
Purdue University Purdue University 

Purdue e-Pubs Purdue e-Pubs 

Department of Computer Science Technical 
Reports Department of Computer Science 

1990 

A New Design for Distributed Systems: The Remote Memory A New Design for Distributed Systems: The Remote Memory 

Model Model 

Douglas E. Comer 
Purdue University, comer@cs.purdue.edu 

James Griffioen 

Report Number: 
90-977 

Comer, Douglas E. and Griffioen, James, "A New Design for Distributed Systems: The Remote Memory 
Model" (1990). Department of Computer Science Technical Reports. Paper 830. 
https://docs.lib.purdue.edu/cstech/830 

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. 
Please contact epubs@purdue.edu for additional information. 

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci


A NEW DESIGN FOR DISTRIDUTED SYSTEMS:
mE REMOTE MEMORY MODEL

Douglas Comer
James Griffioen

CSD·TR·977
April 1990



A New Design for Distributed Systems:
The Remote Memory Model

Douglas Comer
comer@cs.purdue.edu

(317) 494-6009

James Griffioen
jng@cs.purdae.edu

(317) 494-7836

Department of Computer Science
Purdue University
West Lafayeue, IN

47907
CSD-TR-977

ABSTRACT

This paper describes a new model for constructing distributed systems called lhe
Remote Memory Model. The remote memory model consisls of several client machines,
one or morc dedicated machines called remote memory servers, and a communication
channel interconnecting lhem. In the remote memory model, client machines share lhe
memory resources located on the remote memory server. Client machines that exhaust
lheir local memory move portions of lheir address space to the remote memory server
and retrieve pieces as needed. Because lhe remote memory server uses a machine­
independent prolOCOl to communicate wilh client machines, lhe remote memory server
can support multiple heterogeneous client machines simultaneously.

This paper describes lhe remote memory model and discusses lhe advantages and
issues of systems that use this model. It examines lhe design of a highly efficient, reli­
able, machine-independent prolOColused by the remote memory server to communicate
with the client machines. It also outlines the algorilhms and data structures employed
by the remote memory server to efficiently locate the data stored on lhe server. Finally,
it presenls measuremenls of a prototype implementation that clearly demonstrate the
viability and competitive performance of the remote memory model.

1. Background

virtual memory provides a necessary abstraction for writing archilcclurc-indcpcndcnt portable pro-

grams. In a virtual memory architecture, each program has a large, linear address space in which il places

code and data. Applications may use more memory than physically available, freeing the programmer

from the responsibility of physical memory management. The operating system creates the virtual

memory illusion using secondary memory for backing slorage when the system exhausts physical

memory.



·2·

Many conventional virtual memory systems usc random access magnetic disks for backing storageS.

High data transfcr raLes, random access capabilities, and large capacity make disks a desirable Conn of

backing storage. Many virtual memory systems use demand paging to remeve data from secondary

storage on demand when the system accesses lhe data. The desire to service page faults quickly makes a

disk's fast random access capability eXl.remely valuable. In addition, most operating systems use disks

both for backing sLOrage and file slorage.

Because disks have become such a prominent Conn of backing storage. we almost always associate

backing storage with disks. Even distributed systems containing diskless machines use remole disks for

backing storage. Instead of connecting a disk to each workstation, many distributed systems allow disk­

less clients to share a disk resource over the network through a special file server machine. Sun

Microsystcm's SunDS running on a diskless workstation accesses a remoLe NFS file on disk for backing

storage1 ' 10. Similarly, the SpriLC operating system uses a file on iLS remoLe file system for virtual

memory backing storage7,12. The Mach and Chorus operating systems allow users to define their own

backing store and paging methods3. II, however, most implementations still use a local disk for backing

storage.

Equating disks with backing storage impacts the way we design virtual memory operating systems.

Operating systems use severallechniques to minimize the time spent moving memory to and from back­

ing storage. To optimize head movement on the disk, the operating system often groups write operations

LOgether and issues them all at once. To avoid extra bus traffic and disk activity, the operating system

delays moving memory to backing storage until absolutely necessary.

