

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript

The version presented in WRAP is the author’s accepted manuscript and may differ from the

published version or Version of Record.

Persistent WRAP URL:

http://wrap.warwick.ac.uk/122225

How to cite:

Please refer to published version for the most recent bibliographic citation information.

If a published version is known of, the repository item page linked to above, will contain

details on accessing it.

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the

University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the

individual author(s) and/or other copyright owners. To the extent reasonable and

practicable the material made available in WRAP has been checked for eligibility before

being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit

purposes without prior permission or charge. Provided that the authors, title and full

bibliographic details are credited, a hyperlink and/or URL is given for the original metadata

page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further

information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/122225
mailto:wrap@warwick.ac.uk

A New Deterministic Algorithm for Dynamic Set Cover

Sayan Bhattacharya∗ Monika Henzinger† Danupon Nanongkai‡

Abstract

We present a deterministic dynamic algorithm for maintaining a (1+ǫ)f -approximate minimum cost

set cover with O(f log(Cn)/ǫ2) amortized update time, when the input set system is undergoing element

insertions and deletions. Here, n denotes the number of elements, each element appears in at most f sets,

and the cost of each set lies in the range [1/C, 1]. Our result, together with that of Gupta et al. [STOC‘17],

concludes a line of work on dynamic set cover: We can now obtain a deterministic algorithm for this

problem with O(f log(Cn)) amortized update time and O(min(log n, f))-approximation ratio, thereby

matching the polynomial-time hardness of approximation for minimum set cover in the static setting.

Our update time is only O(log(Cn)) away from a trivial lower bound.

Prior to our work, the previous best approximation ratio guaranteed by deterministic algorithms was

O(f2), which was due to Bhattacharya et al. [ICALP‘15]. In contrast, the only result that guaranteed

O(f)-approximation was obtained very recently by Abboud et al. [STOC‘19], who designed a dynamic

algorithm with (1+ǫ)f -approximation ratio and O(f2 log n/ǫ) amortized update time. Besides the extra

O(f) factor in the update time compared to our and Gupta et al.’s results, the Abboud et al. algorithm is

randomized, and works only when the adversary is oblivious and the sets are unweighted (each set has

the same cost).

We achieve our result via the primal-dual approach, by maintaining a fractional packing solution as a

dual certificate. This approach was pursued previously by Bhattacharya et al. and Gupta et al., but not in

the recent paper by Abboud et al. Unlike previous primal-dual algorithms that try to satisfy some local

constraints for individual sets at all time, our algorithm basically waits until the dual solution changes

significantly globally, and fixes the solution only where the fix is needed.

∗University of Warwick, UK. Email: S.Bhattacharya@warwick.ac.uk
†University of Vienna, Austria. Email: monika.henzinger@univie.ac.at
‡KTH Royal Institute of Technology, Sweden. Email: danupon@kth.se

Contents

1 Introduction 1

1.1 Technical Overview . 2

2 Preliminaries: Minimum Set Cover in the Static Setting 5

3 Our Dynamic Algorithm 6

3.1 A classification of elements . 7

3.2 The shadow input and the invariants . 8

3.3 The algorithm . 8

3.4 The REBUILD(≤ k) subroutine . 10

4 Analysis of our dynamic algorithm 10

4.1 Bounding the update time of our dynamic algorithm . 12

4.2 Bounding the approximation ratio of our dynamic algorithm 13

A A Static Primal-Dual Algorithm for Minimum Set Cover 17

A.1 Post-processing . 19

B A detailed description of the REBUILD(≤ k) subroutine 19

B.1 The subroutine FIX-LEVEL(k,S ′, E ′) . 21

1 Introduction

In the (static) set cover problem, an algorithm is given a collection S of m sets over a universe E of n
elements such that ∪s∈Ss = E . Each set s ∈ S has a positive cost cs. After scaling these costs by some

appropriate factor, we can always get a parameter C > 1 such that:

1/C ≤ cs ≤ 1 for every set s ∈ S. (1.1)

For any S ′ ⊆ S , let c(S ′) =
∑

s∈S′ cs denote the total cost of all the sets in s ∈ S ′. We say that a set s ∈ S
covers an element e ∈ E iff e ∈ s. Our goal is to pick a collection of sets I ⊆ S with minimum total cost

c(I) so as to cover all the elements in the universe E .

Set cover is a fundamental optimization problem that has been extensively studied in the contexts of

polynomial-time approximation algorithms and online algorithms. In recent years, it has received significant

attention in the dynamic algorithms community as well, where the goal is to maintain a set cover I ⊆ S
of small cost efficiently under a sequence of element insertions/deletions in E . In particular, a dynamic

algorithm for set cover must support the following update operations.

PREPROCESS(m): Create m empty sets in S . Return I = ∅, and identifiers (e.g., integers) to the sets in S .

INSERT(F = {s1, s2, . . .}): Insert to E a new element e which belongs to the sets s1, s2, . . . (their identifiers

are given as parameters). Return an identifier to the new element e, and the identifiers of sets that get added

to and removed from I.

DELETE(e): Delete element e from E . Return the identifiers of sets that get added to and removed from I.

After each update, the algorithm must guarantee that I is a set cover; i.e. every element e ∈ E is in

some set in I. Let f and n be the maximum size of F and E , respectively, over all updates. The parameter

f is known as the maximum frequency. It is usually assumed that f, n and m are known and fixed in the

beginning, but note that our algorithm does not really need this assumption.1

The performance of dynamic algorithms is mainly measured by the update time, the time to handle each

INSERT and DELETE operation. Previous works on set cover focus on the amortized update time, where an

algorithm is said to have an amortized update time of t if, for any k, the total time it spends to process the

first k updates is at most kt. We also consider only the amortized update time in this paper, and simply use

“update time” to refer to “amortized update time”. The time for the PREPROCESS operation is called the

preprocessing time. It is typically not a big concern as long as it is polynomial.2

Perspective: Since the static set cover problem is NP-complete, it is natural to consider approximation

algorithms. An algorithm has an approximation ratio of α if outputs a set cover I with c(I) ≤ α · OPT ,

where OPT is cost of the optimal set cover. Since the tight approximation factors for polynomial-time static

set cover algorithms are Θ(log n) and Θ(f) (e.g. [13, 12, 11, 19, 16]), it is natural to ask if one can also

obtain these same guarantees in the dynamic setting with small update time. The O(log n) approximation

ratio was already achieved in 2017 via greedy-like techniques by Gupta et al. [14]. Their algorithm is

deterministic and has O(f log n) update time. This update time is only O(log n) away from the trivial

Ω(f) lower bound – the time needed for specifying the sets that contain a given element (which is currently

being inserted). A similar lower bound holds even in some settings where updates can be specified with

less than f bits [1], e.g., when elements and sets are fixed in advance, and the updates are activations

and deactivations of elements.3 The O(f) approximation ratio was recently achieved by Abboud et al. [1]

(improving upon the approximation factors of O(f2) and higher by [7, 14, 5]). Abboud et al. show how to

1We mention that our algorithm do not really need the preprocessing step. When INSERT(F = {s1, s2, . . .}) is called with a

new set si, it can simply create si on the fly.
2Our algorithm requires only linear preprocessing time.
3Abboud et al. [1] showed that, under SETH, there is no algorithm with polynomial preprocessing time and f1−δ update time

for any constant δ > 0 when elements and sets are fixed in advance, and the updates are activations and deactivations of elements.

1

Reference Approximation Ratio Update Time Deterministic? Weighted?

