Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1990

A New Design for Distributed Systems: The Remote Memory
Model

Douglas E. Comer
Purdue University, comer@cs.purdue.edu

James Griffioen

Report Number:
90-977

Comer, Douglas E. and Griffioen, James, "A New Design for Distributed Systems: The Remote Memory
Model" (1990). Department of Computer Science Technical Reports. Paper 830.
https://docs.lib.purdue.edu/cstech/830

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

A NEW DESIGN FOR DISTRIBUTED SYSTEMS:
THE REMOTE MEMORY MODEL

Douglas Comer
James Griffioen

CSD-TR-977
April 1990

A New Design for Distribufed Systems:
The Remote Memory Model

Douglas Comer
comer@cs.purdue.edu
(317) 494-6009

James Griffioen
Jng@cs.purdue.edi
(317) 494-7836

Department of Compuler Science
Purdue University
West Lafayetie, IN
47907
CSD-TR-977

ABSTRACT

This paper describes a new model for constucting distributed systems called the
Remote Memory Model. The remole memory medel consists of several client machines,
one or more dedicated machines called remote memory servers, and a communication
channel interconnecting them. In the remote memory model, client machines share the
memory resources located on the remote memory server. Client machines that exhaust
their local memory move portions of their address space to the remote memory server
and retrieve pieces as needed. Because the remote memory server uses a machine-
independent protocel 10 communicate with client machines, the remole memory server
can support multiple heterogeneous client machines simultaneously.

This paper describes the remote memory model and discusses the advantages and
issues of systems that use this model. It examines the design of a highly efficient, reli-
able, machine-independent protocol used by the remote memory server 1o communicate
with the client machines. It also outlines the algorithms and data struclures employed
by the remote memory server to efficiently locate the data stored on the server. Finally,
it presents measurements of a prototype implementation that clecarly demonstrate the
viabilily and compelitive performance of the remote memory model.

1. Background

Virual memory provides a necessary abstraction for writing architeciure-independent portable pro-
grams. In a viriual memory architeclure, cach program has a large, lincar address space in which it places
code and data. Applications may use more memory than physically available, freeing the programmer
from (he responsibility of physical memory management. The operaling system creates the virtual
memory illusion using secondary memory for backing storage when the system exhausis physical

memory.

-2-

Many conventional virtual memory systems use random access magnetic disks for backing storage®.
High dala transfer rates, random access capabilities, and large capacity make disks a desirable form of
backing storage. Many virtual memory systems use demand paging to retrieve data from secondary
storage on demand when the system accesses the data. The desire 1o service page faults quickly makes a
disk’s fast random access capability extremely valuable. In addition, most operating syslems use disks

both for backing storage and file storage.

Because disks have become such a prominent form of backing slorage, we almost always associate
backing storage with disks. Even distributed systems containing diskless machines use remote disks for
backing storage. Instead of connecting a disk 1o each werkstation, many distributed systems allow disk-
less clients to share a disk resource over the network through a special file server machine. Sun
Microsystem’s Sun0QS$ running on a diskless workstation accesses a remole NES file on disk for backing
storage»10. Similarly, the Sprite operating system uses a file on ils remote file system for virtual
memory backing storage”»12, The Mach and Chorus operaling systems allow users 10 define their own
backing store and paging methods3: 1, however, most implementations still use a local disk for backing
slorage.

Equating disks with backing storage impacts the way we design virtual memory operating systems.
Operating systems use several techniques 10 minimize the time spent moving memory to and from back-
ing storage. To oplimize head movement on the disk, the operating system ofien groups wrile operations
together and issues them all at once. To avoid extra bus traffic and disk activity, the cperaling system

dclays moving memory 10 backing storage until absolutely necessary.