Clearly, technology has significantly impacted the way we design systems. This paper presents a

new model for designing distributed systems based on remote memory backing storage. The paper

describes the impact remale memory has on the design and functionality of such a system and presents a

prototype implementation along with experimental results.

2. The Remote Memory Model

The remote memory model provides a new basis for designing distributed systems. The model con­

sists of several client machines, various server machines, one or more dedicated machines called remote

memory servers, and a communication channel interconnecting all the machines. Figure 1 illustrates one

possible remote memory model architecture. In the remote memory model, client machines use remote

memory for backing storage rather than disks. The remOle memory server provides a shared resource for

all client machines. Clients use the communication channel to access memory on the remote memory



-3-

server.

AN

RemQle ~ -File
Memory ---., r-

'----"
Server

'----"Server

I I L

I I I
Client Client Cliem

Figure 1: An Example Remote Memory Model Archileclure

Figure 1 pictures several diskless cliem machines connected LO a local area network (LAN). The

diskless client machines access a remote file server for file sLOrage. Client machines may use a local disk

or a remote file server for file slorage, bul, in either case, the client machines use lhe remote memory

server for backing sLOrage. Each clienl's operating system suppons multiple users in separate virtual

address spaces. The operating system also provides lhe functionality needed to access remote memory.

Each client machine has a private local memory large enough La support !.he usual processing

demands of Ute client. The remote memory server provides additional memory for applications requiring

exceptionally large amounlS of memory. When the client exhausLS the local physical memory. !.he operat-

ing system moves data Lo !.he remote memory server, and retrieves the data as needed.

To keep !.he model as general as possible. we assume the system consists of heterogeneous

machines. Each remote memory server provides remote memory backing storage for multiple hetero­

geneous client machines simultmlcously. The system may contain several remote memory servers.

Al!.hough lhe model, in its mOSl general form. docs nOL prohibiL a clienL from communicating with more

than one remote memory server. we simplify the model by assuming that each elient machine only

accesses one predefined remote memory server. Each remote memory server provides a large physical

memory resource used to store client data. Remote memory servers may use a local disk LO provide addi­

tional storage capaciLY, if needed.

The communication channel allows client machines to send and receive data LO and from lhe remote

memory server and olher servers. We assume the communication channel has a relatively high

bandwidlh and low delay (for example. an 10Mb/s EtherneL). To encompass as many communication

technologies as possible, we assume lhe communication channel provides unreliable packet delivery.



- 4 -

The remote memory server makes the remote memory model uniquely different from conventional

distributed systems. In conventional distributed sySlemS, each client's virtual memory system is com­

pletely independent from all of the alher client's virtual memory SYSlelI1s. Even though clients access a

common disk via a file server, lheir virtual memory systems do nOL interact in any way. The remoLe

memory model takes a different approach, viewing the memory on lhe remOle memory server as a part of

the lolal memory available to the system. In the remote memory model, lhe remote memory server

dynamically allocaLes regions of ils memory Lo clients lhal require additional memory space, continually

reassigning portions of its memory to clients according to their needs. Clients share the memory space

available on the server with all olher client machines. As a result. the remoLe memory server expands the

memory available La each client machine. This difference from conventional system gives the remote

memory model several desirable properties.

Additional Memory: Because clients share a large remote memory resource, client machines may

obtain additional memory for applications that require large amounts of memory. We assume clients

have enough local memory to support the usual processing demands, but request additional memory space

from the remote memory server for large applications.

Arbitrarily Large Storage Capacity: The memory server may employ a form of virtual memory

to present an arbitrarily large memory resource to the client machines. The server may connect La one or

more disk drives and use a memory replacement scheme to substantially enlarge the storage capacity of

the server. As a result, the server presents a large memory space to clients even though the server has a

finite physical memory capacity. When the clients exhaust the physical memory on the server. the server

moves some of the client's data to disk. making room for more client data in physical memory. Client

machines do not know the size of the physical memory on the remote memory server and do nOl need to

restrict application memory usage in any way. From the client's viewpoint, the server simply provides a

large memory resource.