[14] O(log n) O(f log n) yes yes

[14, 5] O(f3) O(f2) yes yes

[7] O(f2) O(f log(m+ n)) yes yes

[1] (1 + ǫ)f O(f2 log n/ǫ) no no

Our result (1 + ǫ)f O(f log(Cn)/ǫ2) yes yes

Table 1: Summary of results on dynamic set cover

maintain an (1 + ǫ)f -approximation in O(f2 log n/ǫ) amortized update time. Their algorithm, however, is

randomized and does not work for the weighted case (when different sets have different costs).4 Like most

randomized dynamic algorithms currently existing in the literature, it works only when the future updates

do not depend on the algorithm’s past output – this is also known as the oblivious adversary assumption.

Removing this assumption is a central question in this area, since it may in general make many dynamic

algorithms useful as subroutines inside fast static algorithms [10, 18, 4, 3, 17, 8, 15]. Accordingly, prior to

our work, it was natural to ask if there is an efficient O(f)-approximation algorithm for dynamic set cover

that is deterministic and/or can handle the weighted case. In this paper we answer this question positively.

Theorem 1.1. We can maintain a (1 + ǫ)f -approximate minimum-cost set cover in the dynamic setting,

deterministically, with O(f log(Cn)/ǫ2) amortized update time, where C is the ratio between the maximum

and minimum set costs.

Thus, we simultaneously (a) improve upon the update time of Abboud et al. [1], (b) derandomize their re-

sult, and (c) extend their result to the weighted case. Our algorithm, together with the one in Gupta et al. [14],

concludes a line of work on dynamic set cover [5, 7, 14, 1]. We can now get an O(min(log n, f))-
approximation using a deterministic algorithm with O(f log(Cn)) update time. The approximation ratio

matches the one achievable by the best possible polynomial-time static algorithm, whereas the update time

is only O(log(Cn)) away from the lower bound of Ω(f).

1.1 Technical Overview

Previous Approaches: The primal-dual schema is a powerful tool for designing many static approximation

algorithms. In recent years, it has also been the main driving force behind deterministic dynamic algorithms

for set cover and maximum matching (e.g. [6, 9, 5, 7, 14]), including all O(poly(f))-approximations for

dynamic set cover except the one by Abboud et al. [1].

The dual of minimum set cover happens to be a fractional packing problem, which is defined as follows.

Given a set system (S, E) as input, we have to assign a fractional weight w(e) ≥ 0 to every element. We

want to maximize
∑

e∈E w(e), subject to the following constraint:

∑

e∈s

w(e) ≤ cs for every set s ∈ S. (1.2)

For the rest of this paper, we let W (s) =
∑

e∈sw(e) denote the total weight received by a set s ∈ S from

all its elements. Furthermore, define w(S) =
∑

e∈S w(e) for every subset of elements S ⊆ E . Thus, the

goal is to maximize w(E) subject to the constraint that W (s) ≤ cs for all sets s ∈ S .

4A fundamental difficulty to extend Abboud et al.’s algorithm to the weighted case is the static algorithm it is based on. This

static algorithm repeatedly picks an element e that is not yet covered, and adds all sets e belong to in the set cover solution. It is

easy to prove that this algorithm returns an f -approximation in the unweighted case. It is also easy to construct an example that

shows that this algorithm cannot guarantee any reasonable approximation ratio for the weighted case.

2

Let OPT (S, E) denote total cost of the minimum set cover in (S, E). We simply use OPT when (S, E)
is clear from the context. All the previous primal-dual algorithms for dynamic set cover try to maintain

some invariants about individual sets all the time. In particular, they are based on the following lemma.

Lemma 1.2. Consider any fractional packing w in (S, E) that satisfy (1.2). Then we have w(E) ≤
OPT (S, E). In addition, if there exist a set-cover I ⊆ S of E and an α ≥ 1 such that

W (s) ≥ cs/α for all sets s ∈ I, (1.3)

then we have c(I) ≤ αf · w(E) ≤ αf ·OPT (S, E).

All the previous dynamic primal-dual algorithms maintain a set cover I and a fractional packing w that

satisfy (1.3). Needless to say, the algorithms have to change I and the weights w(e) of some elements

e in a carefully chosen manner after each update. For example, the algorithm of Bhattacharya et al. [7]

satisfies (1.3) with α = O(f), implying an O(f2)-approximation factor. To obtain an O(f) approximation

factor we need to satisfy (1.3) with α = O(1). However, as pointed out by Abboud et al. [1], it is not clear

how to maintain such a strict constraint efficiently for α = O(1). The trouble is that one update may violate

(1.3) and may cause a sequence of weight changes for many elements. This creates difficulties for bounding

the update time (which typically require intricate arguments via clever potential functions).

Because of this difficulty, Abboud et al. opted for a different approach that is based on the following

static algorithm. (i) Pick any uncovered element e uniformly at random, called pivot. (ii) Include all sets

containing e in the set cover solution. (iii) Repeat this process until all elements are covered. It is easy to

see that this algorithm returns an f -approximation for the unweighted case (when every set has the same

cost). Since this approximation ratio does not hold for the weighted case in the static setting, it seems

difficult to extend the approach of Abboud et al. to the weighted case. More importantly, in the analysis

of their algorithm in the dynamic setting, Abboud et al. crucially rely on randomness and the oblivious

adversary assumption. This allows them to argue that before a pivot element gets deleted, many other non-

pivot elements must also get deleted in expectation. Thus they can charge the time their algorithm needs in

handling the deletion of a pivot to the (large number of) non-pivot elements that got deleted in the past. This

type of argument was also used for maintaining a maximal matching [2, 20]. To the best of our knowledge,

there was no technique to derandomize this type of argument. In fact, all the known deterministic dynamic

algorithms for set cover and matching use the primal-dual schema. This leads to a basic question: Is the

primal-dual approach powerful enough to give an O(f)-approximation algorithm for dynamic set cover?

We answer this question in the affirmative. Unlike previous dynamic primal-dual algorithms, which try

to satisfy conditions like (1.3) that are local to individual sets, our algorithm basically waits until the dual

solution changes significantly globally, and then it fixes the solution only where the fix is needed.

Our Approach and the Showcase (Batch Deletion). To appreciate our main idea, consider the batch

deletion setting, where we have to preprocess a set system (S, E) and then there is an update D ⊆ E that

changes the set system to (S, E ′), where E ′ = E \D. Our goal is to recompute an approximately minimum

set cover in the new input (S, E ′) in time proportional to the size of the update (i.e., |D|).
Suppose that originally we have a pair (I, w) that satisfies (1.3) with α = 1 for (S, E); thus, c(I) ≤

f ·w(E) ≤ f ·OPT (S, E). Clearly, I remains a set cover of the new set system (S, E ′). To simplify things

even further, suppose that the element-weights are uniform,5 and |D| ≤ ǫ · |E ′| for some ǫ > 0. This implies

that w(D) ≤ ǫ · w(E ′). So Lemma 1.2 gives us:

c(I) ≤ f · w(E) = f ·
(

w(E ′) + w(D)
)

≤ f(1 + ǫ) · w(E ′) ≤ f(1 + ǫ) ·OPT (S, E ′).

Observation 1.3. If |D| ≤ ǫ · |E ′| and the element-weights are uniform, then c(I) ≤ f(1+ ǫ) ·OPT (S, E ′).

5This means that w(e) = δ for every e ∈ E (for some δ ≥ 0).

3

In words, I remains a good approximation to OPT (S, E ′) if |D| is small. Thus, intuitively we do not

need to do anything when |D| ≤ ǫ · |E ′|. This is already different from previous primal-dual algorithms that

might have to do a lot of work, since (1.3) might be violated. In contrast, when |D| becomes larger than

ǫ · |E ′|, in O(f · |E ′|) time we can just compute a new pair (I ′, w′) satisfying (1.3) with α = 1 for the set

system (S, E ′). Since we do this only after ǫ · |E ′| deletions, we get an amortized update time of O(f/ǫ).
One lesson from the above argument is this: Instead of trying to satisfy (1.3), we might benefit from

dealing with D only when it is large enough, for this might help us ensure that the amortized update time

remains small. Of course this is easy to argue under the uniform weight assumption, which often makes the

situation too simple. The following lemma is the key towards doing something similar in the general setting.

