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A new approximation scheme is proposed to describe a realistic inhomogeneous universe in 
general relativity. This scheme improves the former one and allows one to treat more general 
situations where the local effect due to self·gravity of the matter dominates the effect of cosmic 
expansion. A new statistical way of averaging spacetime is also discussed. 

§ 1. Introduction 

The global structure of the universe is believed to be described by Friedman­
Lemaitre-Robertson-Walker (FLRW) geometry based on the assumption of homoge­
neity and isotropy. The observation of the isotropies of the cosmic microwave 
background radiation is usually regarded as the evidence for the validity of the 
assumptions1),2) (there is, however, some ambiguity in the interpretation of the dipole 
anisotropy3»). Since there exist local inhomogeneities in various scales, it is expected 
that an averaged metric over a large volume in some sense may be described by 
FLRW geometry. However it should be noted that the averaged metric coincides 
nowhere with the real inhomogeneous metric. This has a fundamental importance in 
the observational cosmology because the propagation of light rays is governed by the 
local inhomogeneous metric, not the averaged homogeneous metric. 

In fact there have been many attempts to study the light propagation on in­
homogeneous universes theoretically4)-6) as well as numerically.7),S) There are two 
main problems one encounters in this study. One is how to describe realistic in­
homogeneities in the universe, and the other is how to approximate the propagation 
itself within the framework of general relativity. The latter is somewhat connected 
to the former problem and a fully satisfactory approximation is not yet available. 
As far as the former is concerned, rather crude description of inhomogeneities such as 
the Dyer-Roeder model or Swiss cheese model are employed for the interpretation of 
the observational data. These models are not derived in the consistent way from the 
first principle of general relativity. Sometimes the result of linearized perturbation 
theory is used even in the nonlinear situation without any careful consideration.9

) 

Recently a consistent approximation scheme for the construction of an in­
homogeueous universes in general relativity is developed.10),1l) The scheme is based 
on the post-Newtonian type approximation in the cosmological circumstance and thus 
allows one to treat nonlinear density fluctuation (the pioneering work on the 
Newtonian approximation in the expanding universe is done by Nariai and Ueno12»). 
Similar post-Newtonian approximation in the cosmological situation is developed for 
a system of point particles13) and the approximation is applied to the problem of light 
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390 T. Futamase 

propagation in an inhomogeneous universe. 14
) Our approach differs from the previ­

ous one in the following sense. Namely it allows one to calculate the back reaction 
due to the growth of inhomogeneities on the global expansion of the universe and vice 
versa. Also an expression for the deviation from homogeneous and isotropic expan­
sion is explicitly derived in terms of inhomogeneities. This is done by introducing a 
spatial averaging procedure. The scheme explicitly demonstrates how averaged 
FLRW metric is generated from an inhomogeneous spacetime. 

In the formulation of the approximation it is assumed that the inhomogeneous 
spacetime may be regarded in a sense as a small deviation away from the averaged 
smooth spacetime which is not a priori given. This is also what we expect to hold for 
our universe. To clarify this rather vague idea two small parameters 6 and K were 
introduced in the approximation scheme to characterize our universe. The 6 is 
associated with the amplitude of the gravitational potential (cjJ) generated by in­
homogeneous distribution of matter, cjJ~ 62

• The K is the ratio between the typical 
scale of inhomogeneity (l) and the scale of the horizon (L), K~ IlL. The relative size 
of K and 6 depends on the system we have in mind. Since the density contrast is of 
order of 6

2
IK2,1O) the linear and nonlinear stages may be characterized by the condi­

tions K:?>6and 6:?> K, respectively. For example, typical values of 6 and K for galaxies 
are 6~ 10-3 and K~ 10-4

.
5

. The ratio E/K gets larger as we consider smaller 'regions. 
The scheme allows one to construct an approximate metric with arbitrary large 
density contrast as far as 6

2
4;.K. 

The propagation problem is then treated on the basis of this approximation. 15) It 
is found that the linearized approximation can be safely used to study the propagation 
of light rays in an inhomogeneous universe in which the density contrast is much 
larger than uni'ty as long as one focuses on a region sufficiently smaller than the 
horizon scale, i.e., z (redshift of the source object)4;.1. Moreover a general expres­
sion for the distance-redshift relation is derived in such a universe without and ad hoc 
assumption. Using the relation we were able to clarify the range of validity of the 
Dyer-Roeder distance relation. 