Clearly, technology has significantly impacted the way we design systems. This paper presenis a
new model for designing distributed systems based on remote memory backing storage. The paper
describes the impact remole memory has on the design and functonality of such 2 sysiem and presents a

prototype implementation along with experimental results,

2, The Remote Memory Model

The remote memory model provides a new basis for designing distributed systems. The model con-
sists of several client machines, various server machines, one or more dedicated machines called remote
memory servers, and a communicalion channel interconnecting all the machines. Figure 1 illustrates one
possible remote memory model architecture. In the remote memory model, clicnt machines use remote
memory for backing storage rather than disks. The remote memory server provides a shared resource for

all client machines. Clients use the communication channel 10 access memory on (he remole memory

SCrver.

Remote
File
Memory
Server
Server
LAN
Client Client Client

Figure 1: An Example Remote Memory Model Archilecture

Figure 1 pictures several diskless client machines connected (o a local area network (LAN). The
diskless client machines access a remote file server for file storage. Client machines may use a local disk
or a remote file server for file storage, bul, in either case, the client machines use the remote memory
server for backing storage. Each clienl's operating system supporis multiple users in sgparate virtual

address spaces. The operaling system also provides the functionality needed to access remole memory.

Each client machine has a private local memory large enough 1o support the usual processing
demands of the client. The remote memory server provides addiional memory for applications requiring
cxceplionally large amounts of memory. When the client exhausts the local physical memory, the operat-

ing system moves dala Lo the remote memory server, and retrieves the data as needed.

To keep the model as general as possible, we assume the system consists of heterogeneous
machines. Each remote memory server provides remole memory backing storage for multiple hetcro-
geneous client machings simulianeously. The system may contain several remote memory Servers.
Although the medel, in its most gencral form, does not prohibit a clicnl from communicating with more
than on¢ remolc memory server, we simplify the model by assuming that each client machine only
accesses one predefined remote memory server. Each remote memory server provides a large physical
memory resource used to store client data. Remote memory servers may use a local disk to provide addi-

tonal storage capacity, if needed.

The communication channel allows client machines to send and receive data 1o and from the remote
memory server and other servers. We assume the communication channel has a relatively high
bandwidth and low delay (for example, an 10Mb/s Etherner). To encompass as many communication

technologies as possible, we assume the communication channel provides unreliable packet delivery.

-4-

The remote memory server makes the remote memory model uniquely different from conventional
distributed systems. In conventional distributed systems, each client’s virtual memeory system is com-
pletely independent from all of the other client's virtual memory systems. Even though clients access a
common disk via a file server, their virtual memory systems do not interact in any way. The remole
memory model takes a different approach, viewing the memory on Lhe remote memory server as a part of
the lolal memory available to the system. In the remote memory model, the remole memory server
dynamically allocates regions of ils memory (o clients that require additional memory space, continually
reassigning portions of its memory to clients according to their needs. Clients share (he memory space
available on the server with all other client machines. As a result, the remole memory server expands the
memory available 1o each client machine. This difference from conventional system gives the remote

memory model several desirable properties.

Additional Memory: Because clients share a large remole memory rescurce, client machines may
oblain additioral memory for applications that require large amounts of memory. We assume clients
have enough Iocal memory to support the usual processing demands, but request additional memory space

from the remote memory server for large applications.

Arbitrarily Large Storage Capacity: The memory server may employ a form of virtual memory
to present an arbitrarily large memory resource to the client machines. The server may connect 1o one or
more disk drives and use a memory replacement scheme 1o substantially enlarge the storage capacity of
the server. As a result, the server presents a large memory space 1o clients even though the server has a
finite physical memory capacity. When the clients exhaust the physical memory on the server, the server
moves some of the client’s data 10 disk, making room for more client data in physical memory. Client
machines do not know the size of the physical memory on the remole memaory server and do not need to
restrict application memory usage in any way. From Lhe client’s viewpoint, the server simply provides a

large memory resource.