Lemma 1.4. Define s>x = {e ∈ s : w(e) > x} for every set s ⊆ E of elements. Suppose that:

|D>x| ≤ ǫ · |E ′>x| for all x ≥ 0. (1.4)

Then we have w(D) ≤ ǫ · w(E ′), and thus c(I) ≤ f(1 + ǫ) ·OPT (S, E ′).

Proof sketch. Note that w(e) =
∫∞

0 ✶(x < w(e))dx, where ✶(x < w(e)) is one if x < w(e), and zero

otherwise. Thus, we have:

∑

e∈D

w(e) =

∫ ∞

0

∑

e∈D

✶(x < w(e))dx =

∫ ∞

0
|{e ∈ D : w(e) > x}|dx =

∫ ∞

0
|D>x|dx

≤ ǫ ·

∫ ∞

0
|E ′>x|dx = ǫ ·

∫ ∞

0
|{e ∈ E ′ : w(e) > x}|dx = ǫ ·

∑

e∈E ′

w(e).

Lemma 1.4 tells us that if |D>x| ≤ ǫ · |E ′>x| for all x, then we do not have to do anything. When

|D>x| > ǫ|E ′>x| for some x, we need to “fix” I. We do so by running a static algorithm on some sets and

elements. The static algorithm is described in Algorithm 1.5. We describe how to use it in Algorithm 1.6.

Algorithm 1.5 (Static uniform-increment). Given an input (Ŝ, Ê), start with ŵ(e) ← 0 for all e ∈ Ê and

Î ← ∅. Repeat the following until Î covers all elements: (i) Raise weights ŵ(e) at the same rate for every

e ∈ Ê not covered by Î, until some sets s in Ŝ \ Î are tight (i.e. W (s) = cs). (ii) Add such sets to Î.

Algorithm 1.6 (Batch deletion algorithm). Initially, compute (I, w) by running Algorithm 1.5 on (S, E).
To handle D, let x∗ be the minimum x such that (1.4) is violated and do the following. (Do nothing if (1.4)

is not violated at all.) Run Algorithm 1.5 to compute (Î, ŵ) for (S>x∗ , E ′>x∗), where S>x∗ = {s ∈ S :

s ∩ E>x∗ 6= ∅}. Set I ← (I \ S>x∗) ∪ Î, D = D \D>x∗ , and w(e) = ŵ(e) for all e ∈ E>x∗ .

In short, Algorithm 1.6 fixes I by running the static Algorithm 1.5 on input (S>x∗ , E ′>x∗). We can

implement Algorithm 1.5 in O(|S>x∗ |+|E ′>x∗ |) = O(f |E>x∗ |) = O(f |D>x∗ |/ǫ) time approximately.6 This

gives an amortized update time of O(f/ǫ), since we can charge the O(f |D>x∗ |/ǫ) time spent in “fixing” I
to the elements in D>x∗ that got deleted. The lemma below implies the correctness of this strategy.

Lemma 1.7. (i) Let (I, w) denote the output of Algorithm 1.5 when given (S, E) as input. For every x ≥ 0,

the subset of elements E \ E>x is covered by I \ S>x. (ii) After processing D, Algorithm 1.6 produces D, I,

and w that satisfy (1.4); which implies that c(I) ≤ (1 + ǫ)f ·OPT (E ′).

Proof Idea. For (i), Algorithm (1.5) stops raising the weight of some element e ∈ E \ E>x only when some

set s containing e is tight. At this point we also stop raising the weight of every element in s, making

s ∈ I \ S>x. For (ii), an intuition is that Algorithm 1.6 has subtracted from D all D>x that violate (1.4).

This subtraction does not increase D>x for any x, and, thus, does not create any new violation to (1.4).

6We can implement an approximate version of Algorithm 1.5, where element weights are in the form (1+ǫ)i for some i, and we

say that a set s is tight if W (s) ≥ cs/(1 + ǫ), increasing the approximation ratio by another (1 + ǫ) multiplicative factor. It is not

hard to see that this can be done in O((|S>x∗ |+ |E>x∗ |) log(n)/ǫ) time. We further show that the log n term can be eliminated.

4

Lemma 1.7(i) implies that we can add/remove to/from I sets in S>x∗ without worrying about the cov-

erage of elements in E \ E>x∗ (they will be covered even when we remove all sets in S>x∗ from I). Conse-

quently, we can guarantee that after processing D, Algorithm 1.6 produces a set I that covers all elements.

Lemma 1.7(ii) immediately implies the claimed approximation guarantee. Note that it is crucial to apply

our new Lemma 1.4 with appropriate D, I, and w, which are changed after Algorithm 1.6 processes D.

Note that running Algorithm 1.5 at the preprocessing is crucial for the correctness of Algorithm 1.6, as

otherwise I might not cover all elements after Algorithm 1.6 finishes. In other words, Lemma 1.7(i) might

not be true if we replace Algorithm 1.5 by some other static algorithm.7 We believe that this is key that

gives the running time improvement over Abboud et al.’s algorithm, since otherwise we may have to spend

more time checking if other elements remain covered. (This is essentially what happened in Abboud et al.’s

algorithm.) Note that Algorithm 1.5 was also used in previous dynamic algorithms [5, 7, 14], but to our

knowledge it does not play a role in the correctness of those algorithms like in our algorithm.

One detail to mention is how Algorithm 1.6 finds x∗. One simple way is to round element weights to

the form (1 + ǫ)i for integers i. (We refer to such i as the level of an element in the rest of this paper.)

With this rounding, we simply have to search for O(log(Cn)) different choices of x∗, where C is defined in

Theorem 1.1. The total update time amortized over deletions in D becomes O(log(Cn) + f/ǫ).

The Fully-Dynamic Algorithm (Sketched). Extending the above algorithm to handle more deletions is

rather straightforward: We include a newly deleted element to D, check for x∗, and then fix (S>x∗ , E ′>x∗)
as in Algorithm 1.6 if such a x∗ exists. Handling insertions, on the other hand, is more intricate. When an

element e is inserted, we set its weight w(e) to the maximum possible value to make some set s containing

e tight, i.e.
∑

e∈E∪D w(e) = cs (note that elements in D also contribute to the weights of sets). This means

that if e is already in a tight set, then w(e) = 0. Otherwise, it is increased until a new tight set s is created,

which will be added to I. We keep the newly inserted elements in a separate set (call it E ′ for now) because

they do not get weights in the uniform way (like when we run Algorithm 1.5).8 When Algorithm 1.6 calls

Algorithm 1.5 on some (S>x∗ , E ′>X∗), it will try to include in a greedy manner elements from E ′ in the

uniform weight increment process and move them to E . See Section 3 and Appendix B for the details.

2 Preliminaries: Minimum Set Cover in the Static Setting

In this section, we describe some basic concepts about the set cover problem in the static setting. We use

the notations that were introduced in Section 1. We start with a simple lemma that follows from LP-duality.

Lemma 2.1. Consider a valid set cover S ′ ⊆ S and an assignment of nonnegative weights {w(e)} to every

element e ∈ E that satisfy (1.2). If c(S ′) ≤ α ·
∑

e∈E w(e), then S ′ is an α-approximate minimum set cover.

In Section 1, we described a simple static primal-dual algorithm that returns an f -approximate minimum

set cover (see Algorithm 1.5). We now consider a discretized variant of the above algorithm, which increases

the weights of elements in powers of (1 + ǫ), instead of increasing these weights in a continuous manner.