Unfortunately as mentioned above the validity of the above approximation is 
restricted in the parameter range 62 4;. K. Thus the above analysis applies for in-. 
homogeneities whose typical size is larger than galactic scales. However one might 
be interested in the light propagation in the situation with strong gravity and/or 
smaller regions where 62 :?> K. For this purpose one has to construct an approximate 
metric in such a situation. This is what the author aims at in this paper. It has also 
some conceptual interest to construct an averaged spacetime in such a situation. 

The plan of this paper is as follows. In § 2, the basic equations are presented and 
then the previous approximation is outlined for the sake of completeness. In § 3, new 
approximation is introduced. There we present only the logical steps of the approxi­
mation without going to details of the calculation. We shall demonstrate explicit 
calculations of lower order terms in the Appendix. The discussion on the spatial 
averaging and other type of averaging is given in § 4. Finally some discussions are 
given in § 5. 
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A New Description for a Realistic Inhomogeneous Universe 391 

§ 2. The basic equations and the former approximation 

In order to make this paper self-contained, we shall first present basic equations 
for the approximation and then outline the former approximation.10),1l) As in the 
previous paper we introduce two small parameters 6 and K. The physical meaning 
of these parameters is explained in the introduction. 

Let us make the following ansatz for the metric: 

(2 ·1) 

where a is the scale factor which describes the averaged expansion and is assumed to 
be a function of the conformal time 7}. It is also assumed that a' /a= O(l/L) where the 
prime represents the derivative with respect to 7}. The h's are supposed to be 
generated by inhomogeneous distribution of matter and by possible gravitational 
waves. We neglect the latter contribution and assume that h,"v=0(62

) and h,"v,p 
=0(62 jl). We assume that the spacetime 'considered here reduces to the closed, flat, 
or open FLRW spacetime depending on the curvature of the spatial section K = + 1, 
o or -1, respectively, when matter distributes homogeneously and h,"v vanish identi­
cally. 

The above ansatz for the metric and the ordering are used to expand the Einstein 
equations in terms of 6 and K. In the calculation it is convenient to use the trace­
reversed perturbation in the harmonic gauge defined by 

(2·2) 

where h=y,"vh,"v. The indices on h are shifted by y and the bar I indicates the 
covariant derivative with respect to y. 

The result may be expressed as follows: 

where A'"v is the background spatial curvature term given by-A~~=-3Ky~~=3K, AU 
= - K yU and A ~i = O. One may regard r'"v = a4 T'"v + t'"v as the effective stress energy 
tensor, where T'"v is the material stress energy tensor and t'"v is a gravitational stress 
energy pseudo tensor which consists of terms quadratic in h. 

In the above calculation terms like h1p hl<1h, (a' fa) h1ph and (an/a) h have been 
neglected. These are of the order of 0(66 /1 2

), 0(64 /1L) and 0(62/V), respectively, 
and may safely be neglected because we are interested here in the situation where 6 2 

~K. 

We shall take a perfect fluid as an example of the material source: 
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392 T. Futamase 

(2·4) 

It is more convenient to work with conformally rescaled variables: 

(2·5) 

Then the total effective stress energy tensor may be written as follows: 

(2·6) 

where 

(2·7) 

In the previous approach the spatial averaging is directly taken to the above 
equations (2·3) assuming spatial periodicity of the material initial data as well as of 
the free data for the gravitational field. The spatial averaging over a volume V is 
defined as usua1. 

(2·8) 

The spatial periodicity implies <Qli>=O. Moreover we have assumed <r~i>=O ex­
pressing no coherent motion over the volume to be averaged. The spatial average of 
the field equation (2·3) shows that <h~i>=O under this requirement. The spatial 
average of the gauge condition (2·2) implies that < h~~> is constant and a suitable 
redefinition of the time variable and the scale factor allows one to put the constant 
zero without loss of generality. Furthermore one may put < h\> zero also because it 
expresses an additional isotropic expansion and the effect is absorbed into the scale 
factor by an appropriate redefinition of time and the scale factor. 

