TgF(x, À) for g E G, x E E, ~, E R and a map f : E -~ R is said
to be G-invariant for x E E, g E G. Sometimes we use inva-
riant instead of G-invariant. Note that, if F is C~ and G-invariant, then
Tx(G(x)) c N(F’(x)), where N denote the kernel and Tx(M) denotes
the tangent space to the manifold M at x. This follows by differentiating
Vol. 2, n° 5-1985.



332 E. N. DANCER

in directions tangent to the orbit at x. The above results are proved in Bre-
don [8 ].

Fix a scalar product ~ , ~ on E.
The following theorem summarizes the basic properties of the degree

we will construct. A map F : ~ --~ E is said to be admissible if S~ is a bounded

invariant open set in E and F : ~ ~ E is an S 1-invariant continuous

gradient mapping such that F(x) on ~03A9~ (Q n Esi). A continuous
map F : Q x [o, 1 ] ~ E is an admissible homotopy if S~ is as above, if F
is S1-invariant, if F( , t ) is a gradient mapping for each t and F(x, t)
for x E ~03A9~ (Q n Esi) and t E [o, 1 ]. Note that, when we say F is a gradient.
we mean with respect to the given scalar product ( , ).

THEOREM 1. - For each admissible map F : E, there is a corres-
ponding rational number F, Q) such that the following properties
hold.

(i ) If F : Q - E is admissible and F, Q) ~ 0, then there is an x
in Q such that x = F(x).

(ii) If Qi , i = 1, ..., k are disjoint open invariant subsets of 03A9 and F :03A9 ~ E
k

is admissible such that x ~ F(x) on SZ S~i then
i= 1

(iii ) If F : 03A9 x [0, 1 ] ~ E is an admissible homotopy, then t ), Q)
is independent of t.

(iv) If F : S~ -~ E is C1 and admissible, if are the only fixed points
of F in 03A9 and if N ~ N(F’(z)) is one-dimensional, then

K denotes the number of elements in K and det denotes the deter-
minant.

Assume now that F : E ~ E is S1-invariant and F is a continuous gra-
dient mapping with respect to the scalar product ( , ) on E. As in [15 ],
we can assume without loss of generality that ( Tgx, Tg y ~ - ~ x, y ~ for x,
y E E, and that F is the gradient of f with respect to ( , ) where
f(Tgx) = f (x) for g x E E. It follows by differentiating the equation

= f (x) with respect to g at g = e, that

for x E E, where A is the infinitesimal generator of the representation

Annales de l’Institut Henri Poincaré - Analyse non linéaire



333DEGREE FOR INVARIANT GRADIENT MAPS

g ~ Tg. (A = I), where a(t ) = In addition since

( Tgx, Tgy>= x, y ), we see by differentiation that ( Ax, y ) + ( x, Ay ) = 0.
Thus A is skew-adjoint. Equation (1) is very important below. Note that (1)
is essentially a special case of Noether’s theorem (cp. [29, Theorem 2. 3 ])
and, in physical examples, (1) corresponds to a conservation law.
Now assume that is an isolated orbit ofzeros o, f ’ I - F, where ES; .

Since A is the infinitesimal generator of { Tg it follows that Az ~ 0.

LEMMA 1. - Assume that U is an S1-invariant closed neighbourhood of
G(z) such that 0 if v E U. Then there is a neighbourhood W of e in S 1

such that, if H is an S1-invariant gradient mapping (with respect to the same
scalar product as F) and if Tgx = H(x) where g E Wand x E U, then g = e.

Proof. First note that every element of S 1 near e can be written uni-
quely as a(t) = exp (it) where t is small. By (1), ( H(x), Ax ) = 0. Thus,
if Tgw = H(w), ~ Tgw, Aw ) = 0. Since A is skew-adjoint, it follows that

( Tgw - w, Aw ~ == 0. Now, if g is near e, g = a(s) where s is small. Hence,
ifs ~ 0.

As t -~ 0, ~ - I)x -~ Ax uniformly on U and thus

uniformly on U. Since 0 on U and U is compact, it follows that

t-1 ~ x, A~c ~ ~ 0 if x E U and t is small. This contradicts (2) if s
is small and hence the result follows.
Note that Ax ~ 0 on U if U is a sufficiently small neighbourhood of S1(z).

In general, there may be points close to z where z and F(z) lie on the same
orbit.
Now assume that T is a smooth manifold transverse to at z. By

the proof of the tubular neighbourhood theorem (cp. Bredon [8, Theo-
rem 6.2.2]), we see that every point x in E near z can be uniquely written
in the form T03B1w where wET, w is near z and a is near e. We write x = 
If w~T and w is near z, define F(w) = y(F(w)). This defines a continuous
mapping of a neighbourhood of z in T into T. Note that, if w is near z,
F(w) is near F(z) = z and thus y(F(w)) is defined. Moreover, z is an isolated
fixed point of F. To see this, note that, by the definition of F, F( y) = r

near z implies that TxF( y) = y where a is near e. Thus T~y = F( r).
where x is the complex conjugate. By Lemma 1, it follows that a = E~.

Hence F( y) = y and thus y = z, since S1(Z) is an isolated orbit of fixed points.
We define

F, S1(z)) = (# Gz)-1 indexT (I - F, z) .
We call this the normal index of the orbit for F. We need to check
it is independent of the choice of T and of the choice of z on the orbit S 1 (z ).
Vol. 2, n° 5-1985.



334 E. N. DANCER

We first show that it is independent of the choice of T. Suppose that U is
an open subset of Rn (where n = dim E - 1) with 0 E U and 03C6: U x [o,1 ] ~ E
is a C2 map such that t ) = z for all t and t )) n Tz(S1(z)) _ ~ 0 ~
for all t. Here § denotes the partial derivative with respect to the first varia-
ble and R denotes the range. If V is a small neighbourhood of 0 in Rn, 
is a possible choice for T. Now, by an examination of the proof of the
tubular neighbourhood theorem, there is a neighbourhood Y of z in E
and jointly continuous functions such that, for every t E [0, 1 ],
any point x in Y can be uniquely expressed in the form Here

--- t ). The point is that the part of the proof of the tubular neigh-
bourhood theorem we require reduces to the implicit function theorem. Let
Ft By the commutativity theorem for the degree (cp. Nussbaum [32 ]),
IndexTt (I - Ft, z) = indexRn (I - Ft 0), where t ). By the
homotopy invariance of the degree, it follows that the right hand side is
independent of t. (It is easily checked that there is a neighbourhood X
of 0 in Rn such that the only solution of in X is 0 for all t.)
Thus indexTt (I - Ft, z) is independent of t. It follows easily by a suitable
choice of cP that it suffices to prove our result for § linear, that is, T a hyper-
plane. We finally obtain that the original definition is independent of the
choice of T from the above result if we note that the set of hyperplanes
transverse to form a connected open set.
To see that our definition is independent of the choice of z on 

we use the commutativity theorem for the degree as before. (If T is a manifold
transverse to at z and if m = Tbz, then TbT is transverse to at m

and the S1-invariance ensures that the corresponding F’s are conjugate.)
Hence our local index is well-defined. We now show that it has a

local homotopy invariance property. Suppose that we choose a closed
neighbourhood U of as in Lemma 1 such that ~ 7~ F(x) on 
We prove that, if Fi is an Sl-invariant gradient map sufficiently close to F
in the C0-norm and if I - Fi only vanishes on a finite number of orbits

..., in U, then 
,

To prove this result, choose a transversal manifold T to at z. Fix T.
Note that, if F~ is close to F, the orbits will be near Thus T

will also be transversal to the Now if y is defined as earlier, F1 ~ yFl
will be close to F = yF in the C° norm (since Fi is close to F). Thus, by
the homotopy invariance of the ordinary degree,

Annales cto l’Institut Henri Poincaré - Analyse non linéaire
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where = 1, ... , m are the fixed points of Fi in U n T. Here we are
assuming that Fi has only a finite number of fixed points in T n U. To
see that this is true, note that F is near F and hence its fixed points must
be near z. Thus is near z and so = where is near e.

Hence, by Lemma 1, we see that, = wj, then 03B1j = e and F1(wj)==Wj
Thus the w~ are the intersection of the with T. Note that Sl(zd
may intersect T several times. In fact, by the tubular neighbourhood theo-
rem (cp. Bredon [8, Theorem 6.2.2]), S1(zi) will intersect T, # GZ ( # 1

times. Moreover, by our earlier results on the independence of the choice
of T or z in the definition of our index, each of these points (for fixed i )
will have the same value of indexT (I - Fi, w~). Thus (4) becomes

If we multiply the equation by GZ)-1 and use the definition of indexS1n,
(3) follows.
Suppose now that Q is a bounded open S~-invariant subset of E and

F : 03A9 ~ E is an S 1-invariant gradient mapping such that x ~ F(x) on
~03A9~ (Q n and such that I - F only vanishes on a finite number of

in Q. We then define

We call this an S1-invariant normal degree. It follows easily from our
earlier results that this degree is homotopy invariant if we deform F through
S1-invariant gradient mappings Ft such that Ft has no fixed points on

(Q n Esi) and such that I - Ft only vanishes on a finite number
of orbits for each t. However, to obtain a useful degree, we have to define
the degree for maps which vanish on an infinite number of orbits and prove
a stronger homotopy invariance property. To do this, first note that, by
examining the proof of Lemma 4 . 8 in Wasserman [38], we see that an
S1-invariant gradient map F can be approximated in the C° norm by a
smooth S 1-invariant gradient map Fi such that I - F 1 (x) has only a one
dimensional kernel whenever x = and such that I - Fi only vanishes
on a finite number of orbits in Q. (In fact, by the results in [17 ], the second
assumption is a consequence of the first. Note also that such maps Fi,
which we call generic maps, form an open set in the C~ norm in the invariant
gradient maps.) Now define degS1n (I - F, Q) = degS1n (I - Fi, Q). Note that,
since Fi is near F on Q, our assumptions ensure that F1 has no fixed points
in an u (Es1 n Q). We have to show that this definition is independent of

Vol. 2, n° 5-1985.
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the choice of Fl. The weak homotopy invariance result we proved earlier
ensures that this definition agrees with the earlier one when I - F only
vanishes on a finite number of orbits. The proof that the above definition
is independent of the choice of Fi and of homotopy invariance will follow
easily from the following proposition. Here Vx denotes the gradient with
respect to x.

PROPOSITION 1. - Assume that Q is a bounded open invariant subset ofE
and H : Q x [0, 1] ~ R is a continuous S1-invariant map such that t )
exists and is continuous and t ) ~ 0 if x E ~03A9 ~ (ES1 n 03A9) and t E [o, 1 ].
Then there 1S a smooth invariant mapping H such that DxH is close to DtH
in the CO norm and ~xH(,t) only vanishes Oj2 Cl finite number of or bits for eacht
in [0, 1 ]. Moreover if H is we can approximate H by such an H in the C1
norm.

The proof of this is rather technical and we defer it till § 7. However,
xve now use it to complete the construction of our degree. Firstly, suppose
that F1 1 and F2 are generic maps which approximate F closely. Then
tF 1 + (1 - t)F 2 is a homotopy with no fixed points on ~03A9 ~ (Q n Esi)
for 0  t  1. It follows easily from Proposition 1 that there is an homotopy
Z( , ) joining F and F2 such that I - Z( , t) only vanishes on a finite number of
orbits in Q for each t and x ~ Z(x, t) if t E [o, 1 ] and x E 5Q u (Q n Esi).
(We construct Z as the composite of the obvious homotopy joining F I
to I - VxH(, 0), I - VxH and the obvious homotopy joining I - VxH(, 1)
to F2. We also use here that the generic maps form an open set in the C1
norm.) Thus, by our earlier results, degnl (I - = degnl (I - F 2, 0),
as required. Homotopy invariance can be proved by a similar argument.

