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A New Design Framework for Sparse FIR MIMO
Equalizers

Ahmad Gomaa, Student Member, IEEE, and Naofal Al-Dhahir, Fellow, IEEE

Abstract—In this paper, we propose a new framework for the
design of sparse finite impulse response (FIR) equalizers. We start
by formulating greedy and convex-optimization-based solutions
for sparse FIR linear equalizer tap vectors given a maximum
allowable loss in the decision-point signal-to-noise ratio. Then,
we extend our formulation to decision feedback equalizers and
multiple-antenna systems. This is followed by further general-
ization to the channel shortening setup which is important for
communication systems operating over broadband channels with
long channel impulse responses. We propose a novel approach to
design a sparse target impulse response. Finally, as an application
of current practical interest, we consider self far-end crosstalk
cancellation on vectored very high-speed digital subscriber line
systems for cellular backhaul networks.

Index Terms—Sparse FIR filter, MIMO equalizer, DFE, chan-
nel shortening, crosstalk.

I. INTRODUCTION

BROADBAND communication channels are characterized
by long channel impulse responses (CIRs) that could span

tens of symbol periods. Consequently, very long equalizers
have to be employed to mitigate the resulting severe inter-
symbol interference (ISI). This increases the complexity of
computing and implementing (i.e. filtering the received signal)
finite impulse response (FIR) equalizers which grows propor-
tional to the number of taps. To reduce complexity at the
expense of a tolerable performance loss, long equalizers with
few nonzero taps (i.e. sparse equalizers) have been proposed
in the literature. In [1], the number of nonzero taps was
reduced by choosing only the strongest taps of the minimum
mean-squared error (MMSE) linear equalizer (LE). However,
the whole equalizer tap vector must be calculated which is
computationally complex. The decision feedback equalizer
(DFE) was considered in [2] where an ad-hoc algorithm is
proposed to determine the locations of the feedforward filter
(FFF) taps. In this algorithm, a signal-to-noise ratio (SNR)
measure was computed for each channel tap and the FFF taps
were assigned to the channel taps with the highest SNRs.
Given a fixed total number of DFE taps, the numbers of
FFF and feedback filter (FBF) taps were optimized in [3].
Sparse equalization becomes even more critical for multiple-
input multiple-output (MIMO) systems [4], [5] where the
number of equalizer taps grows proportional to the product
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of the number of input and output data streams. Greedy and
sequential search algorithms were proposed in [6] and [7],
respectively, for finding the taps locations for single-input
single-output (SISO) LEs and DFEs. In this paper, we present
a new framework for designing sparse SISO and MIMO FIR
equalizers. Specifically, we formulate both greedy algorithms
and l1-norm minimization programs to determine the locations
and weights of the nonzero equalizer taps subject to a given
maximum tolerable performance loss. Also, our formulation is
not restricted to a specific greedy algorithm as in [6] and [7].
The l1-norm minimization approach was recently proposed
in [8] for sparse FIR filters design subject to a number of
constraints on the frequency domain response. However, our
sparse equalization problem differs from that in [8] in the
formulation, constraints, and applications.

Since equalization complexity increases with the CIR
length, a front-end equalizer, commonly known as a channel
shortening equalizer (CSE), is designed such that the cascade
of the long CIR and the CSE is equivalent to a short target
impulse response (TIR). This channel shortening technique
enables the implementation of maximum-likelihood (ML) or
maximum-a-posteriori (MAP) detectors at practical complex-
ity levels. Several TIR design criteria have been investigated
in the literature (see [9] and the references therein). In [9],
the unit-tap constraint (UTC) and the unit-energy constraint
(UEC) criteria were unified under a single framework that
lends itself to other constraints as well. In [10], the CSE
designs were generalized to MIMO channels. In [11], the TIR
taps were chosen to be noncontiguous and were designed to
coincide with the significant multipath arrivals of the original
channel. To the best of our knowledge, in all of the previous
work, with the exception of [11], the TIR taps were assumed to
be contiguous. However, more degrees of freedom and, hence,
performance improvement can be obtained by designing the
TIR taps to be noncontiguous. In this paper, we allow the TIR
taps to be noncontiguous and sparse and formulate both greedy
algorithms and l1-norm minimization programs to determine
the locations and values of the sparse taps.

Self far-end crosstalk (FEXT) is a major performance-
limiting impairment in vectored very high-speed digital sub-
scriber line (VDSL) systems [12]. The concept of vectored
DSL transmission was introduced in [13] where joint signal
processing/detection techniques were employed to cancel self
FEXT between the vectored DSL lines. Furthermore, it is well-
known that most of the self FEXT power emanates from few
neighboring lines in the binder. This property was utilized in
[14] to reduce the number of nonzero self FEXT cancellation
taps whose locations were assigned to the neighboring lines
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with the largest average crosstalk power. In this paper, we
formulate both greedy algorithms and l1-norm minimization
programs to design a sparse self FEXT canceler subject to
a given maximum performance loss from the highly-complex
full self FEXT canceler.

The rest of this paper is organized as follows. In Section
II, we provide a brief overview of sparse signals recovery
techniques. The sparse equalization problem is formulated in
Section III. Our sparsity-aware approach for channel short-
ening is presented in Section IV. In Section V, we describe
our approach for partial self FEXT cancellation for vectored
VDSL. Finally, simulation results and conclusions are pre-
sented in Sections VI and VII, respectively.

