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ABSTRACT

The probability density function of the gas density in subsonic and supersonic, isothermal, driven turbulence is
analyzed using a systematic set of hydrodynamical grid simulations with resolutions of up to 10243 cells. We
perform a series of numerical experiments with root-mean-square (rms) Mach number M ranging from the nearly
incompressible, subsonic (M = 0.1) to the highly compressible, supersonic (M = 15) regime. We study the
influence of two extreme cases for the driving mechanism by applying a purely solenoidal (divergence-free) and
a purely compressive (curl-free) forcing field to drive the turbulence. We find that our measurements fit the linear
relation between the rms Mach number and the standard deviation (std. dev.) of the density distribution in a wide
range of Mach numbers, where the proportionality constant depends on the type of forcing. In addition, we propose a
new linear relation between the std. dev. of the density distribution σρ and that of the velocity in compressible
modes, i.e., the compressible component of the rms Mach number, Mcomp. In this relation the influence of the
forcing is significantly reduced, suggesting a linear relation between σρ and Mcomp, independent of the forcing,
and ranging from the subsonic to the supersonic regime.

Key words: hydrodynamics – ISM: kinematics and dynamics – ISM: structure – methods: numerical –
shock waves – turbulence

Online-only material: color figures

1. INTRODUCTION

Understanding the intricate interplay between interstellar
turbulence and self-gravity is one of the key problems in
star formation theory. The supersonic turbulent velocity field
is likely responsible for the complex and filamentary density
structures observed in molecular clouds. It creates dense regions
that can become gravitationally unstable and collapse into dense
cores, and eventually turn into new stars (Elmegreen & Scalo
2004; Mac Low & Klessen 2004; McKee & Ostriker 2007).
Statistical quantities describing this process, such as the initial
mass function (IMF), the core mass function (CMF; Padoan &
Nordlund 2002; Hennebelle & Chabrier 2008, 2009), and the
star formation rate (Hennebelle & Chabrier 2011; Padoan &
Nordlund 2011) depend on the standard deviation (std. dev.) of
the density of the molecular cloud. The pioneering works of
Padoan et al. (1997) and Passot & Vázquez-Semadeni (1998)
have shown that the std. dev. σρ of the probability density
function (PDF) of the mass density grows proportionally to the
root-mean-square (rms) Mach number M of the turbulent flow,

σρ/〈ρ〉V = bM, (1)

where 〈ρ〉V is the volume-weighted mean density and b is a
proportionality constant. A solid understanding of the interplay
between the highly turbulent velocity field and the resulting
statistical properties of the density distribution is not just im-
portant for models of star formation theory, but also for other
fields of astrophysics, such as the diffuse interstellar medium
(e.g., Hill et al. 2008; Burkhart et al. 2010; Gaensler et al.
2011), galaxy evolution (e.g., Bigiel et al. 2008), or galactic and
protogalactic dynamos (e.g., Beck 1996; Schober et al. 2012).
Federrath et al. (2008, 2010) explained the dependence of σρ

on b by taking into account the modes of the forcing that drive
the turbulent velocity field. This model predicts b = 1/3, for
purely solenoidal forcing, and b = 1 for purely compressive
forcing, and explains the large deviations of b ranging from
b = 0.26 to b = 1.05 in previous works (e.g., Padoan et al. 1997;
Passot & Vázquez-Semadeni 1998; Li et al. 2003; Kritsuk et al.
2007; Beetz et al. 2008; Schmidt et al. 2009; Price et al. 2011;
Burkhart & Lazarian 2012; Konstandin et al. 2012; Molina et al.
2012). We follow up on this work and discuss the physical ori-
gin of this dependence, and introduce a new relation, similar
to Equation (1), correlating the compressible component of the
rms Mach number Mcomp with σρ .

In Section 2 we explain our numerical setup. We analyze the
influence of measuring mass-weighted and volume-weighted
distributions in Section 3.1, the influence of the resolution on our
measurements in Section 3.2, and the PDFs of the mass density
and the compressible part of the velocity field in Section 3.3. In
Section 3.4 we present the linear relations between the std. dev.
of the mass density and the rms Mach number. In Section 3.5
we discuss the new relation between the std. dev. of the mass
density and that of the compressible part of the velocity field. A
summary of our results and conclusions is given in Section 4.