We now complete the proof of T heorem 1. Part (iii ) has been proved
above while part (i ) follows from the definition of the degree. Part (ii )
follows easily by approximating F by « generic » maps. To prove (iv),
note that, since I - F’(z) is self adjoint (cp. Vainbert [37]), is invariant
under I - F’(z). We take T = z + N~ in the definition of the local index.
It is easy to see that F is C~ and (F)’(z) == (I - F’(z)) The result follows
from this, our earlier definition of indexS1n and the classical formula for
the index at a point where the derivative is invertible (cp. Lloyd [28, § I .1 ]).
This completes the proof of Theorem 1.
The proof of (iv) shows that the assumption that N(F’(z)) is one-dimen-

sional implies that is an isolated orbit of fixed points of F, and that
BB e could assume that F is differentiable at z rather than F is C 1.
To complete this section, we obtain two additional properties of our

degree. The results will be used in later sections.

PROPOSITION 2. - (i ) E is admissible and H : K -~ K

Annales de l’Institut HE’fl!’( Poincaré - Analyse non linéaire



337DEGREE FOR INVARIANT GRADIENT MAPS

1S an invariant self-adjoint linear opet-ator ojr the linear space K such that 1
is not ari eigenvalue of K. Then

where B is a ball in K with centre 0.

(ii) Assume that F : 03A91 Q+ H03B1 ~ E 0+ H ~ E ~ H is an admissible map
such that F is Cl, the orbit Vo)) is an isolated orbit of solutions and
P(I - F2(u, v)) is invertible for (u, v) E SZ 1 +Q Ha. Here P is the natural

projection onto Hand Hx denotes the ball of radius a in H. Finally, assume
that E and Hare S1-invariant and that the equation P(I - F(u, v)) = 0 has
a unique solution v = g(u) near for u near Then

indexS1n (I - F, vo))) = sgn det (P(I - v0))|H) indexS1n (I - F, 
wl2ere

Remarks. The product theorem is not true for this degree. The existence
and local uniqueness of g follow from the implicit function theorem. It

is possible to prove more general versions of (ii ) by only assuming the
invertibility condition on F~ for (u, v) near (uo, vo).

Proof of Proposition 2. (i ) This is proved by reducing to the case where F
is a « generic » map. We then note that, if z is a fixed point of F and if T
is a manifold in E transverse to at z, then T x K is transverse to the
orbit through (z, 0).

(ii ) We only sketch the proof because we do not use it for our main
theorems. It suffices to prove the result for F smooth and under the assump-
tion that N((I - F’)(uo, vo)) is I-dimensional. A similar argument to that
in the proof of Theorem 3 in [23 ] reduces our problem to the case where
vo = 0 and the assumptions of part (i ) hold. Part (ii ) then follows from part (i ).
Note that an isolated orbit of fixed points of F need not correspond

to an isolated fixed point of the mapping induced by F on the orbit space.
Thus it does not seem convenient to work with orbit spaces.

Finally if F : Q  E is an admissible map and K is a subgroup of S 1,
then F IEKnQ is an Sl-invariant gradient map of 0 n EK into Ek and thus its
index is also defined. Here 

’

Thus we have a whole series of indices which are sometimes convenient.
There is an alternative way of defining our degree. If is an isolated

orbit of zeros of F = I - F, we choose a transverse manifold T as before.
One can then use [21, § 3 ] to prove that z is an isolated solution of V T f = 0
on T, where F = Vf and VT denotes the gradient on the manifold T. Then
Vol. 2, n° 5-1985.
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indexS1n (I - F, S 1 (z)) is defined to be (# Gz)-1 indexT This method
seems slightly more tedious to justify but is more convenient for more

general group actions.

§ 2 . BIFURCATION THEOREMS

In this section, we first prove a global bifurcation theorem on a finite
dimensional space. This theorem, or variants of it, will be applied in § 4-6.
We first assume as before that E is a finite-dimensional linear space with

a continuous linear representation ~ Tg on E. Assume that A : E x R --~ E
is a continuous S1-invariant map such that A(, 03BB) is a gradient map on E
for each A in R with respect to the same scalar product ~, ). As in § 1, we can
assume without loss of generality that each Tg is unitary. Moreover, we
assume that A(0, 03BB) = 0 for 03BB E Rand A(x, 03BB) _ 03BBBx + K(x, 03BB), where B is
linear ~.) -~ 0 ~ 0 locally uniformly in ~~. We will
return to the case where B depends more generally on À later.

If  is a characteristic value of B, let N  = N(I - ,uB). If ,u = we write Ni
for Now, it is easy to see that B is S 1-invariant and thus Ni is Sl-inva-
riant. Hence { Tg N, is a representation of S1 on Ni. Hence we can

p

write NI = EB I Vj where Vj is Sl-invariant and Vj is real irreducible (that
j= 1

is, irreducible as a real representation). Now, it is well known that each Vj
is 1 or 2-dimensional and, if dim Vj = 1, each Tg acts trivially on Vj. For
example, these follow easily since the commutativity of S 1 ensures that
each complex irreducible representation is I-dimensional and since S1
is connected. Now assume that Ni n ES~ _ ~ 0 ~. Since each Tg is unitary,
it follows easily that ES1 c Since Ni n ES~ _ ~ O ~, each Vj is 2-dimen-
sional. Let G j denote the isotropy group for non-zero elements of Vj.
(It is independent of the choice of element since S 1 acts transitively on the
unit sphere in V,.) Define ~

We could replace Esi by Nt since

One way to see this is to note that an invariant self-adjoint operator on
a 2-dimensional V~ must have positive determinant and to use the eigenspace
decomposition for B. The first formula for n(~~I ) is more convenient in appli-
cations while the second is more convenient in proofs. The first formula
is useful because it shows that tends to have fixed sign. It can only

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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have different sign at two characteristic values ~.i, ~.; if there is another
characteristic value of B between ~,J which has eigenvectors in Esf.
Let D denote the closure in E x R of ( (x, 03BB) E E x R : x = A(x, 03BB), x ~ 0 }.

As is well-known, (0, v) implies that v is a characteristic value of B.

THEOREM 2. - Assume that the above assumptions hold and that Ai
is a characteristic value of B such that Ni n E~~ _ ~ 0 ~. (a) Then (0, E ~
and the component Ci of D containing (0, is (i ) unbounded or (ii ) contains
(0, ~,J) where ~,~ ~ ~~I or (iii) (a,,u) where a E ES1B ~ 0 ~. (b) Moreover,
if (i) and (iii) do not hold, let Ci n ( ~ 0 ~ x R) _ ~ (0, a~) ~~-1. If n ES ~ _ ~ 0 ~

Remarks. Note that the last part gives considerably more information
than the first part if Ci is bounded and does not intersect 0 ~ ) x R.
For example, (b) cannot occur if n ES~ _ ~ 0 ~ for each CXj and if each
n{Ctj) has the same sign. As a second example, assume that each Ncxj is
2-dimensional and does not intersect Esi. Let G~ denote the isotropy
group of non-zero elements of Then Theorem 2(b) implies that

t

0 where ~j = + 1. This is quite a strong restriction,
j= i

especially if =~= G/s are all distinct.
Before proving Theorem 2, we need the following lemma.

LEMMA 2. - Assume that the conditions of T heorem 2 hold and that D
is a bounded open invariant neighbourhood of zero such that x ~ A(x, 
if x E aD or if x E (D n ES~)B ~ 0 ~. Choose ,u > 0 such that x ~ A(x, ~)

and x E aD or x E (D n Esl)B ~ 0 ~ and then choose ~ > 0
such A(x, À) if 0 = Ài + J-l. Then

degnl (I - A(, A, + ,u), (I - A(, ,u), DBE~) = n(~~~ ).

(Here Ea is the open ball in E with centre O and radius ~.)

Remarks ~. - If ,u is sufficiently small, x ~ A(x, ~,) - ~c

and x E aD or x E (D n 0 }. This is obvious except to exclude the
possibility that x is small, x E ES1 and x = A(x, ~,). To see that this cannot
happen, note that, by the Liapounov-Schmidt reduction, such an x must be
of the form u + h.o.t., where Thus, since n == { 0 ~,
x cannot be in Esi. Note also that we must use DBEa rather than D because
the index is not defined on D.

2. - Thus we can think of as the change in the index as we cross 
This is the best way to think of 
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Proof - The proof is in two parts. We first show that the left hand side
of our equality is independent of the nonlinear terms K and on D. We
can calculate the expression by choosing a suitable D and K and then
doing a bifurcation analysis.
We first show that the expression is independent of D and K. Note that

it is independent of 03B4 by property (ii ) of our degree. Moreover, by homo-
topy invariance, it is independence of J1. (Note that we can choose 6 uni-
formly in  for J1 small but bounded away from zero.) We now show the
expression is independent of D. Suppose that 0 E D1 c D, where Di 1
is open and invariant, such that x ~ A(x,03BB) if x E aD1 and 03BB = As
before this still holds if ~ ~. - ~~i  ~u, where J1 is small. By homotopy inva-
riance

deg~~ (I - + ~)~ DBD1) = (I - A( , ~.i - ~c), DBD1) . (5)

By the additivity of our index, it follows that our expression is the same
for D and D1, as required. Obviously, our expression is unchanged if
we change the nonlinear term K in such a way that it is still the same for
~, == Ài + J1. We choose a smooth invariant function r such that r = 0

except near (0, and r =1 in a smaller neighbourhood of (0, Ai ). We then
take K(x, A) to be V(r(x, ~)), where V denotes gra-
dient (with respect to x), K(x, and ko(x) will be chosen later
such that ko(O) = = = 0 and zero is an isolated solution of

x = AiBx + Vko(x). Since K(x, A) = K(x, A) if £ = ~.~ ± J1, our expression
is unchanged. On the other hand, near (0, ~,o), K(x, A) = Vko(x) and thus zero
is an isolated solution of Thus we can calculate our

expression by choosing D = EE where 8 is small. Since we can also choose 6
small, it follows that it suffices to prove our lemma for K(x, A) = Vko(x).
We now find a suitable ko and then use a bifurcation argument to complete

p

the proof. For simplicity, assume £1 > 0. Suppose Ni = V~, where V~

is real irreducible. Define Ko(x) = ( / J = (L(x))2, where Pj
j= 1

is the orthogonal projection onto V~, ai > 0 and the ai are distinct. If
x = + Vko(x), if x is small and £ is near ~,i, it follows easily from our
choice of ko that x E Ni. Moreover, by a simple calculation, at most one P~x
is non-zero, )-  Ai and 4 ~ ~ = 1 - ~,a~I 1. (Thus we have p orbits
of solutions.) Another simple calculation using Theorem 1 (iv) shows that
the orbit of solutions with 0 has index

Note that the non-trivial eigenvalue of the linearization which corresponds
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to an eigenvector in V~ is negative. Since det ((I - AB) = det ((I - ÀiB) 
if /. is near ~? ~, the result now follows easily by the additivity of the index
and our comment after the definition of 

Proof of Theorem 2. The proof is a straightforward modification of
Rabinowitz’s bifurcation theorem [33 ] except that we use our degree rather
than the Leray-Schauder degree and we use Lemma 2 here. We sketch
it rather briefly. It is convenient in the proof to replace ~ by  u { (0, i~~~ ) ~.
(If (0, ~’ , set C = ~ (o, ~~i) ~. Of course, we eventually prove this cannot
happen.) Suppose that C ~ En x [ - n, n ], that C n (Es1 x R) ~ ~ o ~ x R,
and that (0, a) E C (with x ~ 0) implies that N(I - aB) n © ~. We
easily see (cp. [15 ]) that ~ n (En x [ - n, n ]) = Ci u C2, where Ci and C2
are closed and disjoint, C ~ C and (x, À) E C2 if (x, i~~) E  and = n

or i~~ ~ = n or (b) or (c) (0, a) E ~BC. Since any connected
subset x [ - n, n ]) must be wholly contained in Ci or C2
and since orbits are connected, it follows that Ci 1 and C2 are invariant.
We can now find an invariant open subset 0 of En x ( - n, n) such that

0, C2 m 0 = 0 and (0, oc) E 8 implies that a is near one of the 
where a j was defined in the statement of Theorem 2. If £ is near n or - n,
degnl (I - A( , ~), = 0 since there are no solutions of the equation in 8~,.
Here 8~, _ ~ x E E : (x, À) e o ~. Moreover, if J1 is small, Lemma 2 implies that

The result now follows easily.
The above ideas can be used in greater generality. In particular, we can

replace ~.B by B(~.). Assume B depends real analytically upon ~, and there
is at least one )B, for which I - B(A) is invertible. (More generally, we could
assume that I - B(~,) is C 1 and is invertible except at isolated points.)
As before, let ~,i denote the characteristic values of B(~,). When we say ~,i
is a characteristic value we now mean that I - is not invertible.