Data Sharing: The remote memory server provides a centralized memory, allowing homogeneous
client machines to efficienly share dawa. Although the remote memory model permits data sharing
between clients via the remote memory server, the model does not specify the mechanism used to share
data. Depending on the type of data sharing desired, the remote memory server may implement mechan-
isms that allow read only sharing, read-wrile sharing, or no sha.rings. Because homogeneous client
machines often execule the same applications, use the same shared libraries, and execule the same kemel
code, even simple data sharing mechanisms can significantly reduce the amount of server memory used

by client machines,

-5-

Offloading File Server: The remote memory model improves file system performance by removing
paging activity from the file system. Removing paging aclivity from the file system significantly reduces
conlention for the disk and eliminales many extra head movement operations. Paging activily tends to
access data regions in a random fashion, while file activity tends to access data sequentially. Because the
nature of paging activity differs from the nature of file activily, separating paging activity from file
acuvitly allows us to implement each operation efficiently. Unlike a remote file server, the remote memory
server understands paging activity and makes intelligent decisions regarding storage and retrieval of the

data.

Remote Memory Semantics: The remote memory model allows us 10 define the remote memory
semantics in a way that meets the reliability requirements of the sysiem as 2 whole. For example, we
may view (he memory on the remote memory server as one component of the total system memory. If
any part of the system’s memory fails to operale correctly, such as the client’s local memory or the
remole memory server's memory, the sysiem may lose valuable data. Given (hese semantics, we do not
require (he remote memory server to mainiain multiple or permanent copies of the data. A dificrent
definition of the remote memory semantics may requirc the server Lo provide reliable storage. In this
case, the remote memory server must maintain duplicate copies of all data, either on other servers or on a
permanent storage device such as a disk. Still another definition may require remole memory to provide
reliable storage and reliable retrieval. In this case, multiple servers may cooperale lo insure that clients

¢an access remote memaory at all imes,

3. The Design

The prototype design concentrales on three components of the system: the client virtual memory
operaling system, the remote memory scrver, and the protocol clients and servers use to communicate.

The design goals we wanted to achieve were:
. o design a communication protocol independent of the underlying network architecture.
» Lo design a communication protocol that guarantees reliable delivery.

. lo make the remote memory resource available 1o heteropeneous client architectures and hetero-
gencous client operating systems simultaneously.
. o create a sysiem that provides efficient interaction between client and server without sacrificing

the generality mentioned in the previous design goals.

As a result, we designed a protocol that provides reliability, architecture independence, and efficiency,

along with a remote memory scrver capable of cfficiently supporting multiple heterogeneocus client

architectures simultaneously.

3.1. The Remote Memory Communication Protocol

The remole memory communication protocol used belween clients and a remole memory server
consists of two layers: the Xinu Paging Protocol (XPP) layer, and the Negalive Acknowledgement Frag-
mentation Protocol (NAFP) layer.

3.1.1. The XPP Layer

Client operating systems use XPP to reliably transfer memory (o and from the remote memory
server, XPP supports four basic message types: page store requests, page fetch requests, process create
requests, and process lerminate requests. When a client machine exceeds the capacity of the local physi-
cal memory, the client issues a page store request to store data on the remote memory server. Later, the
client issues a page fetch request to retricve the data from the server. When a client creates or terminates
a process, it informs the remole memory server using an create request or a terminate request which we
describe in greater detail in section 3.2.3. All XPP request messages originale at the clienl. The server

accepts XPP messages, processes them, and sends reply messages.

XPP provides a communication mechanism independent of the client architectures comprising the
remole memory model, permitting heterogeneous client machines to communicate with a single remote
memory server. Because the virtual memory system on each client has ils own page size, XPP page store
and page fetch requests allow clients to transfer variable size memory regions to and from the server.
XPP transfers pages of any size, regardless of the underlying communication channcl’s wranspori charac-

teristics or maximum packet size.