Data Sharing: The remote memory server provides a centralized memory. allowing homogeneous

client machines to efficiently share dala. Although the remote memory model permits data sharing

beLween clients via the remote memory server. the model does not specify the mechanism used to share

dala. Depending on the type of data sharing desired. the remote memory server may implement mechan­

isms that allow read only sharing. read-write sharing, or no sharing6. Because homogeneous client

machines often execuLe the same applications, use the same shared libraries, and execute the same kernel

code. even simple data sharing mechanisms can significantly reduce the amount of server memory used

by client machines.



·5-

omoading File Server: The remote memory model improves file system perfonnance by removing

paging activity from the file system. Removing paging activity from the file system significantly reduces

contention for the disk and eliminaLeS many extra head movement operations. Paging activity tends to

access data regions in a random fashion, while file activity tends to access data sequentially. Because lhe

nature of paging activity differs from lhe nature of file activity, separating paging activity from file

activity allows us to implement each operation efficiently. Unlike a remote file server, lhe remote memory

server underSUlnds paging activity and makes intelligent decisions regarding storage and retrieval of lhe

data.

Remote Memory Semantics: The remote memory model allows us 10 define the remote memory

semantics in a way lhat meets the reliabilily requirements of lhe system as a whole. For example, we

may view lhe memory on lhe remote memory server as one component of lhe total system memory. If

any part of the system's memory fails to operate correcLly, such as lhe cliem's local memory or the

remote memory server's memory, lhe system may lose valuable data. Given lhese semantics, we do not

require lhe remote memory server to maintain multiple or permanent copies of lhe dala. A different

definition of lhe remote memory semantics may require lhe server to provide reliable sLOrage. In this

case, lhe remote memory server must maintain duplicate copies of all data, either on other servers or on a

pennanent storage device such as a disk. Still anOlher definition may require remote memory to provide

reliable sLOrage and reliable retrieval. In this case, multiple servers may cooperate to insure that clienls

can access remote memory at all limes.

3. The Design

The proLOtype design concentraLes on three componenls of lhe system: the client virtual memory

operating system, the remote memory server, and the proLOcol elients and servers use to communicate.

The design goals we wanted to achieve were:

• to design a communication prolOCOl independent of the underlying network architecture.

• to design a communication prolOCOl that guarantees reliable delivery.

• to make the remole memory resource available to heterogeneous cliem architectures and hetero­

geneous client operating systems simultaneously.

• to create a system 1.h.at provides efficient interaction belwc.cn clienl and server without sacrificing

the generality mentioned in lhe previous design goals.

As a result, we designed a prolocol that provides reliability, architecture independence, and efficiency,

along with a remOle memory server capable of efficiently supporting multiple heterogeneous client



- 6-

architectures simultaneously.

3.1. The Remote Memory Communication Protocol

The femOle memory communication protocol used between clienls and a remote memory server

consisls of two layers: lhe Xinn Paging Pcor..ocol (XPP) layer, and the Negative Acknowledgement Frag­

mentation Protocol (NAFP) layer.

3.1.1. The XPP Layer

Client operating systems use XPP to reliably lraIlsfer memory to and from the remole memory

server. XPP supports four basic message types: page slore requests. page feLCh requests, process create

requeslS, and process terminate requests. When a client machine exceeds the capacity of the local physi­

cal memory, the client issues a page store request to store data on the femote memory server. Later, the

client issues a page felch requcsllO retrieve lhe data from the server. When a client creales or terminales

a process, iL informs the remote memory server using an create request or a tcnninate request which we

describe in greater detail in section 3.2.3. All XPP request messages originale at the client The server

accepts XPP messages, processes them, and sends reply messages.

XPP provides a communication mechanism independent of the client archilectureS comprising the

remote memory model, pennitung heterogeneous client machines to communicate with a single remote

memory server. Because the virtual memory system on each client has its own page size, XPP page store

and page fetch requests allow clients to transfer variable size memory regions to and from the server.

XPP transfers pages of any size, regardless of the underlying communication channcl's transport charac­

teristics or maximum packet size.