Assume that is invertible on Ni for each i where Ni = N(I - 
and Qi is the orthogonal projection onto Ni. Otherwise our assumptions
are the same as for Theorem 2.

In this case, define = sgn det ((I - B(~.i )) where is
defined below. We write (B M2, where M1(M2) is the subspace on
which is positive (negative). If { Gi ~n-1 are the isotropy groups
for the real irreducible sub-representations of Mi 1 and if { Gi ~n~ m + 1 are
the isotropy groups for the real irreducible sub-representations of M2, let
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THEOREM 2’. - Assume that the above assumptions hold where

In particular, assume that is invertible on Ni for each i. Suppose
that ES 1 = ~ 0 ~ . Then (0, ~.~ ) and the component C~ containing
(0, ~,~ ) is (i ) unbounded or (ii ) contains (0, ~,S) where ~,S ~ ~.~ or (iii ) (a, ,~) E ~
where a ~ 0 ~. Moreover, if (i ) and (iii) do not hold, let

The proof of this is very similar to the proof of Theorem 2. The only
changes occur in the proof of Lemma 2. Before proving this variant of
Lemma 2, we make one very useful comment. Suppose one can find a
family of invariant self-adjoint linear operators Bt(~,) such that = 

- for all t and I - Bt(~,) is invertible if -,u, li +,~] - ~ 
for all t. Then the degree difference as in Lemma 2 is independent of t.
This follows easily from homotopy invariance. (Much more general ver-
sions could be proved.) In our case, it is easy to construct such a deformation
of B(~,) to where Qi is the orthogonal projection
onto Ni. (We first deform B(~,) to B(~,i ) + (~~ - ~~ )B’(~~ ) and then use the
obvious deformation to + (~. - . Rather similar argu-
ments appear in Magnus [3~ ].) Thus it suffices to prove the result for this
linear term. If we note that we can choose our decomposition of Ni into
real irreducible representations such that )Qi is a diagonal operator
on each V~, the proof of the formula is essentially the same as the last part
of the proof of Lemma 2. We choose ko similarly. One difference is that at ~,i,
there is in general bifurcation in both directions.

Remarks l. If the invertibility assumption on )Qi fails but there
are only isolated eigenvalues, Theorem 2’ still holds if we define 

differently. We define n(~,i ) to be the change in index as we cross ~~t as in
the statement of Lemma 2, provided that zero is an isolated solution of
x = A(x, ~,i ) and N~ n ES1 == { 0 ~. We choose D a ball of small radius.

If zero is a non-isolated solution, we perturb the higher order terms (in x)
so that the isolatedness assumption holds. The proof of the first part of
Lemma 2 shows that n(Ài) is independent of the higher order terms. We
choose a family of invariant self-adjoint linear operators B(~,) close to B(~)
depending smoothly on À. In general, I - B(~.) will fail to be invertible
at a finite number of points à1, ..., a n near It is not difficult to show

that we can choose B(03BB) such that is invertible for each j, where Qj
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is the orthogonal projection onto N(I - Now what we are trying
to calculate is the change in our index (on DBE~) from to a~t + ~c.
This will simply be the sum of the changes at Thus = 

where is the index change at 03B1j for B(03BB). Since we can use the formula
in the paragraph before Theorem 2’ to evaluate we obtain 
Of course, the problem is in doing the calculations. However, we will do
this in detail in one example in § 5. Lastly, our methods can sometimes
be used even if Ni n o ~, especially if no solutions bifurcate in ES1
at li. We discuss this briefly for Hamilton systems in § 5.

2. - Theorems 2 and 2’ admit many variants. We could permit A to
be defined on only part of E x R with the statement modified accordingly.
Moreover, the results can sometimes be improved. Assume that A is C~,
that ~ (x, ~,) E Esi x R : x = A(x, /).) } consists of smooth curves (xi(~,), ~,),
and that non-symmetric solutions (that is, solutions not in can only
bifurcate from these curves at isolated points (z, a). Note that non-symmetric
solutions can only bifurcate at (z, a) if N(I - A~(z, ,u)) ~ Esi. Under suitable
hypotheses, one can prove a variant of Lemma 2 on the change of our index,
n((z, oc)), as we cross (z, a) on the curve (xi(03BB), 03BB). We could then prove a
strengthened version of Theorem 2’ for D, where D is the closure of

Here solutions (x, À) E ES1 x R are serving as the « trivial » solutions. Of
course difficulty is in understanding D n x R) and in calculating
the n((z, a))’s. However, we meet an example in § 5.

§ 3 . THE DEGREE ON HILBERT SPACES

In this section, we generalize the results of § 1 and § 2 to Hilbert spaces.
We prove that the degree of § 2 can be extended to completely continuous
mappings on a Hilbert space. Indeed, Theorem 1 (i )-(iii ) remain valid
as stated if we assume that our maps are completely continuous. We assume
that H is separable though this could be avoided. Assume that 
is a continuous linear representation of S 1 on H. (This is defined as in the
finite-dimensional case.) As before, we can use integration with respect
to an invariant Haar measure to ensure that each Tg is unitary, that is,
 Tgx, Tg y ~ - ~ x, y ) for g e SB x, y e H. We have to be a little careful
because the usual Schauder projections do not preserve gradient structure.
Finally, assume that there exist finite-dimensional invariant orthogonal
projections Pn such that Pn  I strongly as n - that is Pnx  x
as n - oo for each x in H. Later in the section we will prove that this

assumption is redundant.
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Assume now that W is a bounded open invariant subset and A : W --~ H
is a completely continuous invariant gradient mapping such that x ~ A(x)
on ~W ~ (W ~ HS1). Essentially, we want to define degS1n (I - A, W) to
be degS1n (I - PnAPn, R(Pn) n W) for large n but we have to be a little more
careful. Note that Z = ~ x E W : x = A(x) ~ is a compact subset of W. Hence
we easily see that as n - oo uniformly for x E Z. Thus we can
choose an invariant neighbourhood Zi of Z and an E > 0 such that

PnZI + for all large n. For the moment it is convenient to

change our notation slightly and write degn for our normal degree on the
subspace If A is the gradient of f, it is easy to see that PnAPn is the
gradient of f Pn. Note that, if m > n and both are large,

Here In denotes the identity map on R(PJ and denotes the open
ball of radius 2 in the orthogonal complement to in This
follows from the product theorem of § 1. We have not shown that ~ 7~ PnAPnx
ifxe or if x E n Hsi. We will prove this in a moment in greater
generality. We prove that

if m > n, 0  tm  1, In and n are both large and xm e To prove
this, suppose not. We first note lies in a compact subset of
W since A is compact. Thus, by choosing a subsequence if necessary, we
may assume that xm - y e W as m - ~. As m and n tend to ~, Pmxm ~ y,

and APnxm  Ay. Thus we eventually find that y = Ay. Hence
y E Z. Now it is easy to show that y e Z as m - oo implies that

for large m. Remember that Z is a compact subset of int Z~ .
Hence we have a contradiction. Thus we have proved (7). We could use
a similar but easier argument to show that (7) holds if xm E n 

Thus we find by homotopy invariance that

if m and n are both large. Moreover, by a similar argument, any fixed point
of PnAPn in 1 x lies in PmZ n (PnZl x BF,~,m). Thus,
we can replace PmZl by PnZl x BE,n,m in the left hand side of (8). Hence (6)
and (8) imply that

if m and n are both large. Thus we define deg~l (I - A, W) = degn (I - P~AP~,
for n large. It is easy to check that our definition is independent of

the choice of Z 1.
Analogues of parts (i)-(iii) of Theorem 1 and Proposition 2 (i ) can be

proved by similar arguments. This establishes the basic properties of
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our degree in infinite dimensions. However, we have only been able to
prove a version of Theorem 1 (iv) when dim N(I - A’(z)) is 1 under the

assumption that the map g -~ Tgz is C2. (This is a restriction on z, which
is discussed in [16 ]. Indeed the proof depends upon some of the results
in [16 ], as well as finite-dimensional approximations.)

It remains to construct the If Pn is orthogonal, it is easy to see that P,,
is invariant if and only if R(Pn) is invariant. Now (cp. [16 ]) there is a dense
subset j~ of H such that { Tgx: g E is contained in a finite-dimensional

subspace of H for each xEd. It is easy to see that -d is a subspace. Choose
a countable of j~ which is dense in H. Define an ortho-

gonal projection Pn by R(Pn) = span {Tgxi : g E Sl, 1  i ~ n}. Note that
j~, R(PJ is finite-dimensional and R(Pn) is invariant. Thus, by

our earlier comments, Pn is a finite-dimensional invariant orthogonal
y

projection. Since is dense in H, and since Pnxi - xi as n - oo
~=1 i

for each i it follows easily that Pn  I strongly.
Moreover, natural analogues of Lemma 2 and Theorem 2 can be proved

for A completely continuous. One change is that is now defined to be
p

sgn index,, ((I - 0) 03A3 (# Gj)-1, with other formulae chan-

j= i

ged in a corresponding way. The proof of Lemma 2 needs to be changed,
because of compactness difficulties. We first approximate K by i ),
where n is large and P~ is as before except that we construct Pn from the
eigenvectors of B. (Thus B and Pn commute.) We can then calculate our
indices by using our analogue of Proposition 2 (i ) in infinite dimensions
to reduce to finite dimensions. (Alternatively, we could approximate
PnK(Pnx, À) so that zero is an isolated solution for À == ~Li .) The remainder
of the proof of Theorem 2 is unchanged. The infinite-dimensional version
of Theorem 2 can also be proved by finite-dimensional approximations.

Finally, note that we do not really need a Hilbert space but only a Banach
space E with a continuous scalar product such that A is a gradient
with respect to ( , ). Here a scalar product is a continuous real valued sym-
metric bilinear map (, )> such that ( x, x ) > 0 if 0. However, it now
seems necessary to assume the existence of invariant finite-dimensional pro-
jections Pn’s such that Pn  I strongly as n - 
for all x, y E E and n > 1. This can sometimes be verified by first working
on Hilbert spaces and then using interpolation theory. This generalization
may be convenient because of the technical problem of keeping the non-
linear terms in the equation well behaved. Note that, in generalizing Theo-
rem 2 to this case, we have to generalize some standard results for self-
adjoint linear operators.
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§ 4 . ON A PROBLEM IN ELASTICITY

Here we study the bifurcation of solutions of an elastic conducting rod.
More precisely, following Wolfe [40 ], we study the following problem on R3

Here v(s) == ~ r’{s) ~, P : R~ -~ R~ is the natural projection on the x -y plane
and N is a C1 function on R such that N’(t ) > 0 on R, N{ 1) = o0

as t ~ oo . Note that we use N where Wolfe uses N. Moreover b is a fixed
number such that b > 1, k is the unit vector in the z direction and ~, > 0.
Rather than study this problem directly, we consider a modified problem.
Choose a C 1 function N on [0, oo ) such that N’(t) > 0 on R, N(O) = 0,
N(t) = N(t) if 1 -+- ~  t  E -1 and is constant near 0 and oo . We
denote by Problem P the problem when in the original equations N is
replaced by N. Note that any solutions r(s) of Problem P such that
1 + E  v(s) _ ~ - ~ on [0,1] ] is a solution of our original problem. It is

easy to see that r(s) = bsk is a solution (of both Problem P and the original
problem) for all ~,. We call these solutions the trivial solutions. Let D denote
the closure in C1 [o, 1 ] x [0, oo) of the non-trivial solutions of (9). (As usual,
we are thinking of solutions as pairs (r, ~.).)
The linearized problem has eigenvalues determined by the formula

03BB2b(4N(b))-1 + 03C92 - for m a positive integer such that

>_ Let ~.1  ~,2  ... denote the positive eigenvalues.