This results in a hierarchical partition of the set-system (S, E), which assigns the sets and elements to

different levels. In Appendix A, we explain how the algorithm generates this hierarchical partition. Here,

7Consider, e.g., when E = {e1, . . . , e12}, S = {s1 = {e1, . . . , e10}, s2 = {e10, e11, e12}}, cs1 = cs2 = 10, and D = {e12}.
If we start with all element-weights being zero except w(e1) = w(e12) = 10, a deletion of e12 causes D>0 = {e12} and

E ′
>0 = {e1}, making the new set system to violate (1.4) at x = 0. But it is not enough to change only the weight of e1 which is the

only element in E ′
>0. Lemma 1.7(i) guarantees that this will not happen if (I, w) is computed in a certain way as in Algorithm 1.5.

8In particular, we can show that weights of all elements in the set system (S, E ∪ D) are as if we run the static algorithm

(Algorithm 1.5) on this set system. We cannot say the same for (S, E ∪D ∪ E ′).

5

we only state some important properties of the partition and show how these properties imply a (1 + ǫ)f -

approximation for the minimum set cover problem. For the rest of the paper, we fix two parameters ǫ, L.

0 < ǫ < 1/2 and L = ⌈log(1+ǫ)(C · n)⌉+ 1. (2.1)

Next, we discretize the costs {cs} of the sets in powers of (1 + ǫ). This will lead to a loss of only an

(1 + ǫ)-factor in the approximation ratio. Accordingly, from now on we assume that:

For every set s ∈ S, we have cs = (1 + ǫ)−b(s) for some integer b(s) ≥ 0. (2.2)

Henceforth, we refer to b(s) as the base level for the set s ∈ S . It is easy to check that L ≥ b(s) for all

sets s ∈ S . The algorithm outputs a hierarchical partition of the set-system (S, E), where each set s ∈ S
is assigned to some level ℓ(s) ∈ {b(s), . . . , L}. The level of an element e ∈ E is defined as the maximum

level among all the sets it belongs to, i.e., ℓ(e) = max{ℓ(s) : s ∈ S, e ∈ s}. The following properties hold.

Property 2.2. For every element e ∈ E , we have w(e) = (1 + ǫ)−ℓ(e).

Property 2.3. Every set s ∈ S has 0 ≤W (s) ≤ cs. Further, if ℓ(s) > b(s), then (1+ǫ)−1cs ≤W (s) ≤ cs.

Property 2.4. Every element e ∈ E is contained in at least one set s ∈ S where (1 + ǫ)−1cs ≤W (s) ≤ cs.

Tight and slack sets: We say that a set s ∈ S is tight if (1+ ǫ)−1cs ≤W (s) ≤ cs and slack if 0 ≤W (s) <
(1 + ǫ)−1cs. We now show that the tight sets constitute a small set cover in (S, E).

Lemma 2.5. Let Stight = {s ∈ S : (1 + ǫ)−1cs ≤ W (s) ≤ cs} denote the collection of tight sets. They

form a (1 + ǫ)f -approximate minimum set cover of the input (S, E).

Proof. Since each element belongs to at most f sets, a simple counting argument gives us:

(1 + ǫ)f ·
∑

e∈E

w(e) ≥ (1 + ǫ) ·
∑

s∈S

W (s) ≥
∑

s∈Stight

(1 + ǫ) ·W (s) ≥
∑

s∈Stight

cs = c (Stight) . (2.3)

By Property 2.4, every element e ∈ E is covered by some set in Stight. In other words, the sets in Stight form

a valid set cover. Furthermore, by Property 2.3, we have 0 ≤ W (s) ≤ cs for all sets s ∈ S . Accordingly,

the weights {w(e)} assigned to the elements form a valid fractional packing. From (2.3) and Lemma 2.1,

we now infer that the sets in Stight form a (1+ ǫ)f -approximate minimum set cover of the input (S, E).

Remark: With hindsight, it is easy to figure out why we can require that every set s ∈ S be at a level

ℓ(s) ≥ b(s). For contradiction, suppose that there is a non-empty set s ∈ S at level ℓ(s) = k < b(s).
Since the element-weights {w(e)} form a valid fractional packing, we have W (s) ≤ cs. Now, consider

any element e ∈ s. This gives us (1 + ǫ)−ℓ(e) = w(e) ≤ W (s) ≤ cs = (1 + ǫ)−b(s), which implies that

ℓ(e) ≥ b(s). So every element e ∈ s lies at a level ℓ(e) ≥ b(s). Hence, even if we move the set s up from its

current level k to level b(s), it does not affect the level (and weight) of any element e ∈ s. In essence, this

means that the weight W (s) remains unchanged as we move up the set s from level k to level b(s). Thus,

we can always ensure that ℓ(s) ≥ b(s) for every non-empty set s ∈ S . Finally, note that we can easily place

an empty set s ∈ S at level ℓ(s) = b(s) without affecting the weights and levels of any other element or set.

3 Our Dynamic Algorithm

Consider the minimum set cover problem in a dynamic setting, where the input (S, E) keeps changing via a

sequence of element insertions and deletions. Specifically, during each update, an element is either inserted

into or deleted from the set system (S, E). When an element e is inserted, we get to know about the sets

in S that contain the element e. We assume that f remains an upper bound on the maximum frequency of

an element throughout this sequence of updates (although our dynamic algorithm does not need to know

the value of f in advance). We will present a deterministic dynamic algorithm for maintaining a (1 + ǫ)f -

approximate minimum set cover in this setting with O(f · log(Cn)/ǫ2) amortized update time.

6

3.1 A classification of elements

The main idea behind our dynamic algorithm is simple. We maintain a relaxed version of the hierarchical

partition from Section 2 in a lazy manner. To be more specific, in the preprocessing phase we start with a

set-system (S, E) where E = ∅. At this point, every set s ∈ S is at level ℓ(s) = b(s) and has a weight

W (s) = 0, and Properties 2.2, 2.3, 2.4 are vacuously true. Subsequently, while handling the sequence of

updates, whenever we observe that a significant fraction of elements has been deleted from levels ≤ i for

some i ∈ [0, L], we rebuild all the levels {0, . . . , i} in a certain natural manner. We refer to the subroutine

which performs this rebuilding as REBUILD(≤ i).
Our algorithm gives rise to a classification of elements into three distinct types – active, passive and

dead. Let A,P and D respectively denote the set of active, passive and dead elements. Informally, every

element is active in the hierarchical partition described in Section 2, where we considered the static setting.

To get the main intuition in the dynamic setting, consider an update at some time-step t, and suppose that

this update does not lead to a call to the subroutine REBUILD(≤ i) for any i ∈ [0, L]. Recall that a set s ∈ S
is called tight when its weight lies in the range [(1 + ǫ)−1cs, cs] and slack when its weight lies in the range

[0, (1 + ǫ)−1cs). As in Section 2, suppose that the tight sets in the hierarchical partition form a valid set

cover just before the update at time-step t (see Lemma 2.5). Now, consider three possible cases.

Case (a): The update at time-step t deletes an element e. In this case, we classify the element e as dead.

We continue to pretend, however, that the element e still exists and do not change its weight w(e). Thus, we

take the value of w(e) into account while calculating the weight of any set in the fractional packing solution.

This ensures that the collection of tight sets remains a valid set cover for the current input (S, E).

Case (b): The update at time-step t inserts an element e that belongs to at least one tight set. In this case,

we assign the element e to level ℓ(e) = max{ℓ(s) : s ∈ S, e ∈ s}, classify it as passive, and assign it a

weight w(e) = 0. This ensures that the tight sets continue to remain a set cover in (S, E).

