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Summary. We give a derivation of the displacement potentials and the wave 
equations which they satisfy. The derivation is similar to one given by 
Richards but is more general and yields explicit formulas for the source 
terms. This generality is retained when the moment tensor representation 
of the source is used. Formulas for the source terms are given in both spheri- 
cal and cylindrical coordinate systems and are evaluated for the particular 
case of a point source with second order moment tensor. 

Introduction 

The momentum equation for a non-gravitating isotropic elastic medium is 

pu = (A t 2p) V(V. u) - p v x  v x u t f + (V- u)VX t (Vp) . (VU t UV) (1) 

in which u is displacement, X and p are Lam6 parameters, p is density and f is body force 
per unit volume. Specializing to a homogeneous medium and taking the Fourier transform 
of (1) yields 

- ~ ~ u = c y ~ v ( v . u ) - ~ ~ v x  v x u t p - ' f .  (2 )  

Richards (1974) noted that in a region where f vanishes and o + 0 one can divide ( 2 )  by 
oz and write it in the form 

u = V @  t v x  s 

in which 

(3 ) 

Substitution of (3) into (4) then yields the wave equations: 

He later derived the source free wave equations for SH and SV by means of the operator 
A' which we introduce in the sequel. Here we will consider the equation (2) when f is 
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3 90 L. N.  Frazer 

twice continuously differentiable, and 1 f I = O(l/l r I '+') for some E > 0 as I r 1 +oo These 
conditions ensure that the operator V-' (defined below) commutes with V., V x , V 2  and 
A .  V x when applied to f ,  and that 1 f 1 is bounded on w3. 

Potentials for spherical coordinates 

We begin by finding scalars S,, SH , S ,  such that 

f =VS, t Vx rSH t Vx V x rX,. (6) 

To determine SH and S, it will be convenient to introduce the infinitesimal rotation opera- 
tor A = r x V whose properties are summarized by Backus (1958). Application of the 
operators V., A -  and A . V  x to both sides of (6) yields the equations V . f  = V'S,, 
A . f  = - A' SH, and A -  V x  f = A' V2S, respectively and we are thus led to define S , ,  SH 
and S ,  by 

s, = v-2( v .  f )  

s, = - A-2 ( A . f )  
&, = v - ~ A - ~ ( A .  v x f). 

The operator V-2 is defined by 

(7) 

v-? = dV'K(r ,  r') s, 
in which K(r, r') = -1/4n I r --r' 1 and w3 is Euclidean 3-space. The domain of V-' is the set 
of functions continuous on as I r 1 + w  The operator 
A-' is defined by 

which vanish faster than [ r  

in which B( i ,  i') = In (1 - i . a^')/4n and s2 is the unit sphere. The domain of A-' is the set of 
functions continuous on whose average over s2 is zero. If 6 (r - r') is the generalized func- 
tion with support r = r' and the replication property 

1. dV'#(r') 6(r - r') = @(r) 

then 

, 6(r  - r') 
6 ( r - r ) = -  6(f ,  if)  

r2 
where 6 (i, if) is the generalized function with support i = i' and the replication property 

s,, dCl'rg(i') 6(i, i') = @(i). 

Also V2K(r, r') = 6 (r - r') and A2B(i, i') = 6 (f, if) - 1/4n. To prove that the quantities 
defined by (7) actually satisfy (6) we need the theorem stated below. This theorem is an 
immediate consequence of a theorem of Backus (1958) which states that for any vector 
field v if r - v  = A . v  = V . v  = 0 then v = 0. 
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Displacement potentials in an elastic medium 391 

Theorem 1. For any twice differentiable vector field v defined on R ~ ,  if I v I -+ 0 as I r I -+ w 

and V. v =  A .  v = A - V x  v =  0 then v = 0. 

Boot Since A .  v = A .  V x v = 0 we have that V x v = 0 by Backus theorem. Since 
V . v = V x v = 0 we have that V2 v = 0. Thus in any fixed Cartesian axis system { ?,?, we 
have V2uX = V2vy = V2uz = 0. Let S, be the sphere of radius r about the origin. Since v, 
is harmonic the maximum value of vx in S; is taken on the boundary as,.. But this maximum 
is smaller than the maximum of I v I on as, which by hypothesis approaches zero as I r I -+ 00 . 
Also since I v I is bounded on nt3 so is I u, I hence 1 v, I = 0. Similarly v,, = v, = 0 hence v = 0 
in R3. 

To prove equation (6)  we apply Theorem 1 taking v = f -(VS, t Vx rSH + V x V x r S,) 
with Sp, SH, and S, given by (7). Since f is twice continuously differentiable,and O(l/l r 12+') 
forsome€> OasIr(-+mwehavethat 

v. v = v. f - vZ(v-2 v. f) = 0 

A . v  = A.  f t A2(-A-2 A .  f) = 0 

A * V  x V =  A -  V X  f -A2V2V-2A-2(A- V X  f)=O 

and ( 6 )  follows. 

in the form 
We now find displacement potentials for u. In case w z 0 equation (2) may be written 

a2 P2 f 
u = - - V ( V . u ) t -  vx v x u - -  

w2 w2 pw2. 