THEOREM 3. - (0, and the component C of D containing ( r_, ~,m)
is unbounded in C 1 [o, 1 ] x R or C contains an element with ~, = 0.

Remark. Note that this considerably improves the result in the announ-
cement [22].

Proof - The idea is to apply the results of § 2. We first prove Theorem 3
with the third possibility that there exist (rm ~) E C such that inf ( --~ 1) _ ( ) I
as n - oo. We remove this extra possibility at the end of the proof. It
suffices to prove this weakened version of Theorem 3 for the modified

problem, Problem P. For technical reasons, it is convenient to reduce this
problem to a finite-dimensional problem..

STEP 1. - Reduction of Problem P to a finite-dimensional problem.
We use the space Z = ~ w E W2 [o, 1 ] : w{o) = 0, = 0 ~. Note that
our functions take values in R~. We use monotone operator theory to do
our reduction.
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Define A : R3 --~ R3 by A(z) = N( [ z_ ~ ) ~ z_ ~ - ~z_. We prove that there
exist K, k > 0 such that

where ( , ) denotes the usual scalar product on R3. Now A is C ~ . (Remem-
ber that z ( ) ~ z ~ F ~ is constant near 0.) Thus it suffices to prove that
KI > A’(z) > kI on R3. Now A’(z) is a positive multiple of the identity
if z is small or ( z , ] is large since N( z ~ ) ~ z ~ -1 is constant there. Thus
it suffices to prove that A’(z) is positive definite for each z. Now

It is easy to see that the two subspaces {03B1z : a E R } and {h: h,z> = 0}
are invariant under A’(z). Thus it suffices to prove that A’(z) is positive definite
on each. Since, N( ( z_ [ ) [ z_ [ -1 > 0, this is trivial for the second space. Note that
the second and third terms vanish on this space. Now A’(z)z = N’( [ z )z.
Since N’( z [ ) > 0, it follows that A’(z) is positive definite on the first space
and the result follows.
Now consider the nonlinear operator B~ on Z defined by

Here (, ) is the usual scalar product on L2 [o, 1 ] and (u, v) 1= (_u’, _v’) for u,
v E Z. By (10) and a simple estimation,

if ri, r2 E Z. Here ]( rill 2 = ~ ~ r~ ~ ~ 2 . On the other hand, if F is defined by
the formula

we easily see that

if ri, r2 E Z. Since B. = Bo + ÀF, it follows from (11) and (12) that

if rl, r2 E Z. Let Zn be the subspace of Z such that each component is a
linear combination of sin kxx for 1  k  n - 1. As is well-known,

Here Z; means the orthogonal complement in W 2 [o, 1 ]. We
simply prove the result for each component and then add. Note that we
obtain the same orthogonal complement whether we use ( , ) or as
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tne scalar product. By (13), (14) and a simple calculation we find that,
if K > 0, then there exist k, n > 0 such that

if vi, U E Zn and ]  K. A similar but easier argument shows
the map w -~ B~(w) is Lipschitz continuous. It follows from a well-known
result in monotone operator theory (cp. Brezis [9, Theorem 2 . 3 ]) that,
for each u E Z~, the equation PB}Ju + v) = 0 has a unique solution r(u, À)
in Z~ . Here P is the orthogonal projection onto Since the map

(w, Jw) -~ B~,(w) is Lipschitz continuous on bounded sets, it follows easily
that the map (u, i~~) -~ r(u, ~.) is locally Lipschitz continuous, as a map
of Zn x [- K, K] ] to Z. 

’

We now prove ~,) is a C1 function of s. Now ~) + u) E Z,~
and hence is smooth. It follows easily from the definition of B~, that
w = À) + u has the property that w’(s) ~ ) ~ w’(s) ~ - ~ w’(s) is continuous.
Hence N( ~ w’(s) ( ) is continuous and thus, since N is strictly monotone,
I w’(s) ( is continuous. It follows that w’ is continuous. + u

is C 1 as required. It is easy to then deduce from the equation that r(u, 03BB) + u
is C2.
We next prove that r(u, ~~) + u is small in the C~ norm if u is small in

W~ [o, 1 ] and ~, is bounded. As before, let w = ~ (u, ~,) + u. By what we have
already proved, w is small in W~ [o, 1 ]. (Note that r(0, ~.) = 0 for all ~..)
Since B~ is continuous as a map of Z into Z, it follows that B~(w) is small in Z.
Now by the definition of r(u, ~.). Since all norms on a finite-
dimensional space are equivalent, it follows that B~(w) is small in any
norm. Since w is small in Z, it follows easily from the equation that

d - w’ + bk w’ i u.t’ bk is in L2 0 1 . H nds (N( I + + ~ ’ (~ + bk)) is small in L 2 [0, 1]. Hence

N( |Y’|)|Y’|- 1Y’ is close to a constant on all of [o, 1 ], where Y(s) = w(s) + bsk.
Hence N( |Y’|) is close to a constant on [0, 1 ]. It follows from our mono-
tonicity assumptions on N that Y’ is close to a constant on all of [0, 1 ].
Since Y’ is near bk in L 2 [0, 1 ], the constant must be near b. Since

N( Y’ ~ ) ( Y’ ( - is close to a constant, it follows that Y’ is close to
a constant on all of [o, 1 ]. Thus Y’(s) is near b_k on [o, 1 ]. This proves the
result.
Now Problem P reduces to the equation ~.) + u) = 0

(for i~ ~ (  K). Now u = 0 is a solution for all A. Moreover

--~ 0 locally uniformly in ~,, where L~, is defined by

(15) follows by a simple estimation once one recalls that r(u, ~~) + u is
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small in C~ [0,1 ] and ) r(u, 2) + u I ~ 1, 2  K ~ ~ u ~ ~ 1, 2 . The first of these results
is proved in the previous paragraph while the second holds because r(0, x)==0
and r is locally Lipschitz in u as a map of Zn into Wà [o, 1 ].

= o( ~ ~ u ~ ~ 1, ~) as ~ [ 2l ~ ~ i , 2 ~ 0,
where rl(u, ~,) is the unique solution of + v) = 0 in Zj. That is this
equation has a unique solution follows by the same argument used to
prove the existence and uniqueness of r(u, ~,). By (15),

and hence

Since PL~ is coercive on Z;, it follows that ] r(u, ~.) - r 1 (u, ~.) I I 1, 2 = o( ( I u I I ~ ,2)~
as required. Since r 1 is linear in u, it follows that is

the linearization of (I - P)B ~,(u +- r(u, ~.)) at u = o. _

STEP 2. - We verify the hypotheses of Theorem 2’ for our finite-dimen-
sional problem. Now, our original problem has an S1-symmetry due to
rotations in the x - y plane. It is easy to see that equation is invariant under
this symmetry group which acts orthogonally. Now Z~ is invariant under
this symmetry group. Thus P is S1-invariant. By uniqueness, it follows
that Tg r (u, /t) = r(Tgu, ~,), where ( Tg denotes the action of our symmetry
group. (Note that r(s) is fixed by the action of the symmetry group.) Hence
the equation (I - P)B03BB(u + r(u, 03BB)) = 0 is S1-invariant. Next we show that
we have a gradient structure. Wolfe notes that formally our equation is
the gradient of a functional C (defined in [40 ]. This is easy to prove rigo-

rously on Z once we check that the term ~0393(|r’(s)|)ds is Gateaux diffe-
/*Y

rentiable, where r(y) = N(m)dm. Note that N is linear near 0 and ~

and N is Cl. It follows easily that r(y) = S(y2), where S is C1 with bounded

derivative on [0, oo). Then I’( I (s) )ds = r’(s) [2)ds. It is easy

to check that this last expression is Gateaux-differentiable (cp. Vainberg
[37, Theorem 21.1 ]). Note that the map r -~ ~ r‘ ~ 2 is a polynomial (and
hence smooth) map of Z into L~ [0,1 ]. Hence is the gradient 
on Wà [o, 1 ]. One can then use a standard argument (cp. Amann and Zehn-
der [4 ]) to check that, for fixed ~,, (I - P)B~(u + r(u, ~)) is the gradient of
~( r + u + provided that we know that the map u - ~?~) is
Frechet differentiable as a map of Zn into Z. This can be proved by similar
arguments to the earlier proof that r( , x) has a derivative at 0. (We note
that the map u -~ ~,) is Lipschitz as a map of Z~ --~ Z, prove that the
same map is continuous as a map of Zn to C1 [o, 1 ] and use the obvious
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linearization of B~(w) at u + r(u, ~,).) Thus we have checked all the basic
assumptions of § 2.
We now need to evaluate n(a) for each eigenvalue a of L~. Here our

notation follows § 2 and, as there, a is an eigenvalue of L~ means that
N(L03B1) ~ { 0 }. Note that, by our reduction, u + r 1(u, 03B1): L03B1u = 0},
where Now, since L03BB depends linearly on 03BB,
it is easy to see that r and L also depend smoothly on ~,. Define r leU) ~,).
By differentiating PL~(I + r l) = 0 with respect to À, we see that

where B is defined by ( Br, w ~ _ - (r’x k, w~, for r, WEZ. Now, Theorem 2’
applies if we prove that QL~ is positive or negative definite. Here Q
is the orthogonal projection of Zn onto N(LJ and La means the derivative
of L~ with respect to A. By a simple calculation,

Hence, if u E N(La),

Here we have used (16) and that Now, since La is self-adjoint,
the last term is

and + = 0 (by the definition of Since

we see that is negative definite if and only if the form ( Bv, 
on N(La) is negative definite. It is proved in [40 ] that the latter form is
negative definite if a > 0. Thus QL’03B1|N(L03B1) is negative definite if a > 0. We
also need to evaluate sgn det (La where W = Now it is easy
to see that (Zn)sl == { (0,0, z) : z E wà [o, 1 ] ~. Moreover, it is easy to show

that if Hence, on u) = (b-1 N{b){z’, z’) ) 0
if z ~ 0 (where u = (0,0, z)). Thus sgn det (La Iw) = 1. Hence by the defi-
nition of n(a) before Theorem 2’, n(a) > 0 if a > 0. Note that the calcula-
tions in [4~ ensure that no eigenfunction of L~ lies in ZS1 and that Theo-
rem 2’ applies to a map with linear term I - B(~,).

STEP 3. - Completion of the proof We first prove the weaker version
of Theorem 3 where the third alternative is included, that is, there exist
(rn, C such that inf [ ~ 1 as n - ~. As we noted before, it
- 

se[0,l] "
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suffices to prove this result for problem P. If the component C is bounded,
then, by our reduction, it suffices to consider our finite-dimensional equa-
tion. Since the only solutions of our equation fixed by S 1 are the trivial
solutions, the result follows from Theorem 2 and the results on n(a) above.
There remains one minor point. Our connected set C is connected in
Z x [0, oo). However, by a slight generalization of an argument in Step 1
of the proof, the map (u, r~) ~ r(u, ~.) is continuous as a map into C1 [o, 1 ].
It follows that C is also connected in C1 [o, 1 ] x R. Note that a set which
is unbounded in W~ [o, 1 ] is also unbounded in Cl [0, 1 ]. This completes
the proof of the weaker version of Theorem 3. 