The paging activity between a client and a server requires reliable, in-order, deliver of all messages.

If XPP did not reliably deliver messages in-order, a store request followed by a felch request could arrive

out of order, or a slore reqUCSl could be lost, causing incorrect results. XPP employs sequence numbers,

positive acknowledgement, timeouts, and retransmissions to insure reliable, in-order, processing of XPP

messages.

Each client machine assigns a sequence number to every XPP message it sends. The remote

memory server remembers the sequence number of the lasl XPP message received from each client

machine. The sequence number serves Lwo purposes: it uniquely identifies each message and imposes an

ordering on the list of messages. Although the sequence numbers define a processing order thaL insures

corrcctncss, the sysLem does nOt need to impose such a strict ordering on message processing to achieve



- 7 -

correct results. For example, the server may process a message for page i before or after a message for

page j and still ob!llin correct resulls. However, if a client sends a store request for page i followed by a

fetch request for page i, the server must process the store request before !.he felch request.. XPP achieves

correctness by defining a partial ordering on the list of messages. In addition to a sequence number. each

xpp message contains a preceeding message number. The preceeding message number specifies the

sequence number of the most recenl preceeding message thal must be processed before the current mes­

sage can be processed. The server may process any message as long as it has already processed the asso·

ciaLed prccceding message.

xpp uses end-to-end positive acknowledgements (ACKs) to indicate thal the server performed the

requesled operation9• xpp does nOL use acknowledgements to indicate that a message was successfully

transmitted like many other protocols do. Instead, an XPP ACK provides an end-to-end acknowledge­

ment, signaling Lhe successful completion of Lhe requested high level operation. When the server com­

pletes the requested operation, it sends a positive acknowledgement to the client containing the results of

the operation. Client machines do not discard local copies of pages unLil the server acknowledges that it

has stored the data in remote memory. Most XPP ACKs simply indicate success or failure; however.

page felch replies contain the requested data in addition to the status field.

xpp guarantccs reliable delivery using timcouts and retransmissions. The client machine times­

tamps each message sent to the server, and then holds the message until the server replies wiLh an xpp

ACK. If the cliem does not receive an ACK within a predefined timeoUl period. the client resends the

message. Because all messages originate on the client side, the server never initiates a request and does

nOL need 10 implement the timeout/retransmission mechanism, greatly simplifying the implementation and

improving efficiency.

3.1.2. The NAFP Layer

The Negative Acknowledgement Fragmentation Protocol (NAFP) provides the support needed to

efficiemly uansport XPP messages over a wide variety of communication channels. To allow operation

over as many nctwork architecwres as possible, the remote memory communication protocol assumes, as

a minimal requirement, that the communication channel provides unreliable datagram service.

Because XPP supports a wide varicty of page sizes. the length of an XPP message may exceed the

maximum packet size of the underlying physical communication channel. NAFP accepts an enlire XPP

message and breaks the message into fragments. NAFP then transmits each fragment over the communi­

cation channel. reassembles Lhe fragments into a complete message, and presents the message to lhe



-8-

receiving xpp layer. Because NAFP and XPP adhere to the network layering principle, the sending and

receiving xpp layers see exactly l11e same message4.

Allhaugh convenlional communication channels, for insLance local area networks. provide reason·

ably reliable packet delivery I they still drop packets. deliver packets out of order, deliver packets late, or

corrupt packet conLcnts. The XPP layer corrects such errors and guaranlees reliable delivery. However,

the XPP reliability mechanism usually detects communicaLion errors long after Ute error occurs. xpp

then pays a high cost to correct lhe error. For example, to send or receive an 8K byte page from a

Sun3/S0 over an Ethernet wilh a maximum transmission unit (MTU) of approximately 1500 bytes

requires a minimum of 6 packets. If the communication channel loses or corrupts any 1 of lhe 6 packets,

xpp will not detect the error unlil the timeout occurs, and then it must resend all 6 fragments. Because

xpp guarantees reliable delivery, NAFP docs not need to correct any errors. However, to improve

efficiency, NAFP attempts to detect and correct errors as soon as they happen, improving, but not guaran­

teeing, reliability.