Notations: Unless otherwise stated, lower and upper case
bold letters denote vectors and matrices, respectively, and
A(:, i) denotes the ith column of A. The matrices I and 0
denote the identity and all-zero matrices, respectively, and
their sizes are denoted by their subscript. Also, ( )H , ( )∗,
( )−1, and ( )† denote the matrix complex-conjugate transpose,
complex conjugate, inverse, and pseudo-inverse operations,
respectively. The portion of the vector x starting from the index
a and ending at the index b is denoted by xa:b. The notation
diag (S1, S2, . . . , SL) denotes an L×L diagonal matrix whose
diagonal elements are {S1, S2, . . . , SL}. The operators ‖ . ‖0,
‖ . ‖1, and ‖ . ‖2 denote the l0-norm, l1-norm, and l2-norm,
respectively. The operators E [.] and |.| denote the statistical
expectation and the absolute value, respectively.

II. SPARSE SIGNALS RECOVERY BACKGROUND

Consider the system of equations y = Ax+z where y ∈ CM

is a known measurement vector, x ∈ CN is an unknown vector,
A denotes the M ×N measurement matrix, and z ∈ CM is a
bounded noise (error) vector. To obtain the sparsest solution
to this system of equations, the following problem is solved

min
x̃∈CN

‖ x̃ ‖0 s.t. ‖ y − Ax̃ ‖22 ≤ ε (1)

where s.t. means “subject to”, ε is chosen such that it bounds
the amount of noise in the measurements, and ‖ x̃ ‖0 is the
number of nonzero entries of x̃. However, in general, finding
the optimal solution to this problem is not computationally
feasible. Hence, two main approaches have been proposed
in the literature to compute a sparse suboptimal solution to
this system of equations; specifically, l1-norm minimization
and greedy algorithms. The l1-norm minimization approach is
formulated by replacing ‖ x̃ ‖0 in (1) by ‖ x̃ ‖1. However,
the resulting solution is not exactly sparse because many
small but nonzero entries will appear in x̃. One method to
enforce a finite number of nonzero entries is to apply an
additional heuristic optimization step as in [8]. Alternatively,
the greedy algorithms provide more control on the set of
nonzero elements whose indices and values are determined it-
eratively. We describe the orthogonal matching pursuit (OMP)
algorithm [15] as one of the widely-used greedy algorithms.
It takes y, A, and a certain stopping criterion as its inputs
and computes a sparse solution x̃ for the unknown vector
x as its output. Hence, we denote the OMP operation by
x̃ = OMP (y,A, stopping criterion). The stopping criterion
can be a predefined sparsity level (number of nonzero entries)

of x̃ or an upperbound on the norm of the residual error
term ‖ y − Ax̃ ‖2. The OMP algorithm is summarized in the
following steps:

Initialization: Define an empty index set I0 = φ, set the
initial residual r0 = y, initialize x̃ = 0, and set k = 1.

The kth iteration:

1) Compute δi =
∣∣rHk−1A(:, i)

∣∣ for all i /∈ Ik−1.
2) Choose ck = arg

i
max

i
δi.

3) Update Ik = Ik−1 ∪ ck. In this step, the indices of the
nonzero elements are augmented by ck, the index of the
kth nonzero entry computed at the kth iteration.

4) Compute x̃(Ik) = (A(:, Ik))
† y where x̃(Ik) holds the

elements of x̃ indexed by Ik.
5) Compute rk = y−A(:, Ik)x̃(Ik) where rk is the residual

error term at the kth iteration.
6) Check the stopping criterion. If met, exit the algorithm,

else set k = k + 1 and go to Step 1.

In words, OMP tries to find the columns (atoms) of the matrix
A (dictionary) whose linear combination is close (matched) to
y. The orthogonal least squares (OLS) [16] is another greedy
algorithm whose initialization step is the same as that of the
OMP but the kth iteration is described as follows

1) Implement Steps 3, 4, and 5 in the OMP algorithm for
each possible ck = i such that i /∈ Ik−1 and find ck
and x̃(Ik) that minimize the resulting residual error term
‖ rk ‖2.

2) Use x̃(Ik) from the previous step and implement Step 6
in the OMP algorithm.

Like the OMP algorithm, we denote the OLS algorithm by
x̃ = OLS (y,A, stopping criterion). Another greedy algorithm
that can be used is the CoSaMP algorithm [17]. Furthermore,
it is worth mentioning that the sparse equalization problems
considered in this paper are different from the well-known
compressed sensing (CS) problem [18]. In CS theory, the
measurement matrix A has much fewer rows than columns
while, in our problems, as will be shown later, A is either
square or tall with full column rank.

III. SPARSE FIR EQUALIZATION

A. Signal Model

We consider a linear, time-invariant, dispersive, and noisy
communication channel with ni input (transmit) antennas and
no output (receive) antennas. We use the complex-valued
equivalent baseband signal model. Assuming an oversampling
factor of l, the received samples at the j th output antenna
(1 ≤ j ≤ no) at time k have the form

y(j)k =

ni∑
i=1

ν(i,j)∑
m=0

h(i,j)
m x

(i)
k−m + n(j)

k (2)

where y(j)k is the j th channel output vector, h(i,j)
m is the CIR be-

tween the ith input and the j th output whose memory is denoted
by ν(i,j), and nk is the noise vector at the j th output antenna.
All these three quantities are l × 1 vectors corresponding to
the l time samples per symbol in the temporally-oversampled
channel model. Furthermore, x(i)

k−m is the transmitted symbol
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from the ith input antenna (1 ≤ i ≤ ni). Grouping {y(j)k } into
a single lno × 1 vector yk yields

yk =

ν∑
m=0

Hmxk−m + nk (3)

where Hm is the (lno×ni) mth MIMO channel matrix, xk−m

is the ni × 1 input vector at time k−m, and ν = max
i,j

ν(i,j).