The paging activity between a client and a server requires reliable, in-order, deliver of all messages.
If XPP did not reliably deliver messages in-order, a store request followed by a fetch request conld arrive
out of order, or a store request could be lost, causing incorrect results. XPP employs sequence numbers,
positive acknowledgement, timeouts, and retransmissions 1o insure reliable, in-order, processing of XPP

messages.

Each client machine assigns a sequence number to every XPP message it sends. The remote
memory server remembers the sequence number of the last XPP message received from each client
machine. The sequence number serves Lwo purposes: it uniquely identifies each message and imposes an
ordering on the list of messages, Although the sequence numbers define a processing order that insures

correciness, the system does not need to impose such a strict ordering on message processing Lo achicve

-7-

correct results. For example, the server may process a message for page i before or after a message for
page j and still obtain correct results. However, if a client sends a store request for page i followed by a
fetch request for page i, the server must process the store request before the feich request. XPP achieves
carrectness by defining a partial ordering on the list of messages. In addition to a sequence number, each
XPP message contains a preceeding message nwnmber., The preceeding message number specifies the
sequence number of the most recent preceeding message that must be processed before the current mes-
sage can be processed. The server may process any message as long as it has already processed the asso-
cialed prececeding message.

XPP uses end-to-end positive acknowledgements (ACKs) 1o indicate that the server performed Lhe
requested operation®. XPP does not use acknowledgements to indicate that a message was successfully
transmitted like many other protocols do. Instead, an XPP ACK provides an ¢nd-io-end acknowledge-
ment, signaling the successful completion of the requested high level operaton. When the server com-
pletes the requesied operation, it sends a positive acknowledgement 1o the client containing the results of
the operation. Clienl machines do not discard local copies of pages unlil the server acknowledges that it
has stored the data in remote memory, Most XPP ACKs simply indicate success or failure; however,

page [etch replies contain the requesied data in addition to the status field.

XPP goaraniees reliable delivery using timeouts and retransmissions. The client machine times-
tamps each messapge sent to the server, and then holds the message until the server replies with an XPP
ACK. If the client does not receive an ACK within a predefined timeout period, the client resends the
message. Because all messages originate on the clicnt side, the server never initiales a request and does
not need to implement the timeoul/retransmission mechanism, greally simplifying the implementation and

improving efficiency.

3.1.2. The NAFP Layer

The Negalive Acknowledgement Fragmentation Protocol (NAFP) provides the support needed to
efficiently transport XPP messages over a wide variely of communication channels. To allow operation
over as many network architectures as possible, the remote memory communication protocol assumes, as

a minimal requirement, that the communication channel provides unreliable datagram service.

Because XPP supports a wide varicly of page sizes, the length of an XPP message may exceed the
maximum packet size of the underlying physical communication channel. NAFP accepis an entire XPP
message and breaks the message inlo fragments. NAFP then transmits each fragment over the communi-

cation channel, reassembles the fragments into a complete message, and presents the message to the

-8-

receiving XPP layer. Because NAFP and XPP adhere 10 the network layering principle, the sending and

receiving XPP Iayers see exactly the same message?.

Although conventional communication channels, for instance local area networks, provide reason-
ably reliable packet delivery, they still drop packets, deliver packets out of order, deliver packets late, or
corrupt packet contents. The XPP layer corrects such errors and guarantees reliable delivery. However,
the XPP reliability mechanism usually detects communication emors long after the error occurs. XPP
then pays a high cost to comrect the ermor. For example, to send or receive an 8K byte page from a
Sun3/50 over an Ethemet with a maximum transmission unit (MTU) of approximately 1500 bytes
requires a minimum of 6 packets. If the communication channel loses or corrupts any 1 of the 6 packets,
XPP will not detect the error until the timeout occurs, and then it must resend all 6 fragments. Because
XPP guaraniees reliable delivery, NAFP does not need to correct any errors. However, to improve
elficiency, NAFP attempts to detect and correct errors as soon as they happen, improving, but not guaran-
teeing, rcliability.