’

To complete the proof of Theorem 3, it suffices to prove that, if 0  
for all n, (rm ~,n) E D and inf ] --~ 1 as n - oo, 

- 
-

as n - oo . By the third equation of (9)

on [o, 1 ] (where r = (x, y, z)). Since there exist sn such that J J ~ 1

and since J it follows that Cn  0 as n ~ If we can find

a subsequence of { II J rn J ( ~ ~ which is bounded, then we can rechoose our
original sequence such that ~r’n~~  k for all n. Since = b > 1,
we see that there exist a > 1 and tn E [o, 1 ] such that a. Now

03B1 ~ |r’n(tn)| J -  k a nd N has a p ositi ve lower bound on 1 2 1 
Cn ~ 0 as n - oo, this contradicts (17) for t = tn. Thus ~r’n~~ ~ o0

as n -~ oo. This completes the proof of Theorem 3.

Remarks l. The argument in the last paragraph of the proof of Theo-
rem 3 has some other uses. If (rn, ~,n) E D and inf J J --~ 1 as n -~ oo,

- 

SE[O,l] -

then a similar argument implies that there are points on the rod where

dx or dy are large. Hence the rod is showing physical peculiarities. Secondly,
dz dz
if has a positive lower bound on [1 + £, oo), a similar argument
shows that such solutions cannot exist. In fact, one easily shows for the
above solutions that, whenever J z; {s) J > a > 0, then J J is near 1 or
is large. Moreover, both possibilities must occur and a transition between
two possibilities can only occur when is small. If y -1N( y) ~ oo as
y -~ oo, it can be shown that solutions with ~, bounded are bounded in
C1 [0, 1 ] x R. However, it probably can be proved that this fails if

C > 0 (where C  oo) as y ~ oo .

2. - If N is C2, the proof can be simplified by partially working in
C~ [o, 1 ] and using the implicit function theorem. We could allow À to be
negative and then the theorem could still be proved (with [0, oo) replaced
by R) except that our branch could terminate at a negative eigenvalue of
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the linearization. Note that, if i = 0 is an eigenvalue, the change in our
index across it must be zero because this eigenvalue can be eliminated by
a small increase in co. Our methods can be used in N also depends on s
(but N(s, 1) = 0 for all s). In particular, if 03C92 is less than the first eigenvalue of

we obtain an infinite number of positive eigenvalues and an analogue of
Theorem 3 holds. Here ~~{s) denotes the corresponding trivial solution of
our new problem. If this condition fails, our method becomes difficult
to apply because it is unclear if QL~ is invertible. It can be proved that
there are an infinite number of positive eigenvalues, that the above inverti-
bility condition is satisfied for the large eigenvalues and that the analogue
of Theorem 3 holds for the large eigenvalues.

§ 5 . PERIODIC SOLUTIONS OF HAMILTONIAN SYSTEMS

In this section, we discuss the application of our ideas to the study of
periodic solutions of fixed period of Hamiltonian systems. We consider
the autonomous system

on R2n, where H : R2n+ 1 -~ R is C1, V denotes the gradient with respect

to the first variable and J = (0 -I I 0). We look for periodic solutions of

fixed period T. Usually, we assume that H is C2 in x though this could
often be avoided in our final results by approximation arguments.
We first obtain a global bifurcation theorem (Theorem 4). Assume that

~,) = 0 for all ~,. By a standard argument, ~, can only be a bifurcation
point (for non-constant T-periodic solutions bifurcating from 0) if

has a non-trivial T-periodic solution, where M(~,) = DfH(0, ~.). In fact,
since (cp. [19, Remark after lemma ]) solutions near 0 have the same sym-
metry as that of a solution of the linearized equation, (19) must have a
a non-constant T-periodic solution if 03BB is a bifurcation point. For the
moment, assume that M(i~~) = (We discuss some more general problems
later.) Note that this is only a restriction on the linear terms and that M
is self-adjoint.

Suppose that ai is a purely imaginary eigenvalue of JM with oc > 0.
Thus - ai is also an eigenvalue. Gokhberg et al. [25 ] associate with it a
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« signature » v(a, M). We summarize the properties of the « signature »
which are useful to use. Their proofs can be found in [25 ]. It is an integer.
If ia is an eigenvalue of JM for which the geometric multiplicity equals
the algebraic multiplicity, it is simply the signature of the form - (iJx, x)
(or equivalently of (Mx, x)) on the subspace spanned by the eigenvectors
of JM corresponding to ai. In the general case, the definition is the same
except that the eigenspace is replaced by the generalized eigenspace.

v(a, M) can be calculated from a special Jordan canonical form (one
preserving the symplectic structure) for the eigenspace corresponding to i03B1.

It turns out that v(oc, M) _ dim N(i03B1I-JM) and v(a, M) _ [algebraic
multiplicity of ai ] (mod 2). If M is perturbed slightly to M’, where M’
is self-adjoint, and if M’has purely imaginary eigenvalues i03B11, ..., iak near i03B1,
then 

,

Note that when M is perturbed to M’, there may also be other, not purely
imaginary, eigenvalues, near ai but they can be ignored. Moreover, we can
always choose such an M’ such that each iar is simple and each v(an M’)
has the same sign.

Suppose ~. ~ 0 and M is invertible. As in [4 ], we easily see that 0 is an
eigenvalue of

if and only if there is a purely imaginary eigenvalue i  of JM such that

E Z, where a(w) = 2 
Here Z denotes the integers.

If is such an eigenvalue, define

where the summation is over the positive numbers ,c~ for which i,u is an
eigenvalue of JM and E Z. Let D denote the closure in C [0, T ] x R
of ( (x(t), ~,) : x(o) = x(T ), x is a non (constant solution of (18) ~.

THEOREM 4. - Assume that our above assumptions hold where DH(o, ~,)=0
for all 03BB, D 3 H(o, 03BB) _ and iVI is invertible and assume that 03BBj is a positive
eigenvalue of(21) with n(~,~ ) ~ o. Then the component C of D containing (0, i~~ )
is (i ) unbounded or (ii ) contains (a, ,u) where a is a non-zero constant and

VH(a, ~c) = 0 or (iii ) n(,u) = 0, where the summation is over the (0, 
in C n ( ~ 0 ~ x R). .
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Proof - The proof of Theorem 4 consists of two steps. We first reduce
our problem to a finite dimensional problem and then apply a variant of
Theorem 2’. The only difficulty in the second step is to calculate n(a), where
n(a) was defined in Remark 1 after Theorem 2’.

STEP 1. - Reduction to a finite-dimensional problem. We work in the
space Z = ~ x E W~ [0, T ] : x(0) = .x(T) ~. Suppose we look for solutions with
~ x(t ) (  ~ on [0, T ] and _ ~. This ensures that DfH(x(t ), A) is bounded
Now, by a standard reduction (cp. Amann and Zehnder [4 ]), our problem
reduces to the solution (w, of a finite-dimensional equation

on a subspace 0. Here F is C~ and is a gradient mapping. Our assumption
that on [0, T ] and 1 i ~ _ ~ becomes that (w, ~.) lies in a compact
subset W of  x is the subspace spanned by all functions of the form
cos (203C0ktT-1 + where § e R, e Z _ p (for suitable
large p). For future reference, note that F is obtained by applying a projec-
tion method and contraction mapping to the equation Jx’ + ),) = 0.
Since our equation is autonomous, our problem on Z has an S1-symmetry
(where the group acts by translations). This is preserved by the reduction
and hence F is Sl-invariant. To be more precise, there is an SI-invariant
map: Y : ?~° x R ~ such that

gives the T-periodic solutions of (18) with  ~ on [0, T _ ~.
It is easy to see that, with this correspondence, solutions of (22) with w e ~si
correspond to constant solutions of (18) and vice versa. Note that ZS1
is the set of constant functions. Since VH(0, À) = 0, Y(0, ~,) = 0 and F(0, À) = 0
for ~, ~ _ ~. For future reference, note that it is only the last sentence
where the assumption that VH(0, À) = 0 is used.

STEP 2. - Completion of the proo~f To prove Theorem 4, it suffices to
assume that C is bounded. By Step 1, it suffices to consider the finite dimen-
sional equation F(w, À) = 0 on  x R. Hence the result will follow from
Theorem 2’ if we prove that = n(i~~i ), where was defined in Remark 1
after Theorem 2’ (for the map F on  x R). Thus the following lemma
completes the proof of Theorem 4.

LEMMA 3. - Under the assumptions of Theorem 4, _ where

defined for the map F on ?~°.

Proof - We first prove the result under the assumption that there is a
unique eigenvalue i  of JM (where  > 0) such that E Z and that ,u
is simple. Let k = a( ~i ~ ). As in [4 ], we easily see that the kernel of

Annales de l’Institut Henri Poincaré - Analyse non linéaire



355DEGREE FOR INVARIANT GRADIENT MAPS

x’(t) - on Z is spanned by the real and imaginary parts of
C exp -where C is the eigenvector corresponding to the eigen-
value i  of JM. Since these are contained in , it follows easily that these
also span the kernel of ~~~ ) (if p is large). Now, to apply the formula
for before Theorem 2’, we need to prove that C = QF i ,2(0, ~,~ ) 
is invertible. Here Q is the orthogonal projection of0 onto i~~ )) --_ N~.
We can argue as in the proof of Step 2 of Theorem 3 and find that C is posi-
tive (negative) definite if and only x) is positive (negative) definite on
the kernel of Jx’ + on Z. Hence, by a simple calculation, C is posi-
tive (negative) definite if and only if C) > 0(  0). By our earlier
remarks on the calculation of v, it follows that C is positive definite if and
only if (sgn M) > 0. We also need to calculate sgn det (F i (o, r~~ ) ( ~sl ).
Now ?~°S~ = = set of constant functions and, on this space,

Hence, since 1 is even-dimensional, sgn det = sgn det M

Finally, it is easy to see that each non-zero element in our kernel has mini-
mal period and this has isotropy group Zk. Hence the definition 
preceeding Theorem 2’ implies the lemma in this case.
We prove the general case by an approximation argument. By Remark 1

after Theorem 2’, if we perturb the operator 03BB) slightly, such that 03BBj
splits to several eigenvalues 03BBr, r = 1, ..., s, then

where n means that it is n for the perturbed operator. In our case, we use
our earlier remarks on v to perturb M to a self-adjoint M’ so that each
purely imaginary eigenvalue of M’ is simple. Moreover, it is easy to see that
we can perturb M’ a little more to ensure that the quotient of no two purely
imaginary eigenvalues with positive imaginary part is an integer. (In fact,
we need only avoid a finite number of rationals.) We now need to find the
eigenvalues of Jx’ + on Z near 03BBj. Let { i denote the eigenvalues
of M occurring in the statement of the lemma. It is easy to see that À is an
eigenvalue of J x’ + IvM’x on Z near if and only if there is an eigenvalue
iz of M’ near one of the The corresponding eigenvalue i~~ is then B
We thus see that each of the eigenvalues satisfies the assumptions of the
first part of the proof. Note that kY - a(,u~i ~ ) = is an integer and that kr
determines the isotropy group of the corresponding kernel. Hence, by (23)
and by our proof of the special case, we see that
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where the summation is over the purely imaginary eigenvalues iLk of M’
near the and the kr is determined by the r which ik is close to (as
above). Now if we consider the part of the sum over the eigenvalues near

for fixed r~, we have-

since M’ is near M. If we then sum over the the result follows.