2. SIMULATIONS AND METHODS

We use the piecewise parabolic method (Colella & Woodward
1984) implemented in the grid code FLASH3 (Fryxell et al.
2000; Dubey et al. 2008) to solve the hydrodynamical equations
on a uniform three-dimensional grid. These equations are the
continuity equation

∂ρ

∂t
+ (v · ∇)ρ = −ρ∇ · v, (2)
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Figure 1. rms Mach number of all simulations as a function of the dynamical
timescale, calculated by averaging over all grid cells for both types of forcing.

(A color version of this figure is available in the online journal.)

the Euler equation with a stochastic forcing term F per unit mass

∂v

∂t
+ (v · ∇)v = −

∇p

ρ
+ F, (3)

and the equation of state

p = κρΓ, (4)

where v is the velocity field, s = ln(ρ/ 〈ρ〉V ) is the natural
logarithm of the mass density ρ, cs is the sound speed, p is
the pressure, and Γ is the adiabatic index. Since isothermal
gas is assumed throughout this study, Γ = 1, the pressure,
p = ρc2

s , is proportional to the mass density with a fixed sound
speed cs. These simulations are scale free, so we set 〈ρ〉V = 1,
cs = 1, and the box size of the simulation L = 1. The numer-
ical simulations are set to evolve for 10 dynamical timescales
T = L/ (2Mcs), where M = vr.m.s./cs is the rms Mach num-
ber of the simulations with the rms velocity vr.m.s.. All relevant
quantities are stored in intervals of 0.1T . The stochastic forc-
ing field F has an autocorrelation time equal to the dynamical
timescale on the injection scale, which depends on the resulting
rms Mach number of the simulation in the state of statisti-
cally stationary, fully developed turbulence. The forcing field is
constructed in Fourier space such that the kinetic energy is in-
jected on the largest scales, where 1 < kL/2π < 3 and it varies
smoothly in space and time. To analyze the influence of different
modes of the forcing field, we use projection tensors in Fourier
space to get a purely divergence-free, ∇ · F = 0, solenoidal
or a purely curl-free, ∇ × F = 0, compressive vector field for
the forcing. We adjust the amplitude of the forcing such that
we have M = 0.1, 0.5, 2, 5.5, 15 for both types of forcing in
the stationary state of fully developed turbulence. To investigate
the effects of numerical viscosity, we study simulations at dif-
ferent resolutions: 1283, 2563, 5123, and 10243. The parameters
of these simulations are described in Konstandin et al. (2012),
and a detailed description of the forcing is presented in Schmidt
et al. (2009) and Federrath et al. (2010).

3. RESULTS

Figure 1 shows the time evolution ofM in all simulations. The
fluid reaches the equilibrium state of fully developed turbulence
after about two turbulent crossing times t ≈ 2 T . We thus
average all the following analyses for 2 � t/T .
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Figure 2. Mass-weighted and volume-weighted PDFs of the logarithm of the
mass density in the simulations with M = 5.5, 10243 grid cells and both types
of forcing.

(A color version of this figure is available in the online journal.)

3.1. Volume-weighted and Mass-weighted
Probability Density Functions

It is well known that the PDF of the logarithm of the mass
density p(s) in a turbulent, isothermal medium is close to a
Gaussian distribution (see, e.g., Vazquez-Semadeni 1994; Passot
et al. 1994; Padoan et al. 1997; Klessen 2000; Kritsuk et al. 2007;
Federrath et al. 2008; Konstandin et al. 2012):

p(s) =
1

√
2πσs

exp

(

−(s − 〈s〉)2

2σ 2
s

)

. (5)

Li et al. (2003) showed with the assumption of a Gaussian,
volume-weighted PDF of s that the mass-weighted PDF of s is
also Gaussian with the same std. dev. and with a shifted mean
value,

〈s〉V = −〈s〉M = −
σs

2

2
. (6)