NAFP improves reliability using negalive acknowledgements (NACKs). NAFP assigns a sequence

nwnber to each fragment and sends each fragment in order. As packets arrive on the receiving end, the

NAFP layer reassembles the XPP message but does not acknowledge any of the fragments. As long as

no communication errors occur, NAFP transfers messages efficiently with no additional overhead. A

fragmentation error arises when a fragment arrives out of order. The receiving end remembers the

sequence number of the lasL fragment for each partially transmitted message. As soon as the NAFP layer

receives a fragment ouL of order, the receiving NAFP layer sends a negative acknowledgement to the

sending NAFP layer containing the missing fragment's sequence number. The sending NAFP layer

receives the NACK and resends the missing fragmenL NAFP does not guarantee reliable delivery of

fragments. Instead, NAFP makes a half·hearled auempt to correct errors, sending a single NACK for

each missing fragment in hope that the sender will receive the NACK and resend the missing frngmenL

If the simple, low cost, NAFP error correction mechanism fails, XPP will deLect the error and take the

corrective measures needed LO reliably deliver the message. Because NAFP improves reliability, XPP

rarely retransmits messages. In the expected case, in which no communicatlon errors occur, NAFP incurs

no additional overhead.

Because the remole memory communication proLocoI imposes minimal requiremenlS on the com­

munication channel, we can use the remote memory communication protocol over any transport mechan­

ism that provides unreliable datagram service. A1mosl any protocol can function as the underlying com­

munication protocol, including reliable datagram protocols, stream prOlocols, or vinual circuit protocols.



-9-

To achieve independence from lhe underlying physical network architectures, we use an archiLecture­

independent pWlOCollike UDP or VMTP as the underlying datagram protocol. Architecture independent

protocols like UDP and VMTP allow !he remole memory communicaLion protocol to operate ovec local

area networks comprised of several diITerent physical network architectures.

3.2. The Remote Memory Server

Client performance depends. to a large extent, on lhe delay the network and lJ1e remote memory

server int.roduce. To improve client performance. lhe remote memory server allemplS to minimize the

delay by using l.he remote memory communication protocol and efficient dala look-up algorithms. To

support as many cliem machines as possible. the remote memory server avoids preallocalion of resources

in order to make efficient use of memory.

One of our goals required support for heterogeneous client access to lhe remote memory resource.

Using lhe remote memory communication protocol, the remote memory server lrnnsfcrs dala to and from

heterogeneous clienls in an archil.eCture-independcnt manncr. The remote memory server suppons all

architccturcs regardless of byte size or bylc ordcr. Although lhe remote memory server maintains infor­

mation about each memory scgment it stores, lhe server does not allempt to interpret or modify lhe stored

daLa. The server simply reLurns daLa in exacLly lhe same form in whieh it was received.

3.2.1. Efficient Use of Memory

Heterogeneous machines running heterogeneous operating sysLems use a wide varieLy of page sizes.

The remote memory server uses dynamically allocated daLa structures La store lhe variable size mcmory

segmenls c1ienls send to the server. The remote memory server divides lhe available memory into small

fixed size segments or data blocks. Whcn a client machine sends a page store request 10 lhe remote

memory server, lhe server allocales the precise number of data blocks needed 10 slore the page. The tra­

deoff between data block management overhead and memory space utilization makes it difficult to chose

an optimal data block size. Using large data blocks causes internal memory fragmentation, and using

small data blocks increases the data block management overhead. In theory, the server defines the data

block size as the smallest common denominator of all the client page sizes such that the overhead is still

reasonable. In practice, only a few popular page sizes exist based on powers of lWo, making the choice

easy.