The technique used above to find displacement potentials for f is quite general and if we 
now apply it to the entire right hand side of (8), including the source term, we find that 
the right hand side of (8) is given exactly by VP t Vx rH t V x V x r V where 

p = - -  a2 V . U - - -  SP 

H = -  P2 V2A-2(A.~) - -2  S H  

w2 P O Z  

W2 PW 
(9) 

SV P -  
W2 P* 

2 

V = - -  A ~ ( A . v ~ ~ ) - , .  

Therefore by the equality in (8) 

u = V P t V x r H + V x V x r V .  (10) 

To obtain the wave equations we substitute (10) into each of (9) and there results exactly 
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In case o = 0 equation (2) becomes 

f 

P 
O=c?  v(v-u)-p2vx v x u t - .  (1 2 )  

Applying A ., V . and A . V x to (1 2) proves that equations (1 1) will be satisfied for w = 0 if 

P =  v-2( v.  u) 

H =  - A-?(A. U) 

v =  V-2A-*(A. vx u). 

Equation (10) now follows immediately from Theorem 1 using v = u - (VP+ Vx rH+ V x 
V x r V )  with P, H, V given by (3). Thus we have shown that for any value of w in any 
region of space not necessarily source free, there exist potentials P, H, V such that equations 
(11) are satisfied and u given by (10) is a particular solution of (2). 

The point source in spherical coordinates 

We now take f to be the equivalent body force density associated with the point source 
having moment tensor M and time dependence g(t). M is a constant symmetric second 
order tensor and (Burridge & Knopoff 1964) 

f(r, t )  = --g(t) M .V6(r - ro). (14) 

Using (14), the divergence theorem, the symmetry and constancy of M and VK(r,r')= 
- V'K(r, r') it is straightforward to show that 

V-*f = -g(t )  M -VK(r, ro). (1 5) 

Now taking the divergence of both sides of (1 5) and using VVK (r, r') = V'V'K(r, r') yields 
the P motion source potential in the form 

sP = -g ( t )  M : VoVoK(r, ro). (1 6 )  

To compute the shear source potentials we introduce the spherical resolutions (Backus 
1967) V= i d ,  + ( l / r )  V ,  and M = EiM,.,. t iMr, t M,,i t M,,. V1 = - i x A is the surface 
gradient operator on the unit sphere. In consequence of these definitions we have the result 
that if v(ri) is any continuous vector field tangent to R then by the divergence theorem 

Also if v(ri) is any continuous vector field and # ( T i )  any continuous scalar field then by 
Stokes theorem 

dR @A- v = - dQ(A@) * V .  
Jn 

Substitution of the spherical resolutions into (14) yields 
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Displacement potentials in an elastic medium 

To compute SH by (7) we write 

393 

The last line of (19) is obtained by two uses of ( 1  8) and then one use of (I 7). 

Vx to write S, in the form 
To compute S, by (7) we first make use of the commutativity of V-’ with A-’, A., and 

& = A-’(A. v x V - z f ) .  

S, = rar(A-zsp) - A-’(r . f ) .  

(20) 

But for any vector field v ,  A. V x v = ra,(  V- v) - r . V *v so according to the first of (7) 

(21)  

Substitution of the spherical resolutions for M. 6 (r - To) and V into formula (14) yields 

Thus by one use of (17) we obtain 

Therefore 

The expansions of S,, SH, and S,  in series of surface spherical harmonics can now be 
obtained by substitution in (16), (19), and (22)  of the well known formulas for K(r,ro) 
and B(i, io) included here for reference. 

13*  
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394 L. N. Frazer 

In equations (22) and (23) r> = max(r, ro), r< = min(r, ro) and the harmonics qm have been 
normalized so that Y,-m = ( - l ) m  &*m and 

To evaluate the first term in (22) the relation 

is needed. 

Potentials for cylindrical coordinates 

The derivations and formulas for cylindrical coordinates are similar to those given above for 
sphericd coordinates. Analogous to A is the operator L = i X V  . For a scalar field@, u=  2 X V  Q =  - V x  i@ while for a vector field v, L . v =  i .V x v. Also V'=a'/az'+L' 
and the operator L-' is defined by 

in which C(p, Gf)=ln1 p-p f1 /2n  and R' p=x? tyy. The domain of L-'is the set of func- 
tions continuous on tt3 which vanish faster than I p I-' as I p I +. 00. 

We also need a cylindrical Backus theorem the statement of which is that if a vector field 
v is defined for zl < z < z2 and in that range v, = 0 while v, and vy are continuously 
differentiable and if v, and v,, approach zero as I p I -+ 00 and V v = L . v = 0 then v = 0. 
The proof of this is similar to the spherical case and we give it here. For fixed z E [z,, z z ]  let 
#(x, y )  = v, - ivy. Then V - v = L .v = 0 means that Qi satisfies the Cauchy-Riemann con- 
ditions so @(x t iy) is entire. But by hypothesis I @ I is bounded so by Liouvilles theorem @ 
is constant. Thus since I@ 1+0 as I p I+m, $J= 0. 