Figure 2 shows the volume- and mass-weighted PDFs (the
volume-weighted PDF is shifted by 〈s〉M − 〈s〉V = σ 2

s for
better comparison) for the simulation with M = 5.5 for
both types of forcing. The PDFs are averaged over 81 time
snapshots in the state of fully developed stationary turbulence
for t � 2T and the error bars indicate the std. dev. of the
temporal fluctuations. The variance of the volume-weighted
PDFs is larger than that of the mass-weighted distributions. This
effect is stronger for the compressive than for the solenoidal
forcing. The volume-weighted PDFs show a larger variation
with time in the low-density wing of the distribution than the
mass-weighted distributions. This low-density wing also shows
higher probabilities than one would expect from the underlying
Gaussian distribution extrapolated from the high-density wing.
This effect is stronger for the compressive than for the solenoidal
forcing. We assume that this behavior is caused by our forcing
scheme. As the time correlation of the forcing field is equal
to the dynamic timescale on the largest scales, the forcing has
enough time to produce very low densities in large regions of
diverging flows. This process causes the volume-weighted PDF
of s to have a tail at low densities with higher probabilities than
the distribution for the case of turbulence, which is not driven on
the largest scales. As this effect is proportional to the amplitude
of the forcing field, which increases more strongly than M in

2
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Figure 3. Mass-weighted PDFs of s of the simulations for M = 5.5, different
resolutions, and both types of forcing. The black solid lines are Gaussian
functions with mean value and std. dev. calculated with the highest resolution.

(A color version of this figure is available in the online journal.)

the statistically stationary state of fully developed turbulence,
it becomes more important for higher M and the deviations in
the low-density tail influence the calculated std. dev. of these
distributions. This effect is less pronounced when measuring the
mass-weighted distributions, as the very low density grid cells
carry only little mass. We note that there are other potential
processes that could lead to non-Gaussian wings in the PDF,
such as turbulent intermittency or self-gravity (e.g., Klessen
2000; Kritsuk et al. 2007; Burkhart et al. 2009; Federrath et al.
2010).

3.2. Resolution Effects on the Probability Density Functions

Figure 3 shows the mass-weighted PDF of the quantity s
with M = 5.5 and different resolutions. The PDF of s shows
deviations from the Gaussian shape and a dependence on the
resolution only in the high-density tails of the distribution.
We interpret the deviations of our measured PDFs from the
Gaussian distribution in the supersonic regime for both types of
forcing as a sign of numerical dissipation and finite sampling.

In the highly supersonic regime the medium is dominated by
shock fronts, high-density gradients, and strong intermittent
fluctuations, which are building up in the high-density tail and
require high resolution to converge. As the high-density tail
is always truncated due to limited numerical resolution (see
Hennebelle & Audit 2007; Kowal et al. 2007; Kitsionas et al.
2009; Price & Federrath 2010; Federrath et al. 2010), we do
not fully resolve them in the M = 5.5 case and an additional
dissipation occurs. This effect is stronger in the simulations with
compressive forcing and becomes stronger with increasing M

for both types of forcing (not shown here). However, increasing
the resolution has only little influence on the deviations from
the Gaussian distribution in the low-density tail of the mass-
weighted PDFs.

With the assumption of a log–normally distributed mass
density, it can be shown that the std. dev. of the Gaussian-
distributed quantity s is (see Price et al. 2011)

σ 2
s = ln

(

1 + σ 2
ρ

)

. (7)

Figure 4 shows σρ as a function of σs for our volume-weighted
(left panel) and mass-weighted (right panel) distributions. The
volume- and mass-weighted measurements of the std. dev. of s
show increasing deviations from Equation (7) with increasing
M for both types of forcing. However, the deviations are smaller
in the mass-weighted case than in the volume-weighted one. The
assumption of Gaussianity, which is implied in Equation (7), is
better fulfilled for the mass-weighted case. Figure 4 also shows
that our measurements with M = 15 do not converge with
resolution for both types of forcing. They are in agreement
with those of Price et al. (2011), who showed that direct
measurements of σρ show a stronger dependence on resolution
than measurements of σs .

All volume-weighted measurements show a clear trend to-
ward relation (7) with increasing resolution. However, the data
points do not fit relation (7) for M = 15 with solenoidal forc-
ing and in all the supersonic cases with compressive forcing,
although the data points with M = 2 and M = 5.5 with com-
pressive forcing nearly converge with resolution. Considering
that the std. dev. σs,M of the mass-weighted PDF is more com-
patible with the scaling for a log–normal PDF, Equation (7), and
that the resolution dependence of σs,M is weaker than for σs,V ,

Figure 4. Std. dev. of the mass density σρ as a function of the std. dev. of the logarithm of the mass density σs , measured volume-weighted (left panel) and
mass-weighted (right panel). The deviations of the measurements from the black solid lines, Equation (7), quantify the deviations from a log–normally distributed
mass density.