By grouping {yk} over a block of Nf symbol periods, we
express the relation in (3) as follows [4]

yk:k−Nf+1 = Hxk:k−Nf−ν+1 + nk:k−Nf+1 (4)

where yk:k−Nf+1, xk:k−Nf−ν+1, and nk:k−Nf+1 are col-
umn vectors grouping the received, transmitted, and noise
samples over that block. Furthermore, H is a block
Toeplitz matrix whose first block row is constructed by
the matrices {Hm}m=ν

m=0 followed by zero matrices. The
ni (Nf + ν) × ni (Nf + ν) input correlation matrix is de-

fined by Rxx � E
[
xk:k−Nf−ν+1xH

k:k−Nf−ν+1

]
, and the

no (lNf) × no (lNf ) noise correlation matrix is defined by

Rnn � E
[
nk:k−Nf+1nH

k:k−Nf+1

]
. Both Rxx and Rnn are

assumed to be positive-definite correlation matrices. Fur-
thermore, the output-input cross-correlation and the out-
put auto-correlation matrices are given, respectively, by
Ryx � E

[
yk:k−Nf+1xHk:k−Nf−ν+1

]
= HRxx and Ryy �

E
[
yk:k−Nf+1yHk:k−Nf+1

]
= HRxxHH + Rnn.

In the sequel, we show how to design sparse FIR equalizers
such that the performance loss does not exceed a predefined
limit. In Sections III-B and III-C, we investigate LEs and
DFEs, respectively, for SISO systems while in Section III-D,
we consider DFEs for MIMO systems with no ≥ ni.

B. Sparse FIR SISO-LE

In the FIR LE model, the received samples {yk} are applied
to a fractionally-spaced FIR equalizer with lNf taps. The kth

error sample is given by

ek = xk−Δ − wHyk:k−Nf+1 (5)

where w is an lNf × 1 vector of stacked tap weights and
Δ is an integer representing the decision delay where 0 ≤
Δ ≤ Nf + ν − 1. We use the MMSE criterion to evaluate
the equalizer performance. Writing xk−Δ = 1H

Δxk:k−Nf−ν+1

where 1Δ is the (Δ + 1)-th column of INf+ν , the decision-
point mean square error (MSE) is given by

ξ � E
[
|ek|2

]
= εx − wHrΔ − rHΔw + wHRyyw (6)

where εx � E
[
|xk−Δ|2

]
and rΔ = Ryx1Δ. Defining the

Cholesky factorization [19] Ryy � LLH where L is an lNf ×
lNf lower-triangular matrix, we rewrite (6) as follows

ξ = εx − wHLL−1rΔ − rHΔL−HLHw + wHLLHw (7)

where (.)−H � ((.)H)−1. Completing the square in (7) yields

ξ = εx − rHΔL−HL−1rΔ︸ ︷︷ ︸
�ξmin

+ ‖ LHw − L−1rΔ ‖22︸ ︷︷ ︸
�ξexcess

(8)

Note that w controls ξ via the term ξexcess only because ξmin

does not depend on w. Since ξexcess ≥ 0, ξ is minimized by
choosing w such that ξexcess = 0 and ξ = ξmin. Consequently,
the optimum choice for w in the MMSE sense is

wopt = L−HL−1rΔ = R−1
yy rΔ (9)

In general, wopt is not sparse and, hence, the complexity of
computing and implementing wopt will increase proportional
to (lNf)

2 which can be prohibitively large. Any choice for
w different from wopt increases ξexcess which translates into
performance degradation. A practical performance-complexity
trade-off can be achieved if we design a sparse w such that
ξexcess ≤ ε where ε > 0 controls the tolerable performance
loss in terms of MSE increase. According to Section II, this
is achieved either by solving the convex optimization program
in (10) or by calling the OMP algorithm in (11); i.e.

min
ws∈C

lNf

‖ ws ‖1 s.t. ‖ LHws − L−1rΔ ‖22 ≤ ε (10)

ws = OMP
(

L−1rΔ, LH , ‖ LHws − L−1rΔ ‖22 ≤ ε
)

(11)

Since L is a lower-triangular matrix, the vector L−1rΔ is easily
computed using the forward-substitution method [19]. Note
that the matrix LH is a square matrix, hence this problem is
different from the CS setup as pointed out in Section II. In
addition, ws is computed each time the channel estimate is
updated. We define the decision-point signal-to-noise ratio as
ŜNR � εx

ξ and write ŜNR corresponding to ws as

ŜNR(ws) =
εx

ξmin + ξexcess(ws)
≥ ŜNR(wopt)

1 + ε
ξmin

(12)

where ŜNR(wopt) � εx
ξmin

and ξexcess(ws) � ‖ LHws−L−1rΔ ‖22.
The performance loss is quantified by γ where

γ � 	

(
ŜNR(wopt)

ŜNR(ws)

)
≤ 	

(
1 +

ε

ξmin

)
� γmax (13)

where 	(.) � 10 Log10(.) and Log10 is the base-10 logarithm.
To summarize, we compute ε based on the acceptable γmax

and compute the sparse solution ws through (10) or (11).