Remarks on Theorem 4. l. If H(x, 03BB) _ 03BBT(x, 03BB), it is easy to see that

any non-constant solutions (xn(t), ~.n) such that ~,n ~ 0 and ~,n -~ 0 as

n --~ x have the property that !! cc -~ oo as n - oo . We do not claim

that the solutions we construct have minimal period T. Indeed there is

an example in [26, § 3 . 8 ] which shows that it can happen that n(~,~ ) ~ 0
but no solutions of minimal period T bifurcate at (0, ~,~ ). Note that, if M
is positive definite or more generally if each n(,~~ (for ~,~ > 0) has the same
sign, then possibly (m) can not hold for a component C contained in
Z x [0, Sometimes we can apply our theorem in ZK, where K is a
finite subgroup of S l, and obtain results when = o. It follows easily
that there is global bifurcation at ~, J if v(p, M) is non-zero for one of the ,u’s
in the statement of Lemma 3.

2. - For siniplicity, assume that H(x, r~) _ in this remark. In addi-

tion, assume that D2H(c) is invertible whenever VH(c) = 0. Let

~ _ ~ (c, ,u) E R2n x R : VH(c) =0, z’ = 0

has a non-constant solution in Z } .

If C is a bounded component of D containing (0, ~,~ ), then c) = 0,

where the summation is over the {,u, c)’s in C n s~. Here c) is defined
as before for bifurcation off the constant solution c at 11. (An analogue of
Lemma 3 holds.) In particular, if D2H(c) is positive definite whenever
VH(c) = 0, then C is unbounded, since all the n(~u, c)’s have the same sign.
The above result improves Theorem 4 and is proved in the same way.
In particular, if H is convex, the above result holds if we delete the posi-
tive definiteness assumption but assume that critical points of H are isolated.

To prove this, we apply the above result to - e ~x~2 + H(x) and then pass
to the iimit. ~

3. - Our methods can be used if ~) } depends more generally
upon x. We can calculate n(i~~) at an eigenvalue i ~ if QAQ is invertible
on the kernel N of z’ - (on Z), where Q is the orthogonal
projection of Z onto N and A = 2014 03BB) |03BB = 03BBj. This formula for QAQ° ~
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can be simplified considerably. In particular, this condition always holds
if A is positive definite. A second case where our methods are useful is in
the case where H(x, À) = ÀH(x) but M = D2H(0) is singular. Assume that

~’ ), where C is a quadratic polynomial such that
QCx ~ 0 if x e N(M)B { 0 }. Here Q is the orthogonal projection of R2n
onto N(M). Standard bifurcation theory then ensures that 0 is an isolated
solution of = 0 in R2n. By our earlier comments, non-constant
solutions can only bifurcate at (0, ~, J ) if z’ = has a non-constant

solution in Z. In this case, it is possible with care to prove an analogue of
Lemma 3 at least if D is a small neighbourhood of zero. It turns out that
n(03BBj), the index change across 03BBj, is of the form 0)n(03BBj),
where has a similar expression to that in Lemma 3. (Det M is replaced
by det (M Thus we again obtain bifurcation theorems. Moreover,
similar results hold if VH(x) = Mx + C(x) + o ~ x ( 3, where C is cubic

and satisfies the same non-degeneracy assumptions as before. The idea
in the proof of the above results is to vary the nonlinear terms by Sl-invariant
gradient maps which do not change the map on 

4. - We compare our results with those of Fadell and Rabinowitz [24 ],
Alexander and Yorke [3 and Chow, Mallet-Paret and Yorke [Il ]. They
only consider the case where H(x, a~) = If ~.~ is an eigenvalue of the
linearized problem, so is 03BBjk-1r, where kr is defined in the proof of Lemma 3.
Thus if 1 ~, J ) =~ 0 for some k~, we easily see that there is a connected
set of solutions bifurcating from zero for À near ~,~. With this remark or
by the last sentence in Remark 1 above, we see that the assumptions of
Theorem 4 are weaker than those in [24 ]. Moreover, unlike [24 ], we obtain
connected sets of bifurcating solutions. (An example in Bohme [7 ] implies
that this is not always true for gradient mappings.) Moreover, our branches
continue globally. It should be stressed that we do not obtain the multi-
plicity results in [24] ] though their result is natural from our index cal-
culations. Note that this was the main point of [24 ]. Secondly, our results
are more general than the one in [3 and [11 ] and our proof appears much
more natural. (Their proof is by a trick which seems to only work easily
for particular problems.) Our method seems to work in more general
situations and gives more global information. Moreover, our method seems
easier to apply when the eigenvalues of M are rationally related. Note that,
as in [3 ], when H(x, À) == ~,H(x), our result is not as good as it looks. Our
unbounded set C may have solutions (x~, ~,~) such that ~.~~ as n - oo

but the minimal period of the corresponding (scaled) solutions of x’ = JVH(x)
are bounded.

5. - Lastly, the results on the « signat ure » in [25 ] could be used to
remove the diagonalizability assumptions in [4 ].
To complete this section, we discuss briefly some other uses of our
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index for Hamiltonian systems. We no longer assume that VH(0, 1) = 0.
However, our reduction of (18) to a finite dimensional problem F(w, A)==0
on e x R is still valid for on [o, T ], j |03BB|  R. Of course, we
no longer have that F(o, ~ ) = 0.

In particular, if we have a solution (wo, Ào) of (22) in (int such that,
for fixed ~~o, the corresponding orbit of solutions is an isolated orbit of
solutions, then its index is defined. If this index is non-zero, we have two
useful consequences. Let xo = wo + Y(wo, ho), where Y was defined in the
reduction. If H is C1 close to H(, ÅO) then the equation x‘(t) = JVH(x)
has a T-periodic solution near xo . (Technically, we need to assume that H
is C2 but this can be removed by an approximation argument.) To see this,
we choose E > 0 such that (18) for ~ _ ~,o has no other T-periodic solution
z(t ) in the E neighbourhood U (in Z) of the orbit It is easy to see

that if H is C~ close to H(, the equation

has no T-periodic solution on au for 0 ,u  1. Now choose ~, K > 0 such
that ~, x :~x(t)~ _~ on [o, T] ~ and K

if 0  ,u _ 1 and y ~  k. As earlier, our problem reduces to an equation
on a finite-dimensional space 0. Let U be the set in 7i x R corresponding
to U x [0, 1 ]. Here ,u is the parameter. In Uo, there is a unique solution wo
of non-zero index. Thus, by homotopy invariance, there must be a solu-
tion of the reduced equation in for J1 E [o, 1 ]. Here Uu == { y : ( y, ,u) E U }.
Hence the result follows. Implicit in the above proof is that whether the
index is non-zero is independent of the choice of e in the reduction up to
sign. This follows from Proposition 2 (ii ) in § 2. In particular if the equation

has only a one-dimensional kernel, it follows easily from the reduction that
F(wo, has only a one-dimensional kernel. Hence, by the definition
of our degree, the index of wo is defined and non-zero. The result above
generalizes one in Siegel and Moser [36, p. 145 ].

Secondly, if (xo, ~o) is as in the previous paragraph, we obtain a branch
of T-periodic solutions as we vary ~,. More precisely, if

D == { (x(t ), ~,) : x E Z, x is a non-constant solution of (18) ~ ,
then the component of D containing (xo, Ào) is (i ) unbounded or (ii ) contains
( y, p) in its closure where y is a constant such that VH(y, ~c) = 0 or (iii ) there is
a « loop » X of solutions in D around S1(xo) }. More precisely, this
means that X is compact, invariant and connected and x { ~,o ~ )
is connected. (Note that, if A is a small neighbourhood of x { 03BB0 },
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then (D n is not connected.) This is proved by an
easy modification of standard degree arguments (cp. [20, § 1 ]).
For a T-periodic solution xo, it is easy to see that * Gxo is the largest

positive integer m such that xo(t) is periodic. Thus we see that our
index contains some limited information on the minimal period of solutions
and restricts the bifurcations to solutions such that T is not the minimal

period. In general, our index can be used to keep some control of bifurcations
of non-constant T-periodic solutions as ~, varies.

§ 6 . ELLIPTIC EQUATIONS
ON CERTAIN SYMMETRIC DOMAINS

In this short section, we apply our degree to an infinite-dimensional
problem. Assume that SZ is a bounded domain in R2 x Rn-2 and that Q
is invariant under rotations in the first two coordinates. It follows easily
that Q is also invariant under reflections in the first two coordinates. We
consider the problem

where f: R -~ R is continuous on R and differentiable at 0, f ’(o) = 0 and
f’(0) = 1. Let D denote the closure in x R of the set of non-trivial

solutions, that is, solutions (u, ~,) where u does not vanish identically. A
solution u of (25) is said to be symmetric if it is invariant under rotations
in the first two coordinates. Otherwise it is said to be non-symmetric.
Similarly, an eigenvalue ~,~ of the linearized problem

is symmetric if (26) has a non-trivial symmetric solution for ~, _ ~.J.

THEOREM 5. - Assume that ~.~ is a non-symmetric eigenvalue of (26).
Then the component C of D containing (0, ~.~ ) is (i ) unbounded or (i i ) contains
a symmetric solution or (iii ) contains (0, ~c) where p is a symmetric eigenvalue
of(26) or (iv) contains (0, where ,u2 is a non-symmetric eigenvalue of (26)
and the sum of the multiplicities (evaluated in the subspace of symmetric
functions) of the symmetric eigenvalues between ~,~ and ~e2 is odd.

Proof. It is easy to see that it suffices to prove the theorem when f is
replaced by where
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Our problem can then be formulated as an equation on E = 

by standard techniques (cp. Berger [5, § 5 ]). F turns out to be completely
continuous, a gradient, 0(2)-invariant (for the obvious action of 0(2)) and
Frechet differentiable at 0. Thus we can apply the infinite-dimensional
version of Theorem 2 mentioned near the end of§ 3. We only have to evaluate
~~ f i ~ ) for any non-symmetric eigenvalue i J of (26). By the remarks near the
end of § 3, it is c~~ sgn i ~ sgn [index, {(I - ~, 0)], where ~’ is the
subspace of E of symmetric functions and aj > 0. The result now follows
easily when we recall that index ~ {{I - ~~F’(o)) ~ ~, 0) _ ( - 1 )’~’, where w
is the sum of the multiplicities (in the subspace ~) of the eigenvalues of
F’(o) in 1, oo ).

Remarks. It seems probable that most eigenvalues are non-symmetric
eigenvalues. To see why we expect this to be true, note that (cp. Agmon [2 ])
N(~.) ~ ~~ i n for h large where N(i~~) is the number of eigenvalues less than
or equal to a (counting multiplicity). On the other hand, we expect that
N ~(~,) ~ a~ 2 cn -1 ~, where N ~{~,) denotes the number of symmetric eigenvalues
(with multiplicities counted in ~). Thus, provided that symmetric eigen-
values do not have very much larger multiplicities on the whole space
than in ~, the result would follow. Assuming this result, Theorem 5 implies
that the branch bifurcating at (0, i~~~ ) meets the symmetric solutions, is
unbounded or crosses a number of eigenvalues. If we had more information
about the solutions in ~, the result could probably be improved.
There is an alternative way of studying this problem, where we use the

0(2) symmetry rather than just the S~ symmetry. It is easy to prove that
any eigenfunction of (26) is a linear combination of eigenfunctions of the
form fer, z) cos (me + c) where m is non-negative integer and we use coor-
dinates (r, 0, z) for points in R", where z E Rn - 2. If 03BBj is an eigenvalue with
an eigenfunction of the above form, we look for solutions in EA where A
is the subgroup generated by rotation through an angle (2~c)m- ~ and one
reflection. If one can choose A such that ~,~ has odd multiplicity in EA
(for example, any eigenvalue, if Q is a 2-dimensional disc) or such that there
is an eigenfunction with f(r, z) > 0, we can apply Rabinowitz [33] ] or

Dancer [15 ] to obtain a branch of solutions (unbounded in the latter case).
It seems that the results obtained by the two methods are distinct, even in
simple cases, as in the case of a two-dimensional disc.
Our normal index can be extended to more general groups, where we

only consider solutions whose isotropy groups Gx are a finite extension
of those Gy of the principal orbits. In fact, with care, it can be generalized
a little further where we only consider solutions for which 0,
where X denotes the Euler characteristic. It would be interesting to try to
use the above ideas to unify some of the results earlier in this section for (25)
and to study our problem for other symmetric domains. It would also be
interesting to relate our degree to the equivariant homotopy index where
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the equivariant homotopy index is defined in the same way as the homotopy
index (cp. Conley [12 ]) except that everything is done to preserve the sym-
metries. This is discussed in a little more detail in § 3 of [21 J.