The remote memory server allocates daLa blocks dynamically for each new slore rcqucsL The daLa

struclurcs do not require the server lo store the data in contiguous data blocks. If the server cannOl find a



- 10-

seL of contiguous data blocks large enough to store the data, the server may spread the data across several

disjoint data blocks. The ability to scatter the data from a store request across memory results in efficient

use of memory and provides suppon for a wide variety of page sizes. Because many of the client

machines have the same page size, the female memory server usually allocate and frees segments of the

same size, resulting in decreased exl.ernal memory fragmentation. Consequently, the server can usually

aliocaLe contiguous data blocks to each new store requesL

3.2.2. Efficient Data Look-Up

To reduce the delay associated with retrieving memory from lhe remote memory server, lhe server

attempts to minimize lhe lime spent searching lhe data struCLures for lhe desired data. The server uses a

dala hash table and a double hashing algorithm La locate data. Data hash table entries mainlain infonna­

Lion aoom client pages stored on the server. Each active hash table entry contains information for exactly

onc cliem pagc, including information regarding the identily of the page, and a range or list of data

blocks containing the data. The remote memory server uses a single data hash table to store all lhe data

from all the client machines. Client machines uniquely identify a page with an ordered triple consisLing

of a unique machine identifier, a process identifier, and a page identifier. The server applies a double

hashing algorithm to the triple to locale the hash table enlry that contains pointers to the datas . If the

hash table is less than 95% full, the double hashing a1gorilbm, on lhe average, locates a saved page in

less than three probes to the table. As long as lhe remote memory server limits the utilization of the hash

table to less than 95% of Ihe total capacity, the average look-up time remains constant, regardless of the

amount of data Lbe clienLS store on the server or Lbe number of cHenLS using the server.

3.2.3. Memory Reclamation

The remote memory server employs an efficient memory deallocation algorilhm to amortize the

cost of reclaiming memory over time. The algorithm allows clients to free large amounLS of memory

wilh a single inexpensive operation. We assume that most client operating systems support multiple

processes and create and terminale processes frequently. To make process termination efficient, client

machines require the ability to free large amounLS of remote memory in a single operation.

The XPP protocol docs not provide a message for releasing individual pages on lhe server. Instead,

XPP provides a terminate process request message. When a process exits, the operating system issues an

XPP terminate process request message. The responsibility for freeing all the remole memory associated

wiLb the process falls on the remole memory server.



- II -

To avoid spending large amounts of time searching for pages associaLed with the tenninated pro­

cess, the remote memory server maintains a second process hash table containing infonnation about all

active processes on all client machines. The server maintains a limestamp for each process in the system.

When the server receives a page store request for a process, the server saves the process's timestamp with

the page in the data hash table. Each Lime the server receives a tenninate request, the server updates the

timestamp in the process hash table, thereby invalidating all pages associaLed with the tenninalCd process.

The server reclaims obsolete pages during later probes Lo the data hash table and with a garbage collec­

tion process that executes in the background. Each Lime a probe to the data hash table results in a colli­

sion, the server checks !.he timestamp on !.he page against !.he timestamp of the owner. If the timestamps

differ, the server reclaims the page. Together,!.he garbage collection process and lbe lazy reclamation

algorithm amortize the cost of reclaiming memory over Lime.

4. A Prototype ImplemenLatioD and Experimental Results

We designed and implemented a prototype remote memory distributed system based on the remote

memory model. The system consists of heLerogeneous client machines (Sun Mlcrosystems Sun 3/50's,

Digital Equipment Corporation Microvax I's and II's), a remole memory server machine (we have used a

Sun 3/50, Vax lln80, Microvax m, Vaxserver 3100, and an 8 processor Sequent Symmetry as a remote

memory scrver), a file server machine (a Vax lln80 or Sun 3/50), all conneclCd by a 10 Mb/sec Elher­

net. Sun and Microvax client machines simultaneously access lhe remote memory server for backing

slornge, demonstrating support Cor heterogeneous clients.

In the prototype, remote mcmory is high speed volatile storage, susceptible to failure and data loss.

To keep the prototype simple, the remole memory server docs not support any dam sharing bctween client

machines. After experience with lbe server, we chose lK byte blocks as !.he storage page size.