(A color version of this figure is available in the online journal.)
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we prefer to use σs,M as an estimate for the turbulent density
fluctuations in the following.

3.3. The Probability Density Function of the Density and of the
Compressible Modes in the Velocity Field

Figure 5 shows the mass-weighted PDFs of the quantity s (left
panels) and the volume-weighted PDFs of the compressible
modes of the velocity field normalized to the sound speed
Mcomp = vcomp/cs (right panels) for different M and both types
of forcing. The PDFs of the logarithm of the density largely
follow Gaussian distributions for all supersonic M. We added
Gaussian functions (black solid lines) with the first- and second-
order moments calculated from our distributions in Figure 5.
The high-density tails of the distributions show deviations from
the Gaussian shape, which increase with increasing M. Also,
the deviations from the Gaussian distribution in the low-density
tail, as discussed in Section 3.1, become more pronounced
with increasing M. Thereby, we have large deviations of our
measurement from the Gaussian distributions in the M = 15
case and the calculated std. dev. does not correspond to that of
the underlying Gaussian distribution.

The density distributions of the simulations driven by
solenoidal forcing in the subsonic regime show significant de-
viations from the log–normal shape, which become stronger as
M decreases. These distributions become more asymmetric and
more peaked. The different behavior of the PDFs in the subsonic
regime, especially for the solenoidal forcing, is caused by the
different physical processes acting here. In the subsonic regime
sound waves transfer information faster than the averaged flow
of the medium, such that the thermal pressure increases before
two converging flows can collide. This process prevents collid-
ing flows from producing high-density regions and causes the
sharp edge at the high-density wing of the distributions. The
thermal pressure also decelerates the velocities in compress-
ible modes, such that the PDF of Mcomp also shows a narrow,
peaky, and intermittent behavior for the solenoidal forcing. This
process is just visible for solenoidal forcing, because in the com-
pressive forcing case the velocities in compressible modes are
re-injected by the forcing to hold M constant. This is why the
thermal pressure does not have such a strong influence there.

The right panels of Figure 5 show the PDFs of Mcomp, where
Mcomp is calculated by transforming the velocity field into
Fourier space and applying the same projection tensor we use for
the forcing field, P

‖
ij = kikj/k2. After transforming it back into

real space, we calculate the std. dev. of the components, which
we average afterwards over the three directions of the coordinate
system, x, y, z. The distributions of Mcomp are symmetric with
zero mean and have an increasing std. dev. with increasing M.
The distributions obtained with compressive forcing are always
broader than with solenoidal forcing at the same value of M.
The PDFs of Mcomp are Gaussian (black solid lines) with devi-
ations in both wings. These are the signposts of turbulent inter-
mittency. The deviations do not show a clear trend with the M.

The PDF of Mcomp obtained with solenoidal forcing in
the subsonic regime with M = 0.1 shows the strongest
deviations from the Gaussian shape with a narrow, peaky,
intermittent distribution. These deviations are caused by the
thermal pressure, as discussed above.

3.4. Relation between M and the Standard
Deviation of the Density

In Padoan et al. (1997) and Passot & Vázquez-Semadeni
(1998) the authors found that the std. dev. of the PDF of the