Case (c): The update at time-step t inserts an element e such that all sets containing e are slack. We start

by assigning the element e to level ℓ(e) = max{ℓ(s) : s ∈ S, e ∈ s}. Unlike in Case (b), however, here we

can no longer leave the hierarchical partition unchanged, since in that event the collection of tight sets will

no longer form a valid set cover. We address this issue in the following manner. Let Se denote the collection

of sets containing e. Note that |Se| ≤ f . Let λ > 0 be the minimum value such that if we increase the

weight of each set in Se by an additive λ, then some set s ∈ Se will have weight W ∗(s) = cs. We classify

the element e as passive, and assign it a weight w(e) = λ. This ensures that now the collection of tight sets

again forms a valid set cover. This also leads to a very important consequence, which is stated below.

Claim 3.1. A passive element e receives a weight of w(e) ≤ (1 + ǫ)−ℓ(e) just after getting inserted.

Proof. In Case (b) above, a passive element receives zero weight and the claim trivially holds. For the rest of

the proof, consider the scenario described in Case (c) above. Let s′ ∈ Se be the set whose level is maximum

among all the sets containing e, i.e., s′ ∈ argmax{ℓ(s) : s ∈ Se}. Since the set s′ was slack just before

the insertion of the element e, Property 2.3 implies that ℓ(s′) = b(s′). Thus, we get: ℓ(e) = ℓ(s′) = b(s′).
Recall that λ > 0 is the minimum value such that if we increase the weight of each set s ∈ Se by an additive

λ, then some set s ∈ Se gets weight W ∗(s) = cs. Since cs′ = (1 + ǫ)−b(s′) as per (2.2), we infer that:

W (s′) + λ ≤ cs′ = (1 + ǫ)−b(s′) = (1 + ǫ)−ℓ(e).

Accordingly, we have w(e) = λ ≤ (1 + ǫ)−ℓ(e).

7

3.1.1 Weights of elements

From the discussion above, we conclude that throughout the duration of our algorithm the level of an element

e (regardless of whether it is active, passive or dead) is given by ℓ(e) = max{ℓ(s) : s ∈ S, e ∈ s}. We also

conclude that the weights and levels of different types of elements are determined as follows.

If an element e is active, then w(e) = (1 + ǫ)−ℓ(e). In contrast, if an element e is passive, then w(e) ≤
(1 + ǫ)−ℓ(e). Finally, of an element e is dead, then its weight depends on its state at the time of its deletion.

Specifically, if it was active at the time of its deletion, then w(e) = (1+ ǫ)−ℓ(e). If it was passive at the time

of its deletion, then w(e) ≤ (1+ǫ)−ℓ(e). To summarize, an element e is dead always has w(e) ≤ (1+ǫ)−ℓ(e).

3.2 The shadow input and the invariants

Recall that the set E is partitioned into two subsets – A ⊆ E and P = E \ A. From the way we assign the

weights to elements, it becomes clear that our algorithm works by pretending as if the dead elements were

still present in the input. Accordingly, we consider a input (S, E∗), where E∗ = E ∪D. We refer to (S, E∗)
as the shadow input (as opposed to the actual input (S, E)). Indeed, the hierarchical partition maintained by

our dynamic algorithm will be similar to the one from Section 2 on the shadow input (S, E∗), barring the

fact that the passive elements will have weights w(e) ≤ (1 + ǫ)−ℓ(e). To explain this more formally, we use

the following notations. For every set s ∈ S , we let W (s) =
∑

e∈s∩E w(e) and W ∗(s) =
∑

e∈s∩E∗ w(e)
respectively denote the total weight of all the elements that belong to s in (S, E) and in (S, E∗). Our

dynamic algorithm will satisfy the three invariants stated below. Invariant 3.1 follows from the discussion in

Section 3.1.1. Invariant 3.2 is analogous to Property 2.3, whereas Invariant 3.3 is analogous to Property 2.4.

Invariant 3.1. Consider any element e ∈ E∗ = A ∪ P ∪D. If e ∈ A, then we have w(e) = (1 + ǫ)−ℓ(e).

Otherwise, if e ∈ P ∪D, then we have w(e) ≤ (1 + ǫ)−ℓ(e).

Invariant 3.2. For every set s ∈ S , we have ℓ(s) ∈ {b(s), . . . , L} and:

W ∗(s) ∈

{

[(1 + ǫ)−1cs, cs) if ℓ(s) > b(s);

[0, (1 + ǫ)−1cs) else if ℓ(s) = b(s).

Invariant 3.3. Each element e ∈ E∪D is contained in at least one set s ∈ S with (1+ǫ)−1cs ≤W ∗(s) ≤ cs.

Let S∗tight ⊆ S be the collection of sets with weights (1 + ǫ)−1cs ≤ W ∗(s) ≤ cs in the hierarchical

partition maintained by our algorithm. Replacing Properties 2.3, 2.4 by Invariants 3.2, 3.3 in the proof of

Lemma 2.5, we conclude that S∗tight gives a (1 + ǫ)f -approximate minimum set cover in the shadow input

(S, E∗). Invariant 3.3 further implies that S∗tight is a valid set cover in the actual input (S, E). We will show

later that S∗tight is in fact a (1 + O(ǫ))f -approximate minimum set cover in the actual input (S, E) as well.

This happens because, intuitively, the actual input (S, E) always remains close to the shadow input (S, E∗).

3.3 The algorithm

Recall that A,P and D respectively denotes the set of active, passive and deleted elements. We let Ai, Pi

and Di respectively denote the set of active, passive and dead elements at level i ∈ [0, L]. Let Ei = {e ∈
E : ℓ(e) = i} denote the set of all elements in the current input that are at level i ∈ [0, L]. Thus, for each

i ∈ [0, L], the set Ei is partitioned into two subsets: Ai and Pi. For each level i ∈ [0, L], we also define:

E≤i = ∪j≤jEj , A≤i = ∪j≤iAj , P≤i = ∪j≤iPj , and D≤i = ∪j≤iDj . (3.1)

For every level i ∈ [0, L], we maintain a counter C≤i. Each call to REBUILD(≤ i) sets D≤i = P≤i = R≤i =
∅ and C≤j = ǫ · |E≤j | for all j ≤ i. On the other hand, every time an element gets deleted from some level

8

i, for all j ∈ [0, i] we decrease the counter C≤j by one. Finally, in order to ensure that the shadow input

(S, E∗) remains close to the actual input (S, E), we call REBUILD(≤ i) whenever C≤i becomes equal to 0.

Tight sets: As in Section 3.2, we will let S∗tight = {s ∈ S : (1 + ǫ)−1cs ≤ W ∗(s) ≤ cs} denote the

collection of tight sets with respect to the shadow input (S, E∗).

Preprocessing phase: Initially, we have an input (S, E) where E = ∅. At this point, D = ∅, every set s ∈ S
is at level ℓ(s) = b(s) with weight W ∗(s) = 0, and hence Invariants 3.1, 3.2, 3.3 are vacuously true.

Handling the deletion of an element: When an element e gets deleted, we call the subroutine described in

Figure 1. Steps 01 – 02 in Figure 1 were explained under Case (a) in Section 3.1, whereas steps 03 – 07 in

Figure 1 were explained while defining the counters C≤i.

01. Remove the element e from Eℓ(e), and from Aℓ(e) ∪ Pℓ(e).

02. Insert the element e into Dℓ(e).

03. FOR k = L down to ℓ(e):
04. C≤k ← C≤k − 1.

05. IF C≤k = 0, THEN

06. Call the subroutine REBUILD(≤ k).

07. RETURN.

Figure 1: Handling the deletion of an element e.

Handling the insertion of an element: When an element e gets inserted, we call the subroutine in Figure 2.

Steps 02 – 04 and 05 – 09 in Figure 2 were respectively discussed under Case (b) and Case (c) in Section 3.1.

01. Let i = max{ℓ(s) : s ∈ S, e ∈ s}.
02. IF there is at least one set s ∈ S ∩ S∗tight that contains e, THEN

03. ℓ(e)← i.
04. Insert the element e into Ei and into Pi, with weight w(e)← 0.