C. Sparse FIR SISO-DFE

For the SISO-DFE, we denote the spans of the FFF, w, and
the FBF, b, by lNf and Nb taps, respectively. The kth error
sample is defined as [20]

ek = xk−Δ −
(

wHyk:k−Nf+1 − bH x̂k−Δ−1:k−Δ−Nb

)
(14)

where x̂k−Δ−1:k−Δ−Nb
is the slicer output vector representing

the hard decisions for xk−Δ−1:k−Δ−Nb
. Assuming correct past

decisions, x̂k−Δ−1:k−Δ−Nb
is replaced by xk−Δ−1:k−Δ−Nb

and (14) becomes [21]

ek = xk−Δ − [wH −bH
]︸ ︷︷ ︸

�w̃H

[
yk:k−Nf+1

xk−Δ−1:k−Δ−Nb

]
︸ ︷︷ ︸

�ỹ

(15)

where w̃ is a length-(lNf + Nb) vector combining the FFF
and the FBF taps. Hence, the MSE ξ is given by

ξ = εx − w̃H r̃Δ − r̃HΔ w̃ + w̃HRỹỹw̃ (16)
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where Rỹỹ � E
[
ỹỹH

]
, r̃Δ = Rỹx1Δ, and Rỹx �

E
[
ỹ xH

k:k−Nf−ν+1

]
. Assuming that Rxx = εxINf+ν , it can

be shown that [21]

Rỹỹ =

[
Ryy εxHJΔ

εxJHΔHH εxINb

]
and Rỹx =

[
εxH
εxJHΔ

]
(17)

where JΔ is an (Nf + ν) × Nb matrix whose structure for
Δ ≤ s is given by JΔ =

[
0Nb×(Δ+1) INb

0Nb×(s−Δ)

]H
with s � Nf + ν −Nb − 1. As in the LE case, we define the

Cholesky factorization of Rỹỹ as Rỹỹ = L̃L̃
H

and write the
MSE as follows

ξ = εx − r̃HΔ L̃
−H

L̃
−1

r̃Δ︸ ︷︷ ︸
�ξmin

+ ‖ L̃
H

w̃ − L̃
−1

r̃Δ ‖22︸ ︷︷ ︸
�ξexcess

. (18)

where L̃ depends on Δ. Next, either the convex program in
(19) or the OMP algorithm in (20) is used to compute the
sparse solution w̃s such that ξexcess does not exceed ε; i.e.

min
w̃s∈C

lNf+Nb

‖ w̃s ‖1 s.t. ‖ L̃
H

w̃s − L̃
−1

r̃Δ ‖22 ≤ ε (19)

w̃s = OMP
(

L̃
−1

r̃Δ, L̃
H
, ‖ L̃

H
w̃s − L̃

−1
r̃Δ ‖22 ≤ ε

)
(20)

After computing w̃s, its top lNf elements are assigned to the
FFF and the remaining Nb elements are assigned to the FBF.
The quantities γ and γmax can also be defined for the DFE
case as in the LE case.

D. Sparse FIR MIMO-DFE

For the FIR MIMO-DFE [4], the length-(lNfno) FFF wi

and the length-(Nbni) FBF bi are designed to recover the
ith input stream, i.e. the transmitted stream from the ith

input antenna. We assume that only previous decisions on
other streams are available at the present time and that these
decisions are correct. Then, the kth error sample for the ith

input stream (1 ≤ i ≤ ni) is given by [4]

ek,i = xk−Δ(i)− [wH
i −bHi

]︸ ︷︷ ︸
�w̃H

i

[
yk:k−Nf+1

xk−Δ−1:k−Δ−Nb

]
︸ ︷︷ ︸

�ỹ

(21)

where xk−Δ(i) is the transmitted symbol by the ith input
antenna at time (k − Δ). Note that wi and bi are applied,
respectively, to the received samples and the decision samples
to remove inter-antenna interference. Similar to the SISO-DFE
case, the MSE for the ith input stream is

ξi = εx − r̃HΔ,iL̃
−H

L̃
−1

r̃Δ,i︸ ︷︷ ︸
�ξmin,i

+ ‖ L̃
H

w̃i − L̃
−1

r̃Δ,i ‖22︸ ︷︷ ︸
�ξexcess,i

(22)

where L̃ is defined as in the SISO-DFE case and r̃Δ,i =
Rỹx1Δ,i where 1Δ,i is the (niΔ+ i)-th column of Ini(Nf+ν).
To compute a sparse solution w̃H

i such that ξexcess,i ≤ εi, we
solve the l1-norm minimization program in (23) or call the
OMP algorithm in (24)

min
w̃s,i∈C

lNfno+Nbni

‖w̃s,i‖1 s.t. ‖ L̃
H

w̃s,i− L̃
−1

r̃Δ,i ‖22≤ εi (23)

w̃s,i = OMP
(

L̃
−1

r̃Δ,i, L̃
H
, ‖L̃

H
w̃s,i − L̃

−1
r̃Δ,i‖22 ≤ εi

)
(24)

where εi > 0 controls the performance loss for the ith

input antenna. If the input antennas represent different users
with different required quality of service (QoS) levels, the
system designer can assign small (large) values of εi for users
demanding high (low) QoS levels, respectively.