NAFP improves reliability using negative acknowledgements (NACKs). NAFP assigns a sequence
number 1o each fragment and sends each fragment in order. As packeis arrive on the receiving end, the
NAFP layer reassembles the XPP message but does not acknowledge any of the fragments. As long as
no communication errors occur, NAFP transfers messages efficienlly with no additional overhead. A
fragmentation error arises when a fragment arrives out of order. The receiving end remembers the
sequence number of the last fragment for each partially ransmitted message. As soon as the NAFP layer
receives a fragment oul of order, the receiving NAFP layer sends a negative acknowledgement Lo the
sending NAFP layer conlaining the missing Fragment’s sequence number. The sending NAFP layer
receives the NACK and resends the missing fragment NAFP does not guarantee reliable delivery of
fragments. Instead, NAFP makes a half-hearted attempt to correct errors, sending a single NACK for
cach missing fragment in hope that the sender will receive the NACK and resend the missing [ragment,
If the simple, low cost, NAFP emor comreclion mechanism (ails, XPP will detect the error and take the
corrective measures needed to reliably deliver the message. Because NAFP improves reliability, XPP
rarely retransmits messages. In the expected case, in which no communication errors occur, NAFP incurs

no additional overhead,

Because the remole memory communication protocol imposes minimal requirements on the com-
munication channel, we can use the remote memory communication protocol over any transport mechan-
ism that provides unreliable datagram service. Almost any protocol can function as the underlying com-

munication protocol, including reliable datagram protocols, stream protocols, or virtual circuil protocols.

-9.

To achicve independence from the underlying physical network architectures, we use an archilecture-
independent protocol like UDP or VMTP as the underlying datagram protocol. Architecture independent
protocols like UDP and VMTP allow Lhe remote memory communication protocol to operale over local

area nelworks comprised of several different physical network architectures.

3.2. The Remoie Memory Server

Client performance depends, to a large extent, on the delay the nelwork and the remote memory
server introduce. To improve client performance, (he remote memory server attempls Lo minimize the
delay by using the remote memory communication protocol and efficient data look-up algorithms, To
supporl as many client machines as possible, the remote memory server avoids preallocation of resources

in order to make efficient use of memory.

One of our goals required support for heterogeneous client access (o the remole memory resource.
Using the remote memory communication protocol, the remole memory server transfers data to and from
heterogencous clients in an architecture-independent manner. The remote memory server supports all
archilectures regardless of byte size or byte order. Although the remote memory server mainlains infor-
mation about each memory scgment it stores, the server does not auempt to interpret or modify the stored

data. The server simply returns data in exactly the same form in which it was received.

3.2.1. Efficient Use of Memory

Heterogeneous machines running heterogeneous operating systems use a wide variely of page sizes.
The remole memory server uses dynamically allocated dala structures (o store the variable size memory
segments clients send to the server. The remote memory server divides the available memory into small
fixed size segments or data blocks. When a client machine sends a page store request (o the remoie
memory server, the server allocates the precise number of data blocks needed 1o slore the page. The tra-
deoff belween data block management overhead and memory space utilization makes it difficult 1o chose
an optimal data block size. Using large data blocks causes intemal memory fragmentation, and using
small data blocks increases the data block management overhead. In theory, the server defines the data
block size as the smallest common denominator of all (he client page sizes such that the overhead is still
reasonable. In praclice, only a few popular page sizes exist based on powers of (wo, making the choice

easy,

The remole memory server allocates data blocks dynamically for each new store request. The data

structures do not require the server (o store the data in contiguous data blocks, If the server cannol find a

-10-

set of contigucus data blocks large encugh to store the data, the server may spread the data across several
disjoint data blocks. The ability to scatter the data from a store request across memory resulls in efficient
use of memory and provides support for a wide variety of page sizes. Because many of the client
machines have the same page size, the remote memory server usually allocale and frees segments of the
same size, resulting in decreased extemal memory fragmentation. Consequently, the server can usually

allocale contiguous data blocks to each new store request.