We built the remote memory communication protocol on lOP of UDP to allow communication over

almost any network architeclure. Moreover, UDP allows client machines lo reside on a different physical

network than the server machine. We have experimented with a configurat..ion in which client machines

access a remote memory server on a remote network Lhrough several gateways. Even when trnversing

several gateways Lo access the remote memory server, the high-cost XPP guaranteed reliability mechan­

ism rarely retransmits messages because the negative acknowledgement fragmentation prolocol corrects

most communication errors. Another configuration we have used chains remote memory servers together.

Client machines access a diskless remote memory server that in tum accesses a remote memory server

with a disk.



- 12-

Our inilial liming results show that storing or retrieving an 8K byte segment between a Sun 3/50

client and a Sun 3/50 remote memory server requires an average of 39ms. In contrast, current production

systems consisting of diskless Sun 3/50s paging over NFS require an average of 50ms to process an 8K

byte read request when accessing a file sequentially. To randomly access an NFS file, as paging activity

does, requires an average of 84ms LO process an 8K byte read request and an average of 176ms to process

an 8K byte write request.

Round Trip

Delay

(ms)

150

100

6 clients

5 clients

4 clients

50
~~3Clien~

_ 2 clients
1 client

o 5 10 15
Requests per Second

(from each client)

20

Figure 2: Round Trip Delay As A FuncLion Of The Client Request Rate

Figure 2 shows the cost of performing a page fetch operation (measured as round trip delay) as a

function of the number of requests issued per second by each client machine. We conducted the tests

using Sun 3/50 client machines paging to a Sun 3/50 remote memory server and implemented the proto­

type remote memory server as a UNIX application level process. Because the Ethernet has an MTU of

1500 bytes, Ihe NAFP protocol breaks each 8K byte Sun 3/50 page inLo 6 Ell1emet packets. All client

machines send paging requests concurrently. Each client sends requests at a constant rate, unifonnly dis­

tributed over time, to the remote memory server. The request rates shown in the figure indicate the

number of requests per second issued by a single client machine.

The figure shows Ihe round trip delay for a varying number of clients and request rates. The sud­

den rise in the round trip delay shown in the curves for 3 or more clients can be misleading. The follow-

ing figure shows that the sudden increase in each curve occurs aL the point where the server becomes



- 13-

overloaded (lOlaI load of 30 requests/second).

150-

Round Trip

Delay 100­

(ms)

50-

I
30

I
o

I I
10 20

Requests per second

handle by the server

Figure 3: RemoLe Memory Delay For Various Server Loads

Figure 3 illustraLes the average round trip delay as a function of lhe number of requests !.he server

processes per second. We general.e the server load by varying the number of clients and the role at which

they send requesls 1O lhe server. The figure shows !.hat the current prototype remole memory server, exe-

cuung as a user level process on a Sun 3/50. efficiently handles up to 30 requests per second. At 30

requests per second lhe prototype memory server becomes salUraled and any more load on the server

significantly increases lhe round trip delay. explaining the shatp rise in the curves pictured in figure 2.

For loads of less lhan 30 requests per second, the average round trip delay remains less ilian 56ms regard­

less of the number of diems. If LIte load on lhe server is less than 20 requests per second (2(3 of the

server's capacity), the round lrip times never exceeds 46ms.



• 14 •

60-

50-

Round Trip 40-

Delay 30-

(ms) 20-

10-

0-
0 , I

1 2 3 4 5 6
Number of Clients

Figure 4: Round Trip Time (Each Client Sends 5 RequeslS/Second)

If we assume, under usual operating circumstances. that clients send an average of 5 requests per

second, men figure 4 illustrates the gradual increase in found bip delay as the number of clients increases

to lhe maximum capacity of the server. As Ute number of client increases. !.he number of dropped frag­

ments increases, resulting in slighlIy higher round trip times. Lyon and Sandberg indicate that 8 diskless

Sun 3/50 workstations generate an average load of 30 NFS requests per second. or an average of 3.75

requests per second per client. which includes both file acLivity and paging activity2. Consequently, an

average of 5 paging requests per second per client may be somewhat high, indicating lhaL lhe slope of the

line in figure 4 would be even less for the usual workload.