IV. SPARSE FIR CHANNEL SHORTENING

For simplicity, we use the signal model in Section III-A
with ni = no = 1. However, our algorithm can be extended
to MIMO systems as well based on the results in [10]. In
FIR channel shortening [9], the goal is to design the length-
(lNf ) fractionally-spaced CSE, w, and the length-(Nf + ν)
TIR, b, such that the overall impulse response of the channel
and the CSE best approximates a TIR with few, namely
(Nb + 1), taps. Then, the ML or MAP detectors are designed
based on the new short TIR. Although the length of the TIR
vector b is (Nf + ν), only (Nb + 1) of its taps are designed
to be nonzero. The choice of Nb represents a performance-
complexity tradeoff. In [9], the nonzero (Nb + 1) taps were
chosen to be contiguous and their location (delay) within the
(Nf + ν)-span of b was optimized. In this paper, we relax
the contiguousness constraint and allow the nonzero (Nb +1)
taps to be anywhere within the (Nf + ν)-span of the TIR
to achieve better performance without increasing complexity.
The kth sample of the channel shortening error sequence, ek,
and the channel shortening MSE are given, respectively, by
[9]

ek = wHyk:k−Nf+1 − bHxk:k−Nf−ν+1 (25)

MSE � ξ = E
[
|ek|2

]
= wHRyyw − wHRyxb − bHRH

yxw + bHRxxb (26)

Minimizing the MSE over w by differentiating it with respect
to (w.r.t) w and equating the result to zero, we get wopt =
R−1
yy Ryxb. Substituting wopt for w in (26), we get

ξ = bH
(

Rxx − RH
yxR−1

yy Ryx

)
b � bHR⊥

x/yb (27)

Minimizing ξ over b yields the trivial solution b = 0. To avoid
this, we perform the minimization subject to the UTC where
one of the (Nb +1) taps is constrained to be unity. The index
of the unit tap is denoted by it (0 ≤ it ≤ Nf + ν − 1). Our
goal is to design b which minimizes ξ such that its nonzero
taps are not constrained to be contiguous unlike [9]. Towards
this end, we define the Cholesky factorization [19] of R⊥

x/y

as R⊥
x/y � UHU where U is an upper-triangular matrix and

rewrite (27) as follows

ξ = bHUHUb =‖ Ub ‖22=‖ Ūb̄ + uit ‖22 (28)

where Ū is formed by all the columns of U except for the ith
t

column, uit , and b̄ is formed by all the elements of b except
for the ith

t unity element. Observe that the length-(Nf+ν−1)
b̄ contains only Nb nonzero taps whose locations and values
need to be determined. Hence, we formulate the following
convex optimization problem

min
b̄

‖ b̄ ‖1 s.t. ‖ Ūb̄ + uit ‖22 ≤ εch (29)
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where εch > 0 is a design parameter that controls the
performance. The matrix Ū is a tall matrix, so we have more
measurements than unknowns unlike the CS theory setup.
Using (29), the designer has no direct control over the resulting
number of nonzero taps Nb. Hence, if a specific Nb is desired
(e.g. due to complexity constraints), the OLS algorithm1 is
used instead of the above convex program as follows

b̄ = OLS
(−uit , Ū, ‖ b̄ ‖0 = Nb

)
(30)

where ‖ b̄ ‖0 is equal to the number of iterations in the OLS
algorithm and the constraint in (30) specifies the number of
OLS iterations. After computing b̄, we construct the sparse
TIR, denoted by bs, by simply inserting the unit tap in the ith

t

location. Finally, the optimum (in the MMSE sense) CSE taps
and the resulting MMSE are, respectively, found to be

wopt = R−1
yy Ryxbs, ξmin = bHs (Rxx − RH

yxR−1
yy Ryx)bs (31)

Note that the unit tap index, it, needs to be optimized such
that the resulting MSE is minimized. However, unlike [9],
we do not need to additionally optimize the location of the
contiguous taps (i.e. starting index which is commonly known
as the decision delay parameter) because we do not constrain
the taps to be contiguous. Instead, we use the OLS program in
(30) to compute their locations and values. The noncontiguous
solution enjoys a larger search space [22] and, hence, the
resulting MMSE will be less than (or at least the same as)
that of the contiguous solution.

Furthermore, using the same approaches as in Section III,
we can design the CSE sparsely [22] to reduce the implemen-
tation complexity.

V. PARTIAL SELF FEXT CANCELLATION FOR CELLULAR

BACKHAUL IN VECTORED DSL

A. Signal Model

We consider vectored VDSL [13] transmission with discrete
multitone (DMT) modulation for the cellular backhaul appli-
cation [23]. We assume that L equal-length twisted-pair lines
are used to transport traffic from a cellular base station to
the backhaul network. The electromagnetic coupling between
the vectored twisted-pair lines causes their signals to interfere
with each other at the receiver side. This kind of interference
is called self far-end crosstalk (FEXT) which is the dominant
impairment source in VDSL systems that operate at high
frequencies and use short loops. We assume all transmissions
are synchronized and employ DMT transmission with a cyclic-
prefix whose length equals or exceeds the maximum memory
of the direct and crosstalk channels. Grouping the L received
signals over the kth tone, we cast the input-output relation as
follows [13]

Yk = HkXk + Zk (32)

where Yk and Xk group the L received and transmitted
symbols, respectively, on the kth tone. The mth elements of
the vectors Yk and Xk, denoted by Y k

m and Xk
m, represent

the received and transmitted symbols, respectively, on the mth

line at the kth tone. Thermal noise, alien crosstalk, and other

1We found that OLS yields a significantly smaller residual error than OMP
especially for small Nf .

impairments experienced by the L lines over the kth tone are
lumped and grouped into Zk. Furthermore, Hk is the L × L
MIMO channel matrix whose (m,n) element with m �= n,
denoted by Hk

(m,n), represents the frequency-domain response
of the crosstalk channel from the nth line to the mth line at
the kth tone. Also, Hk

(m,m) represents the direct channel of the
mth line at the kth tone.