Under these conditions the averaged Einstein equation (2·3) may be written as 

where f U= rij - J rijr\ is the trace free part of rU. The averaged line element takes 
the following form: 

<ds2>=a2
[ - d7/+( ru+ < hu> )dxidxj] . (2 ·12) 

Thus < hij> express the deviation from the isotropic expansion due to the in­
homogeneities < f U

>16) and the averaged spacetime expands anisotropically except if 
<hu> vanishes identically. Equations (2·9) and (2·10) are the same as the equations 
of the FLRW model except that the source terms are replaced by the total effective 
stress energy pseudo tensor including gravitational contribution. Thus the effect of 
local inhomogeneity on the global expansion may be expressed partly by the effective 
density Peff= a2< r~~> and the effective pressure Peff= t a2< r\>. 
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A New Description for a Realistic Inhomogeneous Universe 393 

§ 3. New approximation scheme 

N ow we shall introduce a new approximation scheme which is free from the 
restriction E2~K. To do this we first point out how one gets the restriction in the 
former approach. When one takes the spatial averaging over the right-hand side of 
(2·3), one naturally expects that the contribution from t PlJ should be smaller than that 
from T PlJ

•· Since the spatial average of T PlJ generates the global expansion of the 
universe, their order should be G(l/V). On the other hand, the spatial average of t PlJ 

is of the order G( E4 /12). Therefore the condition < T PlJ> >< t PlJ> brings about the 
restriction E2~ K to the above approximation. 

This situation may be improved by noting that the main part of t PlJ remains the 
same when the static limit is taken. The static limit here means that one takes the 
limit where the mean density vanishes and thus there is no global expansion. 
Equation (2·3) reduces to the usual reduced Einstein equation for the isolated 
system17

) and thus t PlJ should be balanced with higher order contribution in h'"lJ:~ in 
(2·3). Thus if one solves the local problem first, namely the equation without 
cosmological expansion, it is expected that the main contribution of the term t PlJ 

disappears from (2·3) and thus the restriction E2~K will disappear as well. 
For the clarity of the argument, we presented here only the logical steps of the 

approximation without any details of the calculation. For the convenience of the 
reader we shall demonstrate explicit calculations of lower order terms in the present 
scheme in the Appendix. 

To put the above idea in the mathematical base, we introduce the following 
notations for p and h: 

(3 ·1) 

(3·2) 

where Pb is the averaged background density whose evolution is not specified a priori 
and is of the order of G(l/V) since it generates the global expansion. The static limit 
means L-HXJ or K-->O. Thus Pb-->,O in this limit. On the other hand the density 
perturbation op expresses local inhomogeneities and is of the order of G( E2 In. The 
stress energy tensor may be then decomposed into the two parts: 

(3·3) 

where Tb
PlJ is the stress energy tensor generated by the background homogeneous 

density given by 

(3·4) 

In writing this expression for Tb
PlJ

, we have implicitly assumed the existence of a 
particular spatial hypersurface on which the 4 velocity of the homogeneous fluid has 
no spatial components. Here is a silent point in our approach. We shall discuss this 
point in detail in the next section and for the moment we shall simply assume the 
above decomposition. 
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394 T. Futamase 

In (3·2) hop-v express the metric in the static limit and thus are generated purely 
by op and the proper 3-velocity of the fluid. Namely, ho solves the equation (2·3) 
without the cosmological expansion, i.e., a=1. 

(3·5) 

where the subscript 0 in T and t represents the corresponding quantities evaluated in 
the static limit and thus toP-V is the gravitational stress energy pseudotensor construct­
ed from hop-v. Equation (3·5) insures that hop-v are of the order of 0(E2). On the 
other hand the lp-v are supposed to be generated by the coupling of the expansion with 
the local gravitational effect and they will be of the order of 0(KE2

) as shown below. 
It should be noted that Eq. (3·5) is the leading order expression for the expansion 

of the full field equation (2·3) as far as E ~ K which always holds if we consider the 
nonlinear situations. Thus our approach is similar to Isaacson's work in the vacuum 
case in spirieS

) and the following method applies not only to the situation E2~ K but 
also to any situation where E ~ K. For simplicity we shall only present the actual 
calculation for the situation E2~ K. In this situation there may be in general two 
typical scales, one for the region in which E2~ K and the other for the region in which 
E2~K. Then one has probably to introduce two spatial averaging. If we take one 
scale as a stellar size and the other as the size of a galaxy, then one might first average 
over the scale of galaxy and then average over some large volume. However we will 
not consider such a complication in this paper and we will idealize the situation where 
there is one scale for the averaging.19

) 

Our scheme consists of the following steps. First solve the leading local equation 
(3·5). Second subtract (3·5) from (2·3) to obtain the equation to be averaged over. 