3.2.2. Efficient Data Look-Up

To reduce the delay associated with retrieving memory from the remote memory server, the server
altempls to minimize the time spent searching the data structures for the desired data. The server uses a
data hash table and a double hashing algorithm (o locate data. Data hash table entries maintain informa-
tion aboul clicnt pages stored on the server. Each active hash table entry contains information for exactly
one client page, including information regarding the identty of the page, and a range or list of data
blocks containing the data. The remole memory server uses a single data hash (able to store all the data
from all the client machines. Client machines uniquely identify a page with an ordered Lriple consisting
of a unigue machine identifier, a process identifier, and a page identifier. The server applies a double
hashing algorithm (o the triple to locale the hash table entry that contains pointers to the data®, If the
hash lable is less than 95% full, the double hashing algorithm, on the average, locales a saved page in
less than three probes 10 the table. As long as the remote memory server limits the utilization of the hash
lable to less than 95% of Lhe total capacity, the average look-up time remains constant, regardicss of the

amount of data the clients store on the server or the number of clients using the server.

3.2.3. Memory Reclamation

The remote memory server employs an efficient memory deallocation algorithm to amortize the
cost of reclaiming memory over time. The algorithm allows clients to free large amounts of memory
with a single inexpensive operation. We assume that most client operating systems support multple
processes and create and terminate processes frequently. To make process termination efficient, client

machines require the ability lo free large amounts of remote memory in a single operation.

The XPP protecol docs not provide a message for releasing individual pages on the server. Instead,
XPP provides a terminate process request message. When a process exils, the operating system issues an
XPP terminate process request message. The responsibility for freeing all the remote memory associated

with the process falls on the remote memory server.

-11-

To aveid spending large amounts of time searching for pages associaled with the terminated pro-
cess, the remole memory server mainiains a second process hash table containing information about all
aclive processes on all client machines. The server maintains a imestamp for each process in the system.
When the server receives a page store request for a process, the server saves the process's limestamp with
the page in the dara hash table. Each time the server receives a terminate request, the server updates the
timesiamp in the process hash table, thereby invalidating all pages associated with the terminated process.
The server reclaims obsolete pages during later probes 1o the data hash table and with a garbage collec-
tion process that exccutes in the background. Each time a probe to the data hash table resulis in a colli-
sion, the server checks the timestamp on the page against the timestamp of the owner. If the limestamps
differ, the server reclaims the page. Together, the garbapge collection process and Lhe Tazy reclamation

algorithm amortize the cost of reclaiming memory over lime.

4. A Prototype Implementation and Experimental Results

We designed and implemented a prototype remote memory distributed system based on the remote
memory model. The system consists of helerogencous client machines (Sun Microsystems Sun 3/50's,
Digital Equipment Corporation Microvax I's and II's}, a remote memory server machine (we have used a
Sun 3/50, Vax 11/780, Microvax III, Vaxserver 3100, and an § processor Sequent Symmetry as a remote
memory server), a file server machine (a Vax 11/780 or Sun 3/50), all connected by a 10 Mb/sec Ether-
net. Sun and Microvax client machines simultancously access the remote memory server for backing

storage, demonstrating support for heterogeneous clients,

In the prototype, remole memory is high speed volatile storage, susceptible o failure and data loss.
To keep the protolype simple, the remote memory server does not support any dara sharing between client

machines. Afier experience with the server, we chose 1K byle blocks as the storage pape size.

We built the remaote memory communication protocol on tep of UDP to allow communication over
almost any nelwork architecture. Moreover, UDP allows client machincs to reside on a different physical
network than the server machine. We have experimented with a configuration in which client machines
access a remole memory server on a remole network throngh several gateways. Even when traversing
several gateways Lo access the remote memory server, the high-cost XPP guaranteed reliability mechan-
ism rarely retransmits messages because the negative acknowledgement fragmentation protocol corrects
most communication errors. Another configuration we have used chains remote memory servers 1ogether.
Client machines access a diskless remote memory server that in tum accesses a remote memory server

with a disk.