B. Partial Self FEXT Cancellation

Self FEXT experienced by the mth line on the kth tone is
linearly cancelled by applying Wk

m such that the estimate of
Xk

m is given by X̃k
m =

(
Wk

m

)H
Yk . Dropping the tone index

k, for simplicity, and rewriting X̃m in terms of the residual
self FEXT interference plus noise, denoted by rm, we get

X̃m = Xm +
(
WH

mhm − 1
)
Xm +

∑
n�=m

WH
mhnXn +WH

mZ

� Xm + rm (33)

where hn is the nth column of H. The residual self FEXT
variance is given by

ζm � E
[|rm|2] = Sm

∣∣WH
mhm − 1

∣∣2 + ∑
n�=m

Sn

∣∣WH
mhn

∣∣2
+WH

mSZWm (34)

where SZ � E
[
ZZH

]
and the lumped noise in Z is

assumed to be uncorrelated with the data. We also assume
that E

[
XXH

]
� SX = diag (S1, S2, . . . , SL) where {Sm ≥

0, 1 ≤ m ≤ L} are real numbers. It is easy to show that

ζm = WH
mSYWm − SmWH

mhm − SmhH
mWm + Sm

= Sm − h̄H
mS−1

Y h̄m︸ ︷︷ ︸
�ζm,min

+ ‖ LH
xt Wm − L−1

xt h̄m ‖22︸ ︷︷ ︸
�ζm,excess(Wm)

(35)

where h̄m = Smhm and SY � HSXHH + SZ � LxtL
H
xt

where Lxt is an L × L lower-triangular matrix. The MMSE
canceler is given by WMMSE

m = S−1
Y h̄m obtained by setting

ζm,excess(Wm) = 0. However, this solution is, generally,
nonsparse and requires L multiplications per line per tone
per DMT symbol. To reduce run-time complexity, we de-
sign a sparse self FEXT cancellation filter Ŵm such that
ζm,excess(Wm) ≤ εxt where εxt > 0 controls the acceptable
data rate loss as will be shown shortly. Again, this is done by
either solving the convex program in (36) or calling the OMP
algorithm in (37); i.e.

min
̂Wm

‖ Ŵm ‖1 s.t. ‖ LH
xt Ŵm −L−1

xt h̄m ‖22 ≤ εxt (36)

Ŵm = OMP
(
L−1

xt h̄m,LH
xt , ‖LH

xt Ŵm − L−1
xt h̄m‖22 ≤ εxt

)
(37)

The constraint in (37) can be placed, instead, on the sparsity
level (number of active taps) of the canceler if the system
is constrained by a certain complexity level. Next, we derive
an expression for the data rate loss and show how εxt can be
chosen to control this loss. Denoting the tone width by B Hz,
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the resulting data rate of the mth line at the kth tone using the
designed sparse self FEXT canceler is given from (33) by

Rm(Ŵm) = BLog2

(
1 +

Sm/Γ

ζm,min + ζm,excess(Ŵm)

)

� BLog2

(
Sm/Γ

ζm,min

)
− BLog2

(
1 +

ζm,excess(Ŵm)

ζm,min

)
� Rm,max −Rm,loss (38)

where the above approximation is valid since DSL is a high-
SNR environment and Rm,loss represents the data rate loss in-
curred by the sparse self FEXT canceler design. Furthermore,
Γ is the SNR gap defined as Γ = γm

3γc

(
Q−1(Pe/4)

)2
where

γc, γm, and Pe denote the coding gain, noise margin, and the
target bit error-rate, respectively [24]. The function Q−1(.) is
the well-known inverse Q-function. Since ζm,excess(Ŵm) ≤
εxt (as ensured by the designs in (36) and (37)), the data
rate loss is bounded as Rm,loss ≤ BLog2 (1 + εxt/ζm,min).
Hence, εxt is chosen to control the acceptable data rate loss.
Furthermore, it has been empirically shown that most of the
self FEXT emanates from few neighboring pairs. Hence, the
matrix H̄ is sparse and, thus, our proposed technique can
effectively cancel most of the self FEXT using substantially
fewer taps per tone than those of the MMSE design. We
conclude this section by mentioning that we have successfully
applied our sparse FIR equalizer design framework to design
sparse beamforming antenna arrays to reduce their complexity.
Due to lack of space, the details will be reported elsewhere.

VI. SIMULATION RESULTS

In all the simulations, we use the greedy algorithms2

described in Section II to obtain the sparse solutions because
they, unlike the l1-norm minimization approach, provide con-
trol over the number of nonzero filter coefficients.

A. Sparse Equalization Results

We simulate the performance of our proposed sparse equal-
izer design for various channel models. For a given γmax, we
compute the corresponding ε via (13), compute the sparse
tap weights vector using the OMP algorithm, and calculate
the active taps (having nonzero weights) percentage of the
total filter span. For example, in SISO-DFEs, the FFF span
is lNf and the FBF span is Nb. When the MMSE solution
is used, the number of active filter taps equals the filter span.
For LEs, we use Δ ≈ Nf+ν

2 [21], while for DFEs, we use
Δ = Nf − 1 which is optimum when Nb = ν [20]. The noise
is modeled as additive white Gaussian with one-sided power
spectral density level denoted by No. We define the input SNR
as SNRI � 10Log10

(
εx
No

)
and use Nf = 35 and Nb = ν.