05. ELSE

06. Let Se = {s ∈ S, e ∈ s} be the collection of all sets that contain e.

Let λ = min{x : W ∗(s) + x = cs for some s ∈ Se}.
07. ℓ(e)← i.
08. Insert the element e into Ei and into Pi, with weight w(e)← λ.

09. FOR all sets s ∈ Se: W ∗(s)←W ∗(s) + w(e).

Figure 2: Handling the insertion of an element e.

Output of our algorithm: We maintain the collection of tight sets S∗tight = {s ∈ S : (1 + ǫ)−1cs ≤
W ∗(s) < cs}. We show in Section 4 that S∗tight is a (1 + ǫ)f -approximate minimum set cover in (S, E).

Correctness of the invariants: Suppose that Invariants 3.1, 3.2, 3.3 hold just before the deletion of an

element e. This is handled by the subroutine in Figure 1. It is easy to check that steps 01 – 02 in Figure 1

do not lead to a violation of any invariant. This is because the element e gets moved from A ∪ P to D, but

its weight w(e) remains the same, and it still contributes to the weights W ∗(s) of all the sets s containing e.

Similarly, suppose that Invariants 3.1, 3.2 and 3.3 hold just before the insertion of an element e. We

handle this insertion by calling the subroutine in Figure 2. Consider two possible cases.

Case (a): Steps 02 – 04 get executed in Figure 2. In this case, the element e becomes passive with weight

w(e) = 0, and it belongs to at least one tight set. Thus, the weight W ∗(s) of every set s ∈ S remains

unchanged, and the three invariants continue to remain satisfied.

9

Case (b): Steps 05 – 09 get executed in Figure 2. In this case, all the sets s ∈ S containing e have weights

W ∗(s) < (1 + ǫ)−1cs at the time e gets inserted. Let S ′e = argmins∈Se{cs −W ∗(s)}. After we assign

weight w(e)← λ to the element e, every set s ∈ S ′e gets weight W ∗(s) = cs, and every other set s ∈ Se\S
′
e

continues to have weight W ∗(s) < cs. The weights of the sets s ∈ S \ Se do not change. This ensures that

Invariants 3.2 and 3.3 continue to hold. Finally, revisiting the proof of Claim 3.1, we infer that Invariant 3.1

also continues to hold since e becomes passive with weight w(e) = λ ≤ (1 + ǫ)−ℓ(e).

To summarize, we conclude that if the subroutine REBUILD(≤ j) has the property that a call to this

subroutine never leads to a violation of the invariants, then the invariants continue to hold all the time.

3.4 The REBUILD(≤ k) subroutine

A detailed description of the subroutine appears in Appendix B. Here, we summarize a few key properties

of this subroutine that will be heavily used in the analysis of our algorithm. Property 3.4 ensures that

Invariants 3.2 and 3.3 never get violated. Property 3.5 specifies the time taken to implement a call to the

subroutine, and how the counters {C≤i} get updated as a result of this call. Property 3.6, on the other hand,

explains how the subroutine changes the states and levels of different elements in the hierarchical partition.

Property 3.4. If Invariants 3.1, 3.2, 3.3 were satisfied just before a call to the subroutine REBUILD(≤ k)

for any k ∈ [0, L], then these invariants continue to remain satisfied at the end of that call.

Property 3.5. Consider any level k ∈ [0, L]. The time taken to implement a call to REBUILD(≤ k) is

proportional to f times the number of elements in E≤k∪D≤k in the beginning of the call, plus O(log(Cn)/ǫ).
Furthermore, at the end of this call, we have C≤j = ǫ · |E≤j | for all levels j ∈ [0, k].

Property 3.6. Consider any level k ∈ [0, L] and any call to the subroutine REBUILD(≤ k).

(1) The call to REBUILD(≤ k) cleans up all the dead elements at level ≤ k. Specifically, this means the

following. Consider any element e that belongs to D≤k just before the call to REBUILD(≤ k). Then that

element e does not appear in any of the sets A,P , D or R at the end of the call.

(2) The call to REBUILD(≤ k) converts some of the passive elements at level ≤ k to passive elements at

level k + 1, and the remaining passive elements at level ≤ k get converted into active elements at level

≤ k + 1. Specifically, let Z denote the set of elements in P≤k just before the call to REBUILD(≤ k). Then

during the call to REBUILD(≤ k), a subset Z ′ ⊆ Z of these elements gets added to Pk+1, and the remaining

elements e ∈ Z ′ \ Z get added to A≤k+1.

(3) The call to REBUILD(≤ k) moves up some of the active elements at level ≤ k to level k + 1, and the

remaining active elements at level ≤ k continue to be active at level ≤ k. In other words, the elements in

A≤k never go out of the set A≤k+1 during the call to REBUILD(≤ k).

(4) The call to REBUILD(≤ k) does not touch the elements at level ≥ k + 1. In other words, for any

i ≥ k + 1, if an element e belonged to Ai, Pi or Di just before the call to REBUILD(≤ k), then it continues

to belong to the same set Ai, Pi or Di at the end of the call to REBUILD(≤ k).

Corollary 3.7. At the end of any call to REBUILD(≤ k), we have Dj = Pj = ∅ for all j ∈ [0, k].

Proof. Follows from part (1) and part (2) of Property 3.6.

4 Analysis of our dynamic algorithm

We start by proving some simple properties of our algorithm that will be useful in the subsequent analysis.

These properties formalize the intuition that the fractional packing solution maintained by the algorithm

10

does not change significantly in between two successive calls to REBUILD(≤ j) at any level j ∈ [0, L]. This

happens because of three main reasons (see Figure 1). First, we set C≤k = ǫ · |E≤k| for all k ∈ [0, j] at the

end of each call to REBUILD(≤ j). Second, we decrement the counter C≤k for all k ∈ [j, L] each time some

element gets deleted from level j. Third, we call REBUILD(≤ k) whenever C≤k becomes equal to 0.

Notation: Throughout the rest of this section, we use the superscript (t) to denote the status of some

set/counter at time-step t. For instance, the symbol D
(t)
≤j will denote the set of dead elements at level ≤ j at

time-step t, and the symbol C
(t)
≤j will denote the value of the counter C≤j at time-step t.

Lemma 4.1. Fix any level j ∈ [0, L] and consider any two time-steps t′ < t that satisfy the following

properties: (1) A call was made to the subroutine REBUILD(≤ k) for some k ∈ [j, L] just before time-step

t′. (2) No call was made to REBUILD(≤ k) for any k ∈ [j, L] during the time-interval [t′, t]. Let M
(t′→t)
≤j

denote the set of elements that got deleted from level ≤ j during the time-interval [t′, t]. Then we have:

∣

∣

∣
M

(t′→t)
≤j

∣

∣

∣
+ C

(t)
≤j = ǫ ·

∣

∣

∣
A

(t′)
≤j

∣

∣

∣
.

Proof. As the subroutine REBUILD(≤ k) was called for some k ∈ [j, L] just before time-step t′, Property 3.5

implies that C
(t′)
≤j = ǫ ·

∣

∣

∣
A

(t′)
≤j

∣

∣

∣
. Next, note that during the time-interval [t′, t], no call is made to the subroutine

REBUILD(≤ k) for any k ∈ [j, L]. Hence, during this time-interval, the counter C≤j gets decremented by

one iff an element gets deleted from level ≤ j (see Figure 1), and the set M
(t′→t)
≤j consists precisely of these

elements. Thus, we infer that:

∣

∣

∣
M

(t′→t)
≤j

∣

∣

∣
+ C

(t)
≤j = C

(t′)
≤j = ǫ ·

∣

∣

∣
A

(t′)
≤j

∣

∣

∣
.