A consequence of the cylindrical Backus theorem is the following theorem whose proof is 
similar to the proof of Theorem 1. 

Theorem 2. For any twice differentiable vector field v defined on R~ if I v I -+ 0 as I r I -+m 

and V - v = L .  v = L - V x v = O t h e n v = O .  
If we now define 

s, = v-'(v. f) 

s,+=L-'(-L.~) 

s, = V-'L-'(L. v x f )  

then using Theorem 2 it follows that 

f=VS,  t v x  iSH t v x  v x is,. (25) 

Similarly if w + 0 we can use Theorem 2 to show that the entire right hand side of (8) 
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including the source term is given exactly by VP t V x i H t V x W x 2 V where 

H = - V ~ L - ~ ( L . U ) - - ’  P‘ S H  

wz P O  

PZ - SV v = - - L 2 (L . v x u) - -2. 
0’ P o  

So that by the equality in (8) we have 

u = V P t V x i H + V x V x i V .  (27) 

To obtain the wave equations we substitute (27) into each of (26) and there results exactly 

In case w = 0 equation (2) becomes equation (12) and application of the operators V.,  L -  
and L . V x to (12) proves that equations (28) will be satisfied for o = O if 

P =  v-’(v. u) 

H= - L-’(L. U) 

v =  v-2L-2(L v x u). 

Equation (27) now follows from Theorem 2 using v = u - (VP t V x i H t V x V x 2 V) 
with P, H, and Y given by (29). The above remarks show that for any value of t3 in any 
region of space, not necessarily source free, there exist potentials P, H, and V such that 
equations (28) are satisfied and u given by (27) is a particular solution of (2). 

The point source in cylindrical coordinates 

We now specialize to the case where f is given by (14). The formula (16) for S ,  is valid in 
any coordinate system. To compute the shear source potentials we introduce the cylindrical 
resolutions V =  ia/az t V,, M = iiA.l,, t iM,, t M, i t Me, and 6 (r -r‘) = 6 (z - z’) 6 (p- p’). 
If v is any continuous vector field whose i component is zero then the divergence theorem 
in R‘ yields 

Also if v is any continuous vector field and @ any continuous scalar field such that I @v I -+ 0 
faster than I I, I-’ as I p I -+ 00 then Stokes theorem in R* yields 
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396 L. N. Frazer 

Substitution of the cylindrical resolutions into (14) yields 

f(r,t)=-g(t)h’(z -zo)[iMzz +M,] 6(p-p0) -g(t)6(z -zo)[iM,, +Mccl *vc6(p-po). 

To compute SH by means of (24) we write 

The last line of (32) is obtained by two uses of (3 1) and one use of (30). 

Vx to write S, in the form 
To compute S, by (24) we first make use of the commutativity of V-’ with L-2, L ., and 

S v = L - 2 ( L . V x  v-Zf). (33) 
But for any vector field v, 

a 
L . v  x v =  - (V. v )  - i .  v z v  

az 

so according to the fust of (24) 

a 
az 

s, = - (L-2Sp) - L-Z(i . f). 

- i . f =g(t) 6’(z - ZO)Mzz6(P - Po) 

L-’(-L.f)=g(t)6’(z - z o ) ~ z , ( p o ) c ( p >  Po) -g(t)6(z -zo>v: -[C(P, po)M,c(po)l. 

(34) 

Substitution of the cylindrical resolutions of M, 6 (r - ro) and v into formula (14) yields 

6(z - zo) M,, . V,S(p - pol. 

Thus by one use of (30) we obtain 

And therefore 

-gW - zo) v: . [C(P, Po) Mzc(p0)l. (35) 

The expansions of S,, SH and S, in series of cylindrical harmonics can now be obtained by 
substitution into (16), (32), and (35) of the formulas for K(r, ro) and C(p, po) which are 
included here for reference. 

dk . k exp [im(e -eo)] J,(kp)J,(k~~) exp(-k I z - zo I) (36) 
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Displacement potentials in an elastic medium 

To evaluate the first term in (35) the well known relation 

L-2 [J,(kp) exp(imO)] = - J,(kp) exp(im0) 

is needed. 

-1 

k2 

397 

(38) 

Discussion 

The research above grew out of an attempt to incorporate source terms into the coupled 
wave equations for P and SV motion in a smoothly stratified inhomogeneous medium 
(Richards 1974). If this were done one would expect to find some function of the P wave 
part of the source, down by u-', as an additional source term in the SV wave equation and 
some function of the SVpart of the source, down by u-l, as an additional source term in the 
P wave equation. Such terms would necessarily be important whenever the source is located 
in a region where velocity gradients are sufficiently large to warrant the use of coupled 
wave equations. 
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