In Fig. 1, we show the performances of the sparse SISO-
DFE and MIMO-DFE for the ITU Vehicular A channel [25]
which has a sparse power-delay profile (PDP) with six nonzero
paths spanning about eleven symbol durations. For the sparse
SISO-DFE, we plot the active FFF taps percentage of lNf ,
the active FBF percentage of Nb, and the total active taps

2We use OMP for all problems except for finding the TIR taps where we
use OLS.
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Fig. 1. Active taps percentage versus γmax for SISO-DFEs (dashed lines)
and MIMO-DFEs (solid lines) with SNRI=10 dB for the Vehicular-A channel.
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Fig. 2. Single realizations of MMSE and sparse SISO-DFEs FFF impulse
responses with SNRI=25dB and γmax=0.3dB for the ITU Vehicular-A channel.
The equalizer taps for the indices below 35 are too insignificant to show.

percentage of (lNf + Nb) versus γmax with l = 2 samples
per symbol. The percentage savings in the FFF tap weights
are more than those in the FBF tap weights which is a
desirable feature for systems using binary or quadrature phase
shift keying (BPSK or QPSK) modulation where the real and
imaginary parts of the FBF input are either +1 or -1 thanks
to the slicer preceding the FBF. Hence, the FBF operations
are simple additions and subtractions, i.e. no multiplications,
unlike the FFF whose input samples are continuous-valued.
Since lNf > Nb, the total active taps percentage is closer to
the active FFF taps percentage than to the FBF taps percentage
as shown in Fig. 1. The performance of the sparse MIMO-
DFE is also shown in Fig. 1 where the active FFF, FBF, and
total taps percentages are plotted versus γmax. We observe
that allowing a maximum ŜNR loss of 0.2dB reduces the
total number of active taps by more than 70% for both
SISO-DFEs and MIMO-DFEs! Our sparse FIR equalization
approach becomes even more advantageous in the MIMO
case where the total number of FFF and FBF taps, for the
non-sparse solution, increases with nino and n2

i , respectively.
Comparing the active taps percentages of the SISO-DFE and
the MIMO-DFE at the same γmax reveals that the latter needs
more taps to mitigate both ISI and inter-antenna interference.
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Fig. 3. Active total taps percentage versus γmax for SISO-DFEs (dashed
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modulation is used.

Fig. 2 shows a single realization of both the MMSE solution
and the sparse solution for SISO-DFEs. The performances of
the sparse SISO-DFE and MIMO-DFE are shown in Fig. 3 for
non-sparse channel PDPs; namely, a 12-paths uniform PDP
and an 8-paths exponentially decaying PDP with a decaying
rate of 1 dB per path. On the same figure, we show the
performance for the ITU Vehicular A channel for comparison.
Inspecting Fig. 3, we observe that as the number of significant
paths in the channel PDP increases, more active taps are
needed to equalize the channel.

Next, we investigate the bit-error-rate (BER) performance
of our sparse FIR equalizers with uncoded BPSK modulation.
Both SISO-DFE and MIMO-DFE cases are investigated in Fig.
4 where we plot the BER versus SNRI for different values of
γmax. The value γmax = 0dB represents the optimum MMSE
non-sparse solution where all the equalizer taps are active. For
the SISO-DFE case, our sparse design with γmax = 0.2 dB and
0.4 dB results in a maximum SNRI loss of 0.25dB and 0.5dB;
however, the number of equalizer taps is reduced by 78.3% and
82.9%, respectively. Furthermore, as expected, the diversity
gains of the MIMO-DFE over the SISO-DFE are observed
at high values of SNRI. In Fig. 5, we compare our sparse
equalization approach with that in [1] where the whole MMSE
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Fig. 5. BER comparison between our sparse equalization approach and
the strongest-taps approach for LEs with different sparsity levels (active taps
percentages), l = 2, and BPSK modulation.

equalizer tap vector is computed but only the F strongest taps
are selected. We refer to the approach in [1] as the “strongest-
taps” approach. In addition to the performance superiority of
our approach compared to the strongest-taps approach, the
computational complexity of the latter is less than that of the
former where the inversion of an lNf× lNf matrix is required
to compute the whole MMSE solution as in (9). However, our
OMP-based approach requires the inversion of an F×F matrix
where F << lNf for all practical purposes.

B. Channel Shortening Results

We simulate the performance of our sparse TIR design and
denote the number of nonzero CIR taps by Lch. We compare
our sparse TIR design with the TIR design in [11] which we
denote by the “strongest-paths” design. Also, we follow the
noise model and the input SNR definition in Section VI-A.

The unit tap index, it, and the decision delay should be
chosen carefully since suboptimum choices can degrade the
performance significantly. However, a near optimum perfor-
mance is achieved with these parameters chosen in the vicinity
of (Nf + ν)/2 as shown in [22]. In the rest of simulations,
we optimize these parameters to compare the contiguous,
strongest-paths, and our sparse noncontiguous TIR designs.
In Fig. 6, we plot SNRo(wopt) versus Nf for the ITU Vehicular
A channel with Nb ranging from 1 (lower curves) to Lch − 1
(upper curves). Recall that (Nb +1) represents the number of
TIR taps. As Nb increases, the output SNR increases for all
TIR designs as expected which means that the TIR becomes
more accurate in approximating the actual CIR. However,
we observe that our sparse noncontiguous design of the TIR
performs better than the other designs for all choices of Nf

and Nb. Results for nonsparse channels are shown in [22].
From Fig. 6, we observe that our sparse design with Nb = 3
outperforms both the contiguous MMSE and the strongest-
paths designs with Nb = 5 over the whole range of Nf and
for Nf ≥ 30, respectively. Therefore, allowing the TIR taps
to be noncontiguous results in a better performance at the
same complexity (measured by Nb) or in a lower complexity
at the same performance. The complexity is measured by Nb

because the number of TIR trellis states (directly impacts the
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Fig. 7. BER versus SNRI for various TIR designs with MLSE detection for
Vehicular A CIR with Nf = 40, Nb = 3, and BPSK modulation.