Corollary 4.2. Consider any level j ∈ [1, L] and time-steps t′ < t as defined in Lemma 4.1. Then we have:

∣

∣

∣
M

(t′→t)
≤j

∣

∣

∣
≤ ǫ ·

∣

∣

∣
A

(t′)
≤j

∣

∣

∣
.

Proof. Note that the subroutine REBUILD(≤ j) gets called whenever C≤j = 0 (see Figure 1), and before

finishing its execution the subroutine resets C≤j = ǫ · |E≤j | (see Property 3.5). Thus, the counter C≤j always

remains nonnegative, and in particular we have C
(t)
≤j ≥ 0. The corollary now follows from Lemma 4.1.

Corollary 4.3. Consider any level j ∈ [1, L] and time-steps t′ < t as defined in Lemma 4.1. Then we have:

∣

∣

∣
D

(t)
≤j

∣

∣

∣
≤ ǫ ·

∣

∣

∣
A

(t′)
≤j

∣

∣

∣
.

Proof. Since the subroutine REBUILD(≤ k) was called for some k ∈ [j, L] just before time-step t′, Corol-

lary 3.7 implies that D
(t′)
≤j = ∅. We now track how the set D≤j changes during the time-interval (t′, t).

Whenever an element e gets deleted from level ≤ j during this time-interval, the element e gets added

to both the sets D≤j and M
(t′→t)
≤j . On the other hand, whenever the subroutine REBUILD(≤ k) gets called

for some k ∈ [1, j − 1], all the dead elements at level ≤ k get removed from the hierarchical partition (see

part (1) of Property 3.6). Since k < j, such a call to REBUILD(≤ k) can potentially remove some elements

from the set D≤j , but no element from M
(t′→t)
≤j gets removed due to the call.

Since no call is made to the subroutine REBUILD(≤ k) for any k ∈ [j, L] during the time-interval [t′, t],

and since D≤j = ∅ at time-step t′, the preceding discussion implies that D
(t)
≤j ⊆ M

(t′→t)
≤j . Thus, from

Corollary 4.2, we get

∣

∣

∣
D

(t)
≤j

∣

∣

∣
≤
∣

∣

∣
M

(t′→t)
≤j

∣

∣

∣
≤ ǫ ·

∣

∣

∣
A

(t′)
≤j

∣

∣

∣
.

Lemma 4.4. Consider any level j ∈ [1, L] and time-steps t′ < t as defined in Lemma 4.1. Then we have:

∣

∣

∣
A

(t)
≤j

∣

∣

∣
≥ (1− ǫ) ·

∣

∣

∣
A

(t′)
≤j

∣

∣

∣
.

11

Proof. According to part (3) of Property 3.6, a call to REBUILD(≤ k) for some k ∈ [1, j − 1] can never

decrease the size of the set A≤j . Since no call was made to REBUILD(≤ k) for any k ∈ [j, L] during the

time-interval [t′, t], we conclude that: During the time-interval [t′, t], the set A≤j can decrease in size only

via deletion of elements from level≤ j. Moreover, the set M
(t′→t)
≤j contains all these deleted elements. Thus,

we infer that: A
(t′)
≤j \ A

(t)
≤j ⊆ M

(t′→t)
≤j . Applying Corollary 4.2, we now get:

∣

∣

∣
A

(t′)
≤j \A

(t)
≤j

∣

∣

∣
≤
∣

∣

∣
M

(t′→t)
≤j

∣

∣

∣
≤

ǫ·
∣

∣

∣
A

(t′)
≤j

∣

∣

∣
. In words, at most an ǫ fraction of the elements get deleted from the set A≤j during the time-interval

[t′, t]. Hence, it follows that

∣

∣

∣
A

(t)
≤j

∣

∣

∣
≥ (1− ǫ) ·

∣

∣

∣
A

(t′)
≤j

∣

∣

∣
.

Corollary 4.5. We always have |D≤j | ≤ 2ǫ · |A≤j | for every level j ∈ [0, L].

Proof. Fix any level j ∈ [0, L] and any time-step t. We will show that the lemma holds for level j at time-

step t. Let t′ < t be the last time-step before t with the following property: a call was made to the subroutine

REBUILD(≤ k) for some k ∈ [j, L] just before time-step t′. Thus, during the time-interval [t′, t] no call was

made to REBUILD(≤ k) for any k ∈ [j, L]. Hence, Corollary 4.3 and Lemma 4.4 imply that:

∣

∣

∣
D

(t)
≤j

∣

∣

∣
≤ ǫ ·

∣

∣

∣
A

(t′)
≤j

∣

∣

∣
= (ǫ/(1− ǫ)) · (1− ǫ)

∣

∣

∣
A

(t′)
≤j

∣

∣

∣
≤ (ǫ/(1− ǫ)) ·

∣

∣

∣
A

(t)
≤j

∣

∣

∣
≤ 2ǫ ·

∣

∣

∣
A

(t)
≤j

∣

∣

∣
.

The last inequality holds as long as ǫ ≤ 1/2. Thus, we infer that |D≤j | ≤ 2ǫ · |A≤j | at time-step t.

4.1 Bounding the update time of our dynamic algorithm

Data structures: We use the following data structures in our dynamic algorithm.

For each level i ∈ [1, L], we maintain the sets Ei, Ai, Pi and Di as doubly linked lists. Each entry in each of

these lists also maintains a bidirectional pointer to the corresponding element. Using these pointers, we can

determine the state of a given element and insert/delete it in a given list in O(1) time.

For every element e ∈ E ∪ D, we maintain its level ℓ(e) and weight w(e). For every set s ∈ S , we also

maintain its level ℓ(s) and weight W ∗(s) with respect to the shadow input (S, E∗).

Finally, for every level i ∈ [0, L], we maintain the counter C≤i.

Theorem 4.6. Our dynamic algorithm has an amortized update time of O(f log(Cn)/ǫ2).

Proof. Recall that every element belongs to at most f sets. Hence, ignoring the potential call to REBUILD(≤
k), it takes O(f + L) = O(f + log(1+ǫ)(Cn)) = O(f + log(Cn)/ǫ) time to implement all the steps in

Figure 1 and Figure 2. In other words, the update time of our dynamic algorithm is dominated by the time

spent on the calls to REBUILD(≤ k). Henceforth, we focus on bounding the time spent on these calls.

Fix any k ∈ [0, L] and consider any call to REBUILD(≤ k) that is made just after some time-step (say)

t. Let t′ < t be the last time-step before t with the following property: a call was made to REBUILD(≤ j)

for some j ∈ [k, L] just before time-step t′. Since E≤k = A≤k ∪ P≤k, Corollary 3.7 states that:

D
(t′)
≤k = P

(t′)
≤k = ∅, and hence E

(t′)
≤k = A

(t′)
≤k . (4.1)

Let I
(t′→t)
≤k denote the set of elements that get inserted into the set-system (S, E) at some level ≤ k during

the time-interval [t, t′]. Furthermore, as in Lemma 4.1, let M
(t′→t)
≤k denote the set of elements that get

deleted from some level ≤ k during the time-interval [t′, t]. During the same time-interval, no call was

made to REBUILD(≤ j) for any j ∈ [k, L]. Moreover, Property 3.6 implies that a call to the subroutine

12

REBUILD(≤ j) for some j ∈ [1, k − 1] does not change the set of elements in E≤k. Thus, during the time-

interval [t′, t], the only way the set E≤k can increase in size is via insertions of elements at levels ≤ k. It

follows that: E
(t)
≤k ⊆ E

(t′)
≤k ∪ I

(t′→t)
≤k . Since E

(t′)
≤k = A

(t′)
≤k according to (4.1), we get:

E
(t)
≤k ⊆ A

(t′)
≤k ∪ I

(t′→t)
≤k (4.2)