§ 7. GENERIC Sl-INV ARIANT GRADIENT HOMOTOPIES

In this section, we prove Proposition 1 of  1. This was the key technical
result we needed to construct our index. Firstly, we need a number of
lemmas. We follow the notation of § 1.

LEMMA 4. - Assume that f : 03A9 ~ R is Ci and S1-invariant where i > 1

and Q is a bounded open invariant subset of E. In addition, assume that K
is a compact invariant subset of S~. Then we can approximate f in the C~
norm (on K) by a real analytic invariant map f.

Proof. Choose a compact invariant neighbourhood K 1 of K in Q.
By Narasimhan [31, Theorem 1.5.2], we can approximate f in the Ci
norm (on K 1 ) by a real analytic map f 1. We replace fi by f, where

Here J1 is the usual (normalized) measure on It is easy to see that /
is invariant. Thus we have to prove that (i ) / is analytic and (ii ) f is near f
in the Ci norm. Note that / is clearly C’. Let D denote differentiation.
Since f is invariant, , _ ,

Since fl is near f in the C~ norm on K, it follows easily that D(~’ - f )
is small on K. Since we could use a similar argument for higher derivatives,
(ii) follows. Since f is Coo, to prove (i), it suffices to obtain a bound

for all n and for all x in K1. Since ,f’1 is real analytic, it can be extended
to a complex analytic function in some open neighbourhood of Ki in the
complexification of E (cp. Bochnak and Siciak [6, Theorem 7 .1 ]). It then
follows easily from Cauchy’s theorem that we obtain an estimate of the
form (27) for fi uniformly on compact subsets of Q. Since Dn commutes
with the averaging and since each Tg is an isometry, it follows easily from
the formula for Dn f that a similar inequality holds for f This completes
the proof.
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LEMMA 5. - ( [17, Remark 4 after proof of Theorem ]). Assume that f :
03A9 ~ R is C2 and S1-invariant and that V f(xo) = 0 where xo E 
If N(D2 f(xo)) is one-dimensional, then every S1-invariant map f C2 close
to f has a unique orbit of critical points close to 
Note that the symmetries imply that dim N(D2 f(xo)) > l.

LEMMA 6. - Assume that Y is a finite union of smooth disjoint compact
S1-invariant submanifolds of E and f: Y ~ R is S1-invariant and smooth.
Then f can be extended to a smooth S1-invariant map of ’ E into R.
This follows easily from the Whitney extension theorem (Abraham and

Robbins [1, Theorem I3 . 2 ]). Once we have an extension, we integrate as
before to get an invariant extension.

LEMMA 7. - Assume that G : E --~ E is an s-homogeneous polynomial
where s > 2, G(x) ~ 0 for x ~ 0 and G( y) _ + y implies that I + G’(y)
is invertible. Finally assume that W : E x R -~ E is C1, W(o, ~,) = 0 and

= 
1 
+ for (x, ~.) small and that is a

family of linear operators C I in 03BB such that L(o) = 0 and L’(0) = 0. Then,
for each small ~,, the equation ~.x + = G(x) + W(x, ~,) has only a finite
number of small solutions. Moreover, at each of these solutions except
(©, 0), i~I + L(~) - G’(x) - W ~(x, ~,) is invertible.

This follows easily by a slight modification of the proofs of the results
in § 4-5 of [14 ].

LEMMA 8. - Assume that V~ is the normal plane to at x and

that f is a real-valued Cj Gx-invariant map defined on a neighbourhood of
x in Vx. Then f can be extended uniquely to an S1-invariant Ci map of
a neighbourhood in E. Moreover, a similar result holds for C~ maps.

Proof We simply define fon a neighbourhood of by f (z) = f ( y),
where z = Tg y with y E Vx. Here Vx denotes a small neighbourhood of x
in Vx. The tubular neighbourhood theorem ensures that this defines f
in a neighbourhood of Sl(X) while the Gx invariance of f on Vx ensures
that f is well-defined. Now the map {x, g) -~ is C°~ (in fact, real ana-
lytic) by [8, p. 298 ]. Thus, by invariance, it suffices to prove f is Ci near {x, 0).
Now the function y(z) used in the construction of the degree in § 1 is Cx
because it is obtained by applying the implicit function theorem to a
smooth map. Now, by construction, y(z) and z are on the same orbit. Thus,
by invariance, f {z) = f ( y{z)). Thus f is the composite of C‘ functions and
hence is C~.

Remark. The result also holds for real analytic maps.
The following lemma is probably known but we could find no reference.
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LEMMA 9. 2014 Assume that Q is a bounded open set in Rn. T he set of smooth
maps f : Q x [o, 1 ] ‘~-~ R with the propert y that, whenever 0 = (x, t),
then t)R and t ) span Rn is open and dense in the set 
maps from R’~ x R -~ R.

Proof 2014 Openness is trivial. It suffices to prove denseness in the Cr

topology (for some r > 2) because we can then use Lemma 4. The proof of
denseness is an easy modification of the proof of the theorem in the appen-
dix to § 2 .11 in Chow and Hale [lo ]. (We consider the map J defined by
(Jf)(x, t ) = (x, t, t )).
Remark. Note that we have been (and will be later in the section)

careless about boundaries. We have not worried about this because, in
our applications, we could always avoid them by shrinking the set slightly.
Note that any non-trivial isotropy group for the action of S~ is a finite

cyclic group Zn generated by a rotation through 2~cn -1.

Proof of Proposition ~. The first statement of Proposition 1 is a conse-
quence of the second since we can use a standard mollifier argument to

approximate H by a C~ function H such that v~H is near and then

the Haar integral as in the proof of Lemma 4 to make H invariant.
The idea of the proof of the second statement (as in [38 ]) is to successively
build up H on EGt x [0,1 ] (where Gi is an isotropy group) in such a way that,
when acts real irreducibly on 
and such that « nearly always » X = ~ (x, t ) : DxH(x, t ) = 0 ~ is a finite
union of 2-manifolds and such that each orbit in X is isolated in X n (E x ~ t ~ ).
We successively define H on EGi as # Gi decreases. Let Gi, f = l, .... k,
denote the isotropy groups for the action of G=S~ on E where =~ G J >_ =~= G~

L

STEP 1. 2014 We first obtain H on EGi for f If ~ 0 for

Q, t e [o, 1 ], j - f (for example, if Gi = S~), we simply take H
to be a real analytic approximation to H in the C2 norm on Q x [o, 1 ].
The closeness of the approximation ensures that t ) 7~ 0 ifx e Ec n S2,
t e [o, 1 ], j - f. Thus we eventually arrive at an isotropy group Gi such that

t) = 0 for some (x, t) e EGi x [0,1 ].

STEP 2. 2014 t~e modify H on We first modify H such that, if

] and ~xH{x, t ) = 0 ,

t) has at most a 2-dimensional kernel on EGt and D2xH(x, t)EGi
and span an space, where mi = dim E,.
Consider the real analytic map H we have constructed. For each { ~, t)
in EG; x [0, 1 ] such that t ) = 0, we choose a neighbourhood N~
in the normal plane vx (in to at x and an ~x > 0. Now a finite
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number of the neighbourhoods N, = {TgNx: ge x [t - ~x, t + Ex] ]
cover the solutions t ) = 0 in n Q) x [o, 1 ]. Now, by Lemma 8,
there is a natural correspondence between smooth S1-invariant maps on Nx
and smooth maps on Nx x [t - Ex, t + Note that Gx acts trivially
on EGi since, by our construction, every critical point in EGI has
isotropy group G~. By Lemma 9, there is a dense open subset Ax of the
smooth maps on Nx x [t - Ex, t + Ex ] with the property that, if g E Ax,
then Dx g(x, t )Vx and t ) span Vx whenever Dxg(x, t ) = 0. Here DX
denotes the gradient on the space VX. By our earlier comments, it follows
that there is a dense open subset A of the smooth invariant functions on Nx
such that, if g e A and Vxg(x, t) = 0 then t) has at most a two-
dimensional kernel on EGi and and t) span an
(m~ - I)-dimensional space, where mi = dim symmetries ensure
that they cannot span EGi.) We call this property (Gen)X. By Lemma 6, we
can extend a smooth invariant map of Nx u n Q) x [0,1]) to a
smooth invariant map on (EGi n Q) x [0,1 ]. Thus we eventually find a
dense open subset A of the smooth invariant functions on (EGi n Q) x [0,1] ]
which equal H on n Q) x [0,1] ] such that (Gen)k holds on Nx.
Now the invariant smooth functions in (EGt n Q) x [o, 1 ] which equal H
on n Q) x (o, 1 ] form a Fréchet space since it is a closed subspace
of the smooth functions. The topology is induced by the seminorms
piK = sup I ~, where K is a compact subset of Q. Since a finite number

of the N x’s cover the solutions of VxH(x, t) = 0 in (EGi n Q) x [0, 1 ],
it follows that we can approximate H by smooth invariant functions which
have (Gen)~ on (EGi n Q) x [o, 1 ]. (Remember that the finite intersection
of open dense sets is dense in a metric space.) By Lemma 4, we can choose H
to be real analytic and still retain our condition on (EGi n Q) x [o, 1 ] for
j  i. Remember that our various conditions hold on open sets of functions.
Since H has (Gen)~, well-known results (cp. Crandall and Rabinowitz

[13, Theorem 1. 7 ]) imply that the solutions of DxH(x, t ) = 0 in a set

Nx x [t - Ex, t + Ex ] form a real analytic 1-manifold S. Moreover, by
the real analyticity, one easily sees that any component S of this one-
manifold S is contained in Nx  {t} for fixed t or S n {Nx  {t}) consists
of isolated points for each fixed t. Since the solutions of t) = 0
in Nx are simply obtained by the group action from the solutions of
DxH(x, t ) = 0 in Nx x [t - EX, t + Ex ] (cp. [20, § 3]), it follows easily
that the solutions of VxH(x, t ) = 0 in n Q) x [o, 1 ] are a finite union
of disjoint connected real analytic 2-manifolds li such that EGi  {s }
for fixed s or (b) li n (EGi x _~ t ~- ) consists of isolated orbits for each t

in [0, 1 ].
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We perturb H further to ensure that none of the li satisfy (a).
By our earlier comments, it suffices to consider the equation DxH(x, t ) = 0
on Nx x [t - Ex, t + Ex]. Suppose (x, t) is a solution such that t)
has a one-dimensional kernel on EGi. (The result is trivial if this map has zero
kernel.) Then the bifurcation equation for solutions of DxH(x, t) = 0
near (x, t) (with x E is of the form s(a, t ) = 0 where s : R2 --~ R is real
analytic. If (a) holds, zero must be a non-isolated solution of s(a, t ) = 0 on R
and hence s(a, t) must vanish identically. Now it is easy to construct a Coo
perturbation of our map such that (x, t) is still a critical point but s(, t)
does not vanish identically. Here s is the bifurcation equation for the per-
turbed problem. It follows that, li ~ EGi  {t}, where l i is the component
corresponding to li for the perturbed problem. (One can argue as in {77, § 2]
to show that the li behave nicely under perturbations.) Finally, we can use
Lemma 4 to ensure that H is real analytic.
At this stage, we have constructed a real analytic approximation H to H

such that VxH(x, t) = 0 has only a finite number of orbits of solutions
in EGt n Q for each t and such that t) EcJ is at most 2-dimensional
whenever VxH(x, t ) = 0 (and x E EGt n Q). This gives the required H on 

STEP 3. - We start constructing H in a neighbourhood of EGi in E.
We perturb our map H so that Gx acts irreducibly as a real representation
on the orthogonal complement to in N(DxH(x, t)) for each (x, t) E Li.
Here Li = { (x, t ) e (EGi n Q) x [0, 1 ] : VxH(x, t) = 0 }. Since Gx is abelian,
any such representation is at most 2-dimensional. Thus t)) is

at most 3-dimensional for (x, t) e Li.
Now t) has a one-dimensional kernel on ~~ except at isolated

orbits. To see this, it suffices as before to work in Nx x [t - Ex, t + Eg] ] .

where VxH(x, t) = 0. We have to show that DH(x, t) is invertible when
(x, t) ELi, X E V x and (x, t) is near (but not equal to) (x, t). By Step 2,
Li n (Nx x [t - Ex’ t + Ex]) is locally a real analytic manifold (x(~), 
where t is not constant. By Crandall and Rabinowitz [13, Theorem 1.17 ],

t( )) is invertible when t’( ) ~ 0. Since the zeros of t’ are isolated,
the result follows.