ML/MAP detectors complexity) increases exponentially with
Nb. The number of states for the contiguous design is 2(Nb+1).
Although the number of trellis states for the noncontiguous
TIR design is larger than that for the contiguous one due to the
spread of the TIR taps, the algorithm in [26] can be employed
to reduce the number of computations. Alternatively, the belief
propagation (BP) algorithm can be used since its complexity is
exponential only in Nb regardless of the nonzero taps locations
[11]. However, the BP algorithm suffers from short cycles
which impact the accuracy of the messages independence
assumption. In our simulations, we use the ML (BP) algorithm
if the span of nonzero TIR taps is less (greater) than the
maximum capacity of the simulation tool, respectively.3 The
superiority of our sparse TIR design over the contiguous and
strongest-taps TIR designs is evident in Fig. 7 where the
former outperforms the contiguous and strongest-taps designs
by about 3.3 dB and 1.3 dB, respectively, at BER ≈ 10−4.
Furthermore, both contiguous and strongest-taps designs reach
their error floors earlier than our sparse TIR design where
the error floors in Fig. 7 are due to the residual channel
shortening MSEs. Furthermore, our sparse TIR design reduces
the error floor by about one order of magnitude compared to

3BP is not used by itself to reduce the impact of short cycles.

0 10 20 30 40 50 60 70 80 90 100
5

10

15

20

25

30

35

40

Active FEXT cancellation taps percentage (%) 

D
a

ta
 r

a
te

 p
e

r 
lin

e
 (

M
b

p
s)

 

 

Full FEXT Cancellation

Partial FEXT Cancellation (σ = 12 dB)

Partial FEXT Cancellation (σ = 10 dB)

Downstream

Upstream

Fig. 8. Achievable downstream (solid lines) and upstream (dashed lines)
data rates per line versus active taps percentage for various σ levels.

the strongest-paths TIR designs and by more than one order
of magnitude compared to the contiguous TIR design.

C. Sparse Self FEXT Cancellation Results

The parameters of the simulated vectored VDSL system are
listed as follows. The numbers of active downstream (DS) and
upstream (US) tones are 1568 and 1209 tones, respectively, the
transmitted signal and noise power spectral densities are flat
at -60 and -140 dBm/Hz, respectively, the lengths and types of
all twisted pairs are 1000 meters and 24-Gauge, respectively,
L = 25 loops, B = 4.3125 KHz, Γ = 13 dB, γc = 3 dB, γm =

6 dB, and Pe = 10−7. We use the analytical model
∣∣∣Hk

(m,m)

∣∣∣2
= exp

(
−1.158 lm

√
fk

lo

)
with linear phase for the direct transfer

functions [27] where exp(.) is the exponential function, fk is
the frequency of the kth tone in KHz, lm is the mth loop
length in meters, and lo = 548.8 meters is the reference
length. For self FEXT, we use the model in [28] where Hk

(m,n)

=
∣∣∣Hk

(n,n)

∣∣∣ exp (jφ(fk)) 10−0.05 ρ(fk) where j �
√−1 and

φ(fk) is a random variable uniformly distributed in the interval
[0, 2π] radians which models the channel phase dispersion
over the kth tone. Furthermore, ρ (fk) is a Gaussian random
variable expressed in dB with standard deviation σ and mean
μ = 2.33σ which models the spatial magnitude dispersion
of the FEXT coupling channel over the kth tone. The value
of σ in dB specifies the spatial coupling dispersion, i.e. as σ
increases, the number of dominant crosstalkers decreases and
H̄ becomes more sparse. Moreover, if σ = ∞, H̄ becomes
diagonal, i.e. there is no self FEXT. Furthermore, no alien
crosstalk is assumed since vectoring is performed over all L
pairs in the binder. It can be shown that when σ = 10 dB,
about 90% of the FEXT power originates from just 4 or 5
lines which is typical in practice. Fig. 8 shows the achievable
DS and US4 data rates per line in Mbps versus the active
taps percentage in Ŵm for various values of σ. For practical
values of σ such as σ = 10 dB, we achieve 50% reduction in
run-time complexity at a DS data rate loss of only 0.59 Mbps
per line. The achievable data rates of all lines will be the same
because they are all assumed to have the same length.

4We use the frequency plan and the tone assignment in [29].
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VII. CONCLUSION

We proposed a novel approach for sparse FIR filter design
and applied it to three broadband communication scenarios.
First, we formulated convex programs and greedy algorithms
to design sparse fractionally-spaced FIR LEs, SISO-DFEs,
and MIMO-DFEs where dramatic complexity reductions are
achieved at a small performance loss compared to the con-
ventional MMSE non-sparse FIR equalizer design. Second,
we proposed a novel approach to design the TIR for the
channel shortening problem by allowing the TIR taps to be
noncontiguous to have a larger search space for the TIR
taps. The new sparse TIR design was shown to yield a
lower channel shortening MSE compared to the conventional
MMSE contiguous TIR design. Third, we designed a per-
tone partial self-FEXT canceler for vectored VDSL systems
where only a subset of the cancellation taps is activated
resulting in substantial complexity reductions. We demonstrate
a significant reduction in crosstalk cancellation complexity at
small data rate losses compared to theoretical limits.
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