-12-

Qur initial timing results show that storing or retrieving an 8K byte scgment between a Sun 3/50
client and a Sun 3/50 remole memory server requires an average of 39ms. In contrast, current production
systems consisting of diskless Sun 3/50s paging over NFS require an average of 50ms to process an 8K
bylte read request when accessing a file sequentially. To randomly access an NFS file, as paging activity
does, requires an average of 84ms to process an 8K byle read request and an average of 176ms Lo process

an BK byle wrile request.

150 < 6 clients
5 clients
Round Trip chen
Delay 100+ 4 clients
(ms)
3 clients
50 2 clients .
1_client
| 1 | I |
0 5 10 15 20
Requests per Second

(from each client)

Figure 2: Round Trip Delay As A Function Of The Client Request Rate

Figure 2 shows the cost of performing a page fetch operation (measured as round trip delay) as a
function of the number of requesis issued per second by each client machine. We conducted the tests
using Sun 3/50 client machines paging to a Sun 3/50 remote memory server and implemented the proto-
type remote memory server as a UNIX application level process. Because the Ethernet has an MTU of
1500 bytes, the NAFP protocol breaks each 8K byte Sun 3/50 page into 6 Ethernet packets. All client
machines send paging requests concurrently. Each client sends requests at a constant rate, uniformly dis-
tributed over time, to the remote memory server. The request rates shown in the figure indicate the

number of requests per second issued by a single client machine.

The figure shows the round trip delay for a varying number of clients and request rates. The sud-
den rise in the round trip delay shown in the curves [or 3 or more clients can be misleading. The follow-

ing figure shows that the sudden increase in each curve gecurs at the point where the server becomes

-13-

overloaded (total load of 30 requests/second).

150 —
Round Trip
Delay 100 —
(ms)
50 -

i i |
0 10 20 30
Requests per second

handle by the server

Figure 3: Remote Memory Delay For Various Server Loads

Figure 3 illustrates the average round trip delay as a [unction of the number of requests the server
processes per second. We generate the server load by varying the number of clients and the rale at which
they send requests lo the server. The figure shows that the current prototype remole memory server, exe-
cuting as a user level process on a Sun 3/50, efficicntly handles up to 30 requests per second. At 30
requests per second the prowotype memory server becomes saturated and any more load on the server
significantly increases the round trip delay, explaining the sharp rise in the curves pictured in figure 2.
For leads of less (han 30 requests per second, the average round trip delay remains less than 56ms regard-
less of the number of cliemts, If the load on the server is less than 20 requests per second (2/3 of the

server’s capacity), the round trip times never exceeds 46ms.

-14 -

60 —

50 - //
Round Trip 40 -
Delay 30
{ms) 20 4
10 4
0 -

| | | | | 1
1 2 3 4 5 6
Number of Clients

Figure 4: Round Trip Time (Each Client Sends 5 Requests/Second)

If we assume, under usual operating circumstances, that clients send an average of 5 requests per
second, then figure 4 illusirates the gradual increase in round rip delay as the number of clients increases
to the maximunm capacity of the server. As the number of client increases, the number of dropped frag-
menls increases, resulting in slightly higher round trip times. Lyon and Sandberg indicate that 8 diskless
Sun 3/50 workstations generate an average load of 30 NFS requests per second, or an average of 3.75
requests per second per client, which includes both file activity and paging activity?. Consequently, an
average of 5 paging requests per second per client may be somewhat high, indicating that the slope of the

[ine in figure 4 would be even less for the usual workload.