mass density σρ is proportional to M in a turbulent flow.
The std. dev. of the mass density is an important quantity,
especially in astrophysics, where the Mach number dependence
of density fluctuations is used to derive analytic expressions
for the CMF and the stellar IMF (e.g., Padoan & Nordlund
2002; Hennebelle & Chabrier 2008, 2009). On galactic scales
it is used to reproduce the Kennicutt–Schmidt relation (Tassis
2007), and Elmegreen (2008) suggests that the star formation
efficiency is a function of the density PDF. Figure 6 (upper
left panel) shows the measured std. dev. of the mass density
as a function of M for different resolutions and both types
of forcing. The error bars in each panel of Figure 6 indicate
the std. dev. of the temporal fluctuations of the measured
quantities. They do not include any potential systematic errors
stemming from, e.g., the numerical scheme or implementation
of the forcing algorithm. Thus, we interpret the error bars as
a lower limit of the real uncertainty. The dotted and dashed-
dotted lines correspond to the model of Federrath et al. (2010),
which describes the proportionality parameter b as a function
of the turbulent forcing. This model predicts b = 1/3 for
solenoidal forcing and b = 1 for compressive forcing. Our
measurements agree with the model of Federrath et al. (2010)
in the supersonic case for both types of forcing. We see small
deviations from the model in the simulations with M = 15,
which are caused by our limited resolution (see Figure 4).
The std. dev.s of the density distribution of the simulation
with solenoidal forcing are smaller than the prediction of
the model in the subsonic case. In the subsonic regime, the
deviations are caused by the thermal pressure, which damps
density variations and compressible modes of the velocity
field and reduces the measured std. dev. below the model
prediction as discussed in Section 3.3. The upper right panel
of Figure 6 shows the mass-weighted, logarithmic std. dev.
σs,M as a function of M. The dotted and dashed-dotted lines
correspond to the standard model for the logarithmic density
variance,

σ 2
s = ln(1 + b2

M
2), (8)

with b = 1/3 for solenoidal and b = 1 for compressive
forcing. Equation (8) follows from Equations (1) and (7) and
was recently derived analytically by Molina et al. (2012) using
the shock-jump conditions and averaging over an ensemble of
shock waves. The deviations of our numerical data from this
standard model are only significant for solenoidal forcing in
the subsonic regime, while our data are in excellent agreement
with Equation (8) for both solenoidal and compressive forcing
in the supersonic regime, given our resolution dependence of
the M = 15 data points (see Figure 4, right panel). Our results
are in agreement with those of Kowal et al. (2007), who found
deviations from the linear relation with σρ in the subsonic regime
with solenoidal forcing, and with Passot & Vázquez-Semadeni
(1998), who analyzed one-dimensional simulations with only
compressive forcing and 0.5 � M � 3 and found a linear
relation between M and σρ with b = 1. Price et al. (2011)
analyzed three-dimensional simulations with purely solenoidal
forcing and values of M between 2 � M � 20 and found
b = 1/3, in excellent agreement with our result. As they did
not analyze the subsonic regime with solenoidal forcing they
did not observe the large deviations in the subsonic regime. Our
analysis complements these studies with measurements in both
the subsonic and supersonic regimes and for purely compressive
forcing.
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Figure 5. Mass-weighted PDFs of the logarithm of the mass density (left panels) and the compressible part of the local Mach number (right panels) for different M,
resolutions, and both types of forcing. In the inset, a magnification of the PDFs obtained with solenoidal forcing for M = 0.1 is shown. The error bars in each panel
indicate the std. dev. of the temporal fluctuations.

(A color version of this figure is available in the online journal.)
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Figure 6. Std. dev. of the distribution of the mass density (left) and std. dev. of the distribution of the logarithm of the mass density (right) as a function of M (upper
panels) and as a function of Mcomp (lower panels). In the upper panels, the lines correspond to the model of Federrath et al. (2010) with b = 1/3 for solenoidal forcing
and b = 1 for compressive forcing. In the lower panels, the solid lines correspond to a two-parameter fit and the dotted line corresponds to a linear relation between
the std. dev. of the mass density and that of Mcomp with a proportionality constant

√
3.

(A color version of this figure is available in the online journal.)

3.5. Physical Origin of Density Fluctuations
in Turbulent Flows

Looking at the continuity Equation (2), one can argue that
variations of the density can only be caused by the divergence
of the velocity field. Given that a vector field can be decomposed
in a gradient field and a rotation field, and that the divergence
of the rotation field vanishes, we conclude that the density
variations can only be caused by the compressible modes of the
velocity. A similar model has also been suggested by Federrath
et al. (2010), where the parameter b in Equations (1) and (8)
was approximated by the ratio of compressible to total velocity
fluctuations. As we want to understand the physical origin of
the density fluctuations, we replace M and the b-parameter
with Mcomp, in Equation (1), where M is in fact the std. dev.
of the velocity distribution, and b is proportional to the ratio
of compressible to total velocity fluctuations and depends on
the forcing. The lower panels of Figure 6 show the density
fluctuations as a function of Mcomp. The data points show
a clear correlation. The different behavior of the simulations
driven with solenoidal and compressive forcing is significantly
reduced. In Figure 6 we added a function (dotted line) for the
relation σρ =