=87rG(a2 TbP-v + LlTp-v + LltP-V) , 

where we have neglected higher order terms and LlTp-v is given by 

LlTP-v=a2oTp-v-oTop-v. 

We need explicit expression for LlTp-v below. 

LlTp-v= a2 Pb( iiP-ii v - OoP-OOV) + (a 2 -1)oToP-V , 

oToP-v=(op+ p)iiP-ii V + pfjoP-V , 

(3·6) 

(3·7) 

(3·8) 

where goP-V is the metric in the static limit and thus does not contain lp-v. On the other 
hand LltP-V is given by 

(3·9) 

and is of the order of 0(E2 jlL) because the leading terms are the product of hop-vier 
=0(E2 jl) and lp-v ler =0(E2 jL). 
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A New Description for a Realistic Inhomogeneous Universe 395 

Third we take the spatial average (3·6) over a volume V. 

(3·10) 

The rest of the calculation of the left-hand side of (3·10) is the same as in the former 
approach under the condition <ho~~)=<ho~i)=<h~k)=O. In particular <lPIIIP1P)=0 

because we have also assumed the periodic boundary condition as well as the above 
condition. 

Thus the averaged Einstein equation (3·10) may be written as follows: 

(3·11) 

(3 ·12) 

(3·13) 

where LlrPII=LlTPII+LltPII and Llfij=Llrii-(1/3)yiiLlr\ is the trace free part of rii. 

The equation for lPII is obtained by subtracting the above averaged equations 
from (3·10). 

(3·14) 

As is easily seen from (3·11) and (3·12), our approximation is valid as far as the 
contribution from background density Pb dominates that from the post-Newtonian 
correction like <3pv iv

j
) as well as from the gravitational stress energy tensor <LltPII ). 

Thus it is valid as far as E
4
¢;;K. In the local metric the terms associated with the 

cosmological expansion appear between the first and the second post-Newtonian 
terms when E2¢;;K, between the second and the third post Newtonian terms when E

2
'J>K. 

§ 4. On the averaging 

In this section we shall discuss the averaging. First of all we should note that 
there is no covariant definition of spatial averaging available in general spacetime; we 
thus have to restrict our spacetime to those in which there is a well defined meaning 
of the spatial averaging. Since we would like to describe our universe as a perturb a­
tion of a FLRW spacetime, it seems natural to assume that we can choose spatial 
slices on whieh the metric deviation away from the FLRW metric remains everywhere 
small. We define our averaging in one of such geometrically preferred slices. 

Since we have introduced the spatial averaging, we cannot treat the situation 
where there are singularities. Even if our universe contains singularities, one still 
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396 T. Futamase 

expects that FLRW metric will be a very good approximation far away from singular­
ities. Thus one would like to have some averaging scheme which applies also to a 
spacelike slice with singularities. 

One possible method would be a statistical averaging. There we consider a 
statistical ensemble which contains all possible density and velocity distribution of 
fluid elements (galaxies) with some constraints. These constraints will characterize 
the universe we wish to approximate. If we choose the particular ensemble in which 
the density and velocity distribution satisfy the condition <op)=<vi)=O and the 
averaging of any quantity with spatial derivative vanishes, then the calculation of the 
averaging will be identically the same as was done here by means of the spatial 
averaging, but it would avoid the difficulty mentioned above. 

Since the light propagation is somewhat statistical phenomena, the statistical 
averaging seems to have another advantage at least conceptually to treat such a 
problem consistently. Much work will be necessary to clarify this respect. 

§ 5. Conclusion 

We have discussed in this paper a new approximation scheme for constructing a 
realistic inhomogeneous universe within the framework of general relativity. The 
present approach solves the local equations first and then takes an average of the 
Einstein equations. It allows us to approximate the universe as far as E4<f:..K and thus 
improves the former one. 

When E2» K, the first post -Newtonian metric is larger than the metric due to the 
cosmic expansion. Thus one has to take the effect of cosmic expansion into account 
in the study of light propagation on such a spacetime only if one is interested in higher 
order effects than the first post-Newtonian effects. 

We have also discussed another possibility of averaging, namely, the statistical 
averaging. It may well be possible that this way of averaging is able to treat more 
general spacetime with singularities. 