5. Conclusions

Using the remote memory model as an aliernative model for designing distributed systems has
many aliraclive properties. The large memory resource shared by all client machines is especially appeal-
ing. Experience with the protolype system clearly demonstraies (he viability of the remote memory
model and shows that performance is compelitive with distributed systems currently in use. Finally, we

showed that the remote memory model can support helerogeneous clients machines without sacrificing
efficiency.

Reflerences

1. R, Sandberg , D. Goldberg, S. Kleiman, Dan Walsh, and Bob Lyon, “*Design and Implemcnlation
of the Sun Network File System," Proceedings of the Summer USENTX Conference, pp. 119-130,
USENIX Association, June 1985,

2. R. Sandberg and Bob Lyon, ‘‘Breaking Through the NFS Performance Barrier,”” SunTech Journal,
p. 21, August 1989.

-15-

3. Vadim Abrossimov and Marc Rozier, “‘Generic Virtual Memory Management for Operating Sys-
tem Kemels,"" Proceeding of the 12th ACM Symposiwn on Operating System Principles, vol. 23,
no. 5, pp. 123-136, Chorus Systems, December 1989.

4. Douglas Comer, Internetworking with TCP/IP: Principles, Protocoels, and Architecture, Prentice
Hall, 1988.

5. Donald E. Knuth, Sorting and Searching, Addison Wesley Publishing Company, 1973.

6. Kai Li and Paul Hudak, *“Memory Coherence in Shared Virtwal Memory Systems,” Proccedings of
the 5th ACM Symposium of Principles of Distributed Compuling, pp. 229-239, August 1986.

7. John Qusterhout, Andrew Cherenscn, Fred Douglis, Michael Nelson, and Brent Welch, “*The Sprite
Network Operating System,” Tech Report UCB/CSD 87/359n, Universily of California Berkcley,
June 1987.

8. James L. Peterson and Abraham Silberschatz, Operating System Concepts, Addison Weslcy, 1985.

9. I H. Salzer, D. P. Reed, and D. D. Clark, '*End-To-End Arguments in System Design,”” ACM
Transactions on Compuler Systems, vol. 2, pp. 277-288, 1984.

10. Robert A. Gingell and Joseph P. Moran and William A, Shannon, Virtual Memory Architecture in
Sur0§, Sun Microsystems, Inc., 1988,

11. Avadis Tevanian, ‘‘Architecture Independent Virlual Memory Management for Parallel and Distri-
buted Environments: The Mach Approach,’”” Tech Report CMU-CS-88-106n, CMU, December
1987.

12. Brent B. Welch, *'The Sprite Remote Procedure Call System,’” Tech Report UCB/CSD 86/302,
University of California Berkeley, June 1986.

Dr. Douglas Comer is a full professor in the Computer Science Department at Purduee University
where he teaches graduate-level courses in operaling systems, intemetworking, and distributed sysiems.
He has writlen numerous rescarch papers and five Lextbooks, and has been principle investigator on many
research projects. He designed and implemented the X25NET and Cypress networks, as well as the Xing
opcrating system. He hcads the Xinu, Cypress, Shadow Editing, and Multiswitch research projects. He
is a member of the Intemet Research Sieering Group and chairman of the Intemet Naming Research
Group. He is a former member of the CSNET Executive Commiltee and the Intemet Aclivilies Board.
Professor Comer leaches networking scminars for Interop Incorporated. He is a member of the ACM,
AAAS, and Sigma Xi,

James Griffioen is a PhD candidate in (he Compuler Science Department at Purdue University. His
research interests include operating systems and distributed systems. He has worked on the Xinu and the
Shadow Editing research projects. He received an MS degree in computer science from Purdue Univer-
sity in 1988 and a BS degree in computer science from Calvin College in 1985. He received the
USENIX scholarship for the 89-90 academic year and is a member of the ACM,

	A New Design for Distributed Systems: The Remote Memory Model
	Report Number:
	

	tmp.1307986960.pdf.PIG5h