√
3Mcomp, which is the simplest model for this

relation assuming isotropy. The factor of
√

3 is due to the
fact that we use the distribution of the compressible modes
of the velocity field averaged over the three directions of the

coordinate system,

M
tot
comp =

√

M2
comp, x + M2

comp, y + M2
comp, z

=
√

3Mcomp. (9)

Our simple model fits the data, but shows deviations for the
simulations with solenoidal forcing and the lowest and highest
Mach numbers. The deviations for the M = 15 simulation are
again caused by the resolution dependence of σρ . Additionally,
we perform a fit of our data (black solid line) with two free
parameters,

σρ = α
√

3Mβ
comp, (10)

for the density relation. We obtain a normalization α = 1.0 ± 0.1
and a slope β = 0.85 ± 0.04. For the s-relation we transform
the fitted function with Equation (7). The measurements of the
std. dev. of the density have larger deviations from the model
than those of the std. dev. of s. However, the model fits the
measurements in both cases and provides a good description for
the data points in the subsonic regime with solenoidal forcing,
which are strongly influenced by sound waves. We conclude
that the thermal pressure damps the velocities in compressible
modes in such a way that the relation between the velocities
in compressible modes and the density variations in a turbulent
medium is in a statistical equilibrium state, even if the medium
is strongly influenced by sound waves. The deviation of the
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scaling exponent from the simple model can be interpreted
as additional dissipative effects, which are proportional to
Mcomp. An example of these physical processes which influence
our analysis are individual shocks causing deviations from
the log–normal-distributed density PDF. However, systematic
errors with a dependence onM could also cause deviations from
the linear scaling and would be another possible interpretation
for our fitted scaling exponent.

The relation between the std. dev. of the density and the
compressible part of M in principle enables us to measure the
kinetic energy in compressible modes in giant molecular clouds,
without knowing the absolute M, the driving mechanism, or
the sound speed. The relations shown in the bottom panels of
Figure 6 are valid in both the subsonic and supersonic regime.

4. SUMMARY AND CONCLUSIONS

We have investigated the influence of solenoidal (divergence-
free) and compressive (curl-free) forcing on the PDF of the
mass density in subsonic and supersonic turbulence with a set
of three-dimensional numerical simulations. We analyzed the
relation between the std. dev. of the mass density distribution
and the rms Mach number,M. We found a new relation between
the std. dev. of the mass density and that of the compressible
part of the velocity field, σρ ∝ Mcomp. Our main results are as
follows.

1. Compressive forcing yields mass density PDFs with std.
dev. proportional to M with b = 1. For solenoidal forcing,
we measure b = 1/3 in the supersonic regime. Our find-
ings are in agreement with previous studies which, however,
only explored different subsets of the full parameter space
investigated here. We also found deviations of our mea-
surements from the linear relation with solenoidal forcing
in the subsonic regime. These deviations from the linear
relation can be explained as resulting from sound waves,
which damp the faint compressible velocities and prevent
the medium from producing overdensities.

2. We found a unique relation between the std. dev. of the mass
density and the compressible modes of the velocity field
with a fit to our data. Our new relation is independent of the
driving mechanism and still holds in the subsonic regime,
where the flow is mainly influenced by sound waves. It
does not show a strong influence on the resolution and
other effects, which may cause a non-Gaussian distribution
of the density.

3. Our relation enables us for the first time to measure the
kinetic energy in compressible modes in units of the sound
speed, without knowing M, the driving mechanism, or the
sound speed of the medium. This measurement can be used
to distinguish between subsonic and supersonic compres-
sive turbulent motions. It will in principle allow us to mea-
sure the composition of the kinetic energy in the interstellar
medium by combining independent measurements of the
total M (e.g., Burkhart et al. 2009) and the std. dev. of the
density distribution (Brunt et al. 2010; Brunt 2010; Schnei-
der et al. 2012).
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