S. Conclusions

Using Lhe remote memory model as an alternative model for designing distributed systems has

many altrnctive properties. The large memory resource shared by all client machines is especially appeal­

ing. Experience with the proLOtype system clearly demonstrates the viability of Lhe remote memory

model and shows Lhat perrormance is competitive with distributed systems currently in usc. Finally, we

showed thal the remote memory model can support heterogeneous clients machines withoUl sacrificing
efficiency.

Rererences

1. R. Sandberg, D. Goldberg, S. Kleiman, Dan Walsh, and Bob Lyon, "Design and Implcmcnullion
of the Sun Network File Syslem," Proceedings of the Summer USENTX Conrcrcnce, pp. 119-130,
USENIX Association, June 1985.

2. R. Sandberg and Bob Lyon, "Breaking Through the NFS Performance Barrier," SunTech Jownal,
p. 21, August 1989.



• 15 •

3. Vawm Abrossimov and Marc Rozier, "Generic Virtual Memory Management for Operating Sys­
[.em Kernels," Proceeding of the 12th ACM Symposiwn on Operating System Principles, vol. 23,
no. 5, pp. 123-136. Chorus Systems, December 1989.

4. Douglas Comer, InlernelWorking with TePfl?; Principles. Protocols. and Architect/Ire, Prentice
Hall, 1988.

5. Donald E. Knuth, Sorting and Searching, Addison Wesley Publishing Company, 1973.

6. Kai Li and Paul Hudak. "Memory Coherence in Shared Virtual Memory Systems," Proceedings of
the 51h ACM Symposium of Principles of Distributed Computing, pp. 229-239. August 1986.

7. John Ousterhout, Andrew Cherenson. Fred Dauglis. Michael Nelson, and Brent Welch, "The Sprite
Network Operating System," Tech Report DeB/eSD 87/359n. University of California Berkeley,
June 1987.

8. James L. Peterson and Abraham Silbersehatz, Operaling Syslem Concepts, Addison Wesley, 1985.

9. J. H. SallZer, D. P. Reed, and D. D. Clark, "End-To-End Arguments in System Design," ACM
Transactions on Compwer Systems, vol. 2, pp. 277-288, 1984.

10. Roben A. Gingell and Joseph P. Moran and William A. Shannon, Virtual Memnry Archileclure in
SunOS. Sun Microsystems, Inc., 1988.

11. Avadis Tevanian, "Architecture Independent Virtual Memory Managemem for Parallel and Distri­
buted Environments: The Mach Approach," Tech Report CMU·CS-88-106n, CMU, December
1987.

12. Brent B. Welch, "The Sprite Remote Procedure Call System," Tech Report UCB/CSD 86/302,
University of California Berkeley, June 1986.

Dr. Douglas Comer is a full professor in Ihe Computer Science Department at Purdue University
where he teaches graduate-level courses in operating systems, intemetworking, and distributed systems.
He has wrillcn numerous research papers and five textbooks, and has been principle investigator on many
research projects. He designed and implemented the X25NET and Cypress nctworks, as well as the Xinu
operating systcm. He heads the Xinu, Cypress, Shadow Edit.ing, and Multiswitch research projects. He
is a member of lhe Internet Research SLeering Group and chainnan of lhe Internet Naming Research
Group. He is a former member of the CSNET Executive Commitlce and the Internet Activities Board.
Professor Comer teaches networking seminars for Interop Incorporated. He is a member of lhe ACM,
AAAS. and Sigma Xi.

James Griffioen is a PhD candidate in lhe Computer Scicnce Departmem at Purdue University. His
research interests include operat.ing systems and distributed syslems. He has worked on the Xinu and lhe
Shadow Editing research projects. He received an MS degree in computer science from Purdue Univer­
sity in 1988 and a BS degree in computer science from Calvin College in 1985. He received lhe
USENlX scholarship for lhe 89-90 academic year and is a member of lhe ACM.


	A New Design for Distributed Systems: The Remote Memory Model
	Report Number:
	

	tmp.1307986960.pdf.PIG5h