Consider a component li of L~. Choose (x, t) E li such that t) IEGi
has a one-dimensional kernel on It is easy to perturb H so that D;H(x, t)
has a one-dimensional kernel on E. (To do this, we first obtain a Coo per-
turbation. We work in Nx = (in E). We add a perturbation so that

t) is perturbed by E(I - P), where P is the orthogonal projection
of Nx into Nx. Note that it is easy to do this on Nx and keep Gx-inva-
riant.) Now, if the map 03BB ~ N(h) is real analytic, where each is a self-
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adjoint matrix, then the eigenvalues of N{~.) depend real analytically upon. ,.
(cp. Kato [27, Theorem II . 6 .1 ]). Hence, if N(~,) has a non-trivial kernei
for all 03BB and dim N(h) = 1 for some x, then dim N(03BB) = 1 for all 03BB except
at isolated points. Thus we see that t) has a one-d imensional kernel
on E for (x, except at isolated orbits. We call these the bad orbits.

Consider one of these bad orbits generated by ( y, ~). We can use a similar
perturbation argument to that in the previous paragraph to ensure that
DxH(x, t) is invertible whenever (x, t) E Li and t) EGi has
a two-dimensional kernel. Now, if K is a Gy-invariant subspace of Ny,
the orthogonal projection P of Ny onto K is Gy-invariant. Hence we can
use the Gy-invariant perturbation ~ ~ P(x - y)~2 on Ny to lower the dimen-
sion of the kernel of 03C4). Of course we use Lemma 4 again to make H
real analytic. After a finite number of steps, we find that Gy acts real irre-
ducibly on ij whenever ( y, i) ELi.

Suppose ( y, ~) E L~ and T - z)) ~Ny ~ (Thus T c 
Then, as before, T is one or two-dimensional. We consider the case

where T is 2-dimensional. The other case is similar but easier. Near (y, ~),
Li n (Ny x (i - s, z + s)) is an analytic 1-manifold (x(a), r(a)) (where
x(0) = y, 03C4(0) = 1). Since 03C4)|Ny is invertible, we can parametrize
by t. Without loss of generality 1 = 0. Consider t). This has zero
as an eigenvalue for all t due to the symmetry and an eigenvalue with

= 0, corresponding to eigenvectors in T for t = 0. Since Gy acts real
irreducibly on T, the symmetries ensure that Ji(t) has multiplicity 2 for all t.
Consider the bifurcation equation on T determining the small eigenvalues
of DxH(x{t ), t ). We eliminate the extra zero eigenvalue by working on Ny.
The bifurcation equation will be of the form h(t, = 0, where h is linear
in w and Gy-invariant and p is a small eigenvalue of t) on Ny
if and only if det h(t, Ji) = 0. Now h(t, ~c) must be self-adjoint (cp. Rabino-
witz [34, p. 412 ]). Since Gy acts real irreducibly on T, it follows easily that
h(t, ,u) is a scalar multiple of the identity, that is, h(t, Ji) = r(t, Hence x
is a small eigenvalue if and only if r(t, Ji) = 0. It is now easy to see that we
can make a small perturbation (basically on r and in essentially the same
way as before) to ensure that r 1 (t, Ji) =I 0 when r(t, Ji) = 0 and t ) is small.
This implies that ~c’(t ) ~ 0 when = 0. In other words, when an eigen-
value crosses zero, it does so transversally. In each of our above cons-
tructions, the condition we have ensured remains true under small per-
turbations. Thus there is no difficulty in doing the steps successively and
coping with the finite number of bad orbits on L~. Thus we have proved
what we claimed at the start of Step 3 and also ensured that when a non-
trivial eigenvalue of ~c) is zero (with ( y, p) E then it crosses zero

transversally as we move along Lj. orthogonally to orbits.
STEP 4. - We change the nonlinear terms near the bad orbits to ensure
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that VxH(x, t) = 0 only vanishes on a finite number of orbits near EGI for each
t E [o, 1 ]. This will complete the construction of H near We have already
proved this for orbits in EGI and thus, we need only consider solutions
which bifurcate out of Ec,. By our earlier comments in § 5 (cp. [19,
Remark after lemma]), this can only happen at a point { y, ~) where

2) INy) ~ EGi. We follow the notation of Step 3. Now T is 1-
or 2-dimensional. We only consider the case where T is 2-dimensional.
The other case is much easier. (IfT is one-dimensional, = + I for g E Gy
and both cases occur for some g since T ~ EGi.)
We consider the bifurcation equation on T for solutions of VxH(x, t ) = o

near ( y, z) and where the solutions (x(t ), t ) in EGi are the « trivial » solutions.
Note that, as before, it suffices to look for solutions of DxH(x, t) = 0 in N,,
and we may assume, without loss of generality, that L = 0. Now our bifur-
cation equation becomes

r(t, = M(w, t ) ,
where wET, r is defined in Step 3, M(0, t ) = 0 and M (0, t) = 0 for all t,
M is real analytic, M is Gy-invariant and M is a gradient for each t. (The
linear terms must be the same as that for  = 0 in the bifurcation equation
in Step 3.)
Now Gy is a finite cyclic group which acts real irreducibly on T. The

most general Gy-invariant real polynomial on T is calculated in Stattinger
[35, p. 118]. It is a polynomial in !! w ~ ~ 2 and the real and the imaginary
parts of wP, where * Gy = p and we are identifying T with C. Note that
p > 2 since T is 2-dimensional and real irreducible. Now any invariant

gradient polynomial P on T with P’(0) = 0 and involving !! w ~ ~ 2 must have
P2(0) = 0 and P~(0) = 0, by the result of Stattinger above. Thus we easily
see that we can make a C3-small COO perturbation to eliminate such terms.
Hence we see that after such a perturbation and also (if necessary) a per-
turbation introducing a term Re (cwP), we find that

where c ~ 0. If p is the perturbation, we replace p by where r is a fixed Cx

Gy-invariant function such that r = 1 near ( y, r) but r=0 outside some
neighbourhood of ( y, z) in Ny x [o, 1 ]. Thus pr will still be small in the C3
norm if p is small. Note that this perturbation only alters our map near
S 1( y) x ~ ~ ~. Now r(t, 0) = kt + o(t ) where ~ 5~ 0 by the construction
in Step 3.
Thus our bifurcation equation now satisfies most of the assumptions of

Lemma 7. It is an easy but tedious calculation to check the other condi-
tions. Hence we see that, for the perturbed equation, there are a finite number
of solutions in Ny of DxH(x, t ) = 0 for each t near zero. Thus there are
only a finite number of orbits of solutions of VxH(x, t ) = 0 near S 1 (y)
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for each t near r. Moreover, for these solutions (except ( y, ~)), t ))
is one-dimensional by the second part of Lemma 7 and since the kernel
is determined by the bifurcation equation. Now we can do this at each point
( y, ~) where N(DxH(y, ~) ~~3,) ~ Thus we eventually have a C~ map
such that VH(x, t ) = 0 only holds on a finite number of orbits near EGI n Q
for each t E [0, 1 ].
Note that, we have to use perturbations with small support (and thus

non-analytic) in the last step because our assumptions on the bifurcation
equation are non-generic. Thus we have to be careful that the various
perturbations do not disturb each other. (In fact, we could use C°~ small
analytic perturbations at the expense of proving a much more complicated
version of Lemma 7.) We have now made a C3 small perturbation such that H
is Coo and real analytic except close to a finite number of orbits and such that
VxH(x, t) = 0 only holds on a finite number of orbits near EGi for each t.

This completes Step 4 of the proof.

STEP 5. - Completion of the proof We explain how to obtain H on a
neighbourhood of (for i as in Step 2). The other successive extensions
to - EG. J thereafter are similar. Choose [) > 0 such that all the solutions of
VxH(x, t) = 0 in V~ == { ~re E : d(x,  ~ ~ are those given by the
bifurcations in Step 4 and such that, for each of these solutions, t ))
is one-dimensional (also by Step 4). We now use a perturbation argument
on which is a slight modification of the one in Steps 2-4.

. 

For each (x, t)E Li+ 1 B{(VE x [0, 1 ]) u L~ ), we can choose a neighbourhood
Nx of x ~~ t f in 1 

X [0, 1 ] such that the invariant C y functions
on 

1 
x [o, I ] which satisfy Genx 1 on Nx are open and dense. This

follows by the same argument as in Step 2. Note that Gen ~ was defined
in Step 2. As in Step 2, we deduce that the invariant Coo functions which
satisfy on L;+ 1 B{{VE ~ EGJ x [o, 1 ]) are dense. Thus, as in Step 2,
we find a real analytic invariant approximation Hi 1 to H which is close
in Cn (where yi > 3). Now all our conditions in Steps 1-4 on H are stable
to C2 small perturbations except for the conditions on the non-linear terms
at the bad orbits of EGi. We choose a fixed invariant C~° function ? which
has support near the bad orbits and is 1 very close to the bad orbits. Then

Hr = rH + (1 - r)Hi is easily seen to be a Coo invariant function which
is close to H in the Cn norm if Hi is close to H in the Cn norm. Moreover,
Hr is unchanged near the bad orbits and is real analytic except near the
bad orbits. It follows that H~ still has all the properties of Steps 2-4 on EGt
and has Geni+1x on 
We now continue much as in Steps 2-4 to obtain the structure of solutions

being good on 1 n Q. There are a couple of points to be noted. Firstly,
on Lt + x [0, 1 ]), either t)) is one-dimensional (which are
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points which behave well under perturbations) or H is real analytic near b
Thus we can repeat all the arguments of Steps 2-4 to obtain a perturbec
map H which has the property that VxH(x, t ) = 0 has only a finite number
of orbits of solutions near Q for each t E [o, 1 ]. Secondly, whenever
we perturb H to H 1 (as in Steps 2-4), we then replace Hi by rH + (1 - r)H 1.
This is still a perturbation close in Cn, « mostly » real analytic and the func-
tion is unchanged near the bad orbits in Moreover, as we continue
our process, we will gain extra bad orbits. However, these will be finite.
We always choose our perturbations to leave H unchanged near all the
earlier bad orbits. After a finite number of steps, we will have completed
the proof.
Remark. It seems probable that the result holds for general Lie groups.

The only difficult is the bifurcation part of argument. This certainly can
be proved for C2 maps by using non-polynomial homogeneous mappings.
Thus we can obtain an analogue of Proposition 1 for C2 maps and general
Lie groups. Note that, in § 1, our arguments are still valid if we have an
infinite number of orbits of critical points provided that they lie in « small »
sets. This requires some care.
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