The present approximation scheme may be used as the basis of the investigation 
of light propagation in an inhomogeneous universe. For example, it was found that 
the effect of shear along light rays on the distance-redshift relation may be negligible 
as far as E

2
s;,K, but no consistent treatment of the shear is known when E2»K.6) 

One of the reasons is the lack of the approximate metric for such a spacetime. It 
is expected that our approximation plays an essential role for such a study. We leave 
such applications of the present scheme in future publications. 
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Appendix 

For the sake of convenience for the reader we shall present here explicit cal­
culatios for lower order terms according to the present scenario. Here we follow 
basically a geometrical formulation of the post-Newtonian approximation.l7) There 
a sequence of solutions of Einstein equation parametrized by E is formally constructed 
and then the Newtonian limit is defined as the limit E-->O along the congruence on 
which the Newtonian dynamical time (0/ in our case) stays constant. This means 
physically that the typical time-scale gets longer a"s E- 1 as the velocity goes to zero (E 

--> 0) as it should be in Newtonian physics. All this is automatically taken into 
account by introducing Newtonian dynamical time as the time coordinate. For 
notational simplicity, we simply replace TJ by E-1TJ and regard TJ as the Newtonian 
time. This has the effect of replacing g~~ --> E2 g~~, g~~ --> E-

2 g~~. We shall restrict 
ourselves to the K =0 case. As one can see from this expression, the limiting metric 
is degenerate. This is the Newtonian spacetime and our zeroth order spacetime. As 
usual in the post-Newtonian formalism, we shall explicitly introduce the following 
order for the material variables: 

(A-I) 

For simplicity, we shall replace p--> E2p, p--> E4p and v i --> Wi. Then the aToP.v in the 
lowest order are as follows: 

aTo~~=E4ap , 

(A-2) 

All these components become the same order because of our choice of coordinate 
. (Newtonian time as the time coordinate). In this ordering, the Newtonian order is 

the order E4 in h~~ and the first post-Newtonian orders are the order E6 in h~~ and the 
order E4 in h~i and h U

. Using these expressions, one obtains the lowest order 
equations for metric perturbation in the static limit: 

L1ho~~= -167rGE4ap, 

(A-3) 

Using these expressions, we then calculate the gravitational stress energy pseudoten­
sor in the lowest order: 

to~~= - E6(87rG)-1[41>L11> + 3(17 1>)2] , 

to~i= - E6(87rG)-1( -61>,iV,Z +41>,k Vk,i +4 V k1>ki -47rGp Vi -47rGv i1» , 

toij = E4(87rG)-1[ - 21>,i1>,j +4 1>1>,ij + aij(41)17 1> + 3([71>)2)] , 

where 1> and Vi are defined as follows: 

(A-4) 
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398 T. Futamase 

(A·S) 

Thus the lowest order of h ii obeys the following equation: 

Ll hoii= -167rGE4[opv i vj + pOii 

Next we calculate the first post-Newtonian order, i.e., order E6 in T~~. For the 
calculation we need an explicit expression for ii/J.: 

(A·7) 

(A·8) 

We thus obtain the following expressions for the total effectivecstress-energy 
pseudotensor: 

Up to this point the calculation is exactly the same with the usual post Newtonian 
approximation. 

Now we calculate LlTI'II and Lltl'lI. In this case we have a non-vanishing)lDack­
ground density Pb which generates the global expansion. Using the definition:(3;'8), 

LlT~~ = E2a2 Pb(v2 +2cjJ) + E4(a2 -1)op+ E6(a2 -:-1}op(v2 +2cjJ) + O(PbE4, E6
) , 

(A ·10) 

Before the calculation of Lltl'lI, we need equations for pll, i.e., (3 ·14) which becomes in 
the lowest order: 

(A·ll) 

where we define hoii=4Zii. 
The expressions for tl'lI are obtained from (A4) by substituting hol'lI + ll'lI instead 

of hol'lI. We need only 7J7J and ij components for our purpose since we assume < r~i> 
=0. .using the abqve expression for l~~=(a.' /a)~, we obtain 
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A New Description for a Realistic Inhomogeneous Universe 399 

Llt ij = e:4(S7rG)-1 ~ [ - ¢(,i17,j) +4( ¢17,ij + 17¢ij) + oij4( ¢Ll17 + 17Ll¢) + 6(Ll¢Ll17)] , 

(A ·12) 

where we have neglected 0(172
). The average of Llr'"v is now: easily calculated by 

noting <op)=<vi)=<¢)=O. 
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