Since a call was made to the subroutine REBUILD(≤ k) just after time-step t, it must be the case that

C
(t)
≤k = 0. Thus, from Lemma 4.1 we infer that:

∣

∣

∣
M

(t′→t)
≤k

∣

∣

∣
= ǫ ·

∣

∣

∣
A

(t′)
≤k

∣

∣

∣
(4.3)

Let T denote the total “cost” (update time) we pay for calling the subroutine REBUILD(≤ k) at time-step t.
From (4.2), (4.3) and Property 3.5, we get:

T = O
(

f ·
∣

∣

∣
E
(t)
≤k

∣

∣

∣
+ f ·

∣

∣

∣
D

(t)
≤k

∣

∣

∣

)

+O(log(Cn)/ǫ) = O
(

f ·
∣

∣

∣
A

(t′)
≤k

∣

∣

∣
+ f ·

∣

∣

∣
I
(t′→t)
≤k

∣

∣

∣

)

+O(log(Cn)/ǫ) (4.4)

After each update, our dynamic algorithm (see Figures 1 and 2) makes at most one call to the REBUILD(≤ i)
subroutine, over all i ∈ [0, L]. Hence, we can safely ignore the term O(log(Cn)/ǫ) in T above, as this term

gets subsumed within our desired update time bound of O(f log(Cn)/ǫ2). We split-up the remaining chunk

of T into two parts: T1 = O
(

f ·
∣

∣

∣
A

(t′)
≤k

∣

∣

∣

)

and T2 = O
(

f ·
∣

∣

∣
I
(t′→t)
≤k

∣

∣

∣

)

. We charge the cost T1 (resp. T2)

by distributing it evenly among the elements that get deleted from (resp. inserted into) level ≤ k during the

time-interval [t′, t]. We now bound the total charge accumulated by an element in this fashion.

First, note that as per (4.3), ǫ ·
∣

∣

∣
A

(t′)
≤k

∣

∣

∣
elements get deleted from level ≤ k during the time-interval [t′, t].

When we distribute the cost T1 evenly among them, each of these elements accumulate a charge of O(f/ǫ).
Now, consider any element e that accumulates some charge in this fashion due to the call to REBUILD(≤ k)

just after time-step t. By definition, this element e gets deleted during the time-interval [t′, t]. Accordingly,

it is not possible for the same element e to accumulate a similar charge from the same level k at some future

time-step t′′ > t.9 To summarize, an element e gets charged at most once from a given level in this manner.

Next, note that when we distribute the cost T2 evenly among the elements in I
(t′→t)
≤k , each such element

accumulates a charge of O(f). Consider any element e that accumulates some charge from level k just after

some time-step t in this manner. By definition, this element got inserted during the time-interval [t′, t], and

thus it will never get charged due to a call to REBUILD(≤ k) at some future time-step t′′ > t. To summarize,

here again we derive that an element e gets charged at most once from a given level in this fashion.

From the discussion in the preceding two paragraphs, we conclude that any element e accumulates a

charge of at most O(f/ǫ+f) = O(f/ǫ) from each level. Thus, the total charge accumulated by any element

is at most O((f/ǫ)L) = O((f/ǫ) log(1+ǫ)(Cn)) = O(f log(Cn)/ǫ2). This means that the amortized update

time of our dynamic algorithm is also O(f log(Cn)/ǫ2).

4.2 Bounding the approximation ratio of our dynamic algorithm

Our main result is summarized in the theorem below.

Theorem 4.7. In the hierarchical partition maintained by our dynamic algorithm, the tight sets S∗tight =

{s ∈ S : (1 + ǫ)−1cs ≤W ∗(s) ≤ cs} form a (1 + 5ǫ)f -approximate minimum set cover in (S, E).

9If e is inserted and deleted again later, we consider this to be a different (instance of the) element.

13

We now give a high-level overview of the proof of the above theorem. First, recall that E∗ = E ∪ D.

Hence, the element-weights {w(e)} define a valid fractional packing in the shadow-input (S, E∗) as per

Invariant 3.2, and the sets in S∗tight form a valid set cover in (S, E∗) as per Invariant 3.3. As per Invariant 3.3,

every element e ∈ E ∪D is contained in at least one tight set. In other words, the fractional packing {w(e)}
is approximately maximal, in the sense that every element belongs to at least one set whose weight cannot

be increased by more than (1+ ǫ)-factor. Armed with this observation, it is not too difficult to show that the

size of the dual set cover (defined by the tight sets) is within a multiplicative factor (1 + ǫ)f of the size of

the fractional packing {w(e)} in (S, E∗). This already implies that the collection of tight sets S∗tight forms a

(1 + ǫ)f -approximate minimum set cover in the shadow input (see Lemma 4.9). The key challenge now is

to show that the sets in S∗tight also constitute an approximately minimum set cover in the actual input (S, E).
To address this challenge, we exploit the fact that the number of elements in D is relatively small

compared to the number of elements in A (see Corollary 4.5). This implies that the total weight of the

elements in D is also small compared to the total weight of the elements in A (see Lemma 4.8). Hence, even

if we delete all the elements in D from the fractional packing {w(e)}, the objective value of the resulting

solution will remain close to the objective value of the original fractional packing, which in turn was within

a factor (1+ǫ)f of the total cost of the sets in S∗tight. So we expect that the size of the new fractional packing

(after deleting the elements in D) will be very close to (1+ǫ)f ·c
(

S∗tight

)

, where c
(

S∗tight

)

is the total cost

of the sets in S∗tight (see Corollary 4.10). Now, this also happens to be a valid fractional packing in the actual

input (S, E), because we already had W ∗(s) ≤ cs for all sets s ∈ S and removing the elements in D will

not increase the weights of the sets any further. On the other hand, the sets in S∗tight form a valid set cover in

the actual input (S, E) as well, as Invariant 3.3 holds for all e ∈ E . In other words, we have identified a valid

fractional packing and a valid set cover in (S, E) whose objective values are within a (1 +O(ǫ))f -factor of

each other. So the corresponding set cover must be an approximately minimum set cover in (S, E).

Lemma 4.8. We always have
∑

e∈D w(e) ≤ 2ǫ ·
∑

e∈Aw(e).

Proof. We first express the weight of an element e as a sum of increments, where each increment corre-

sponds to a specific level k ≥ ℓ(e). To be more precise, we define:

∆k =

{

(1 + ǫ)−k for k = L;

(1 + ǫ)−k − (1 + ǫ)−(k+1) for 0 ≤ k < L.

From Invariant 3.1, we conclude that:

w(e) = (1 + ǫ)−ℓ(e) =

L
∑

k=ℓ(e)

∆k for every element e ∈ A. (4.5)

w(e) ≤ (1 + ǫ)−ℓ(e) =
L
∑

k=ℓ(e)

∆k for every element e ∈ D. (4.6)

Now, we derive that:

∑

e∈D

w(e) ≤
∑

e∈D

L
∑

k=ℓ(e)

∆k =

L
∑

k=0

∑

e∈D : ℓ(e)≤k

∆k =

L
∑

k=0

∆k · |D≤k| ≤
L
∑

k=0

∆k · 2ǫ |A≤k|

= 2ǫ ·
L
∑

k=0

∑

e∈A : ℓ(e)≤k

∆k = 2ǫ ·
∑

e∈A

L
∑

k=ℓ(e)

∆k = 2ǫ ·
∑

e∈A

w(e).

In the above derivation, the first inequality follows from (4.6). The second inequality follows from Corol-

lary 4.5. Finally, the last equality follows from (4.5), This concludes the proof of the lemma.

14

Lemma 4.9. We have
∑

e∈E∗ w(e) ≥ ((1 + ǫ)f)−1 · c
(

S∗tight

)

.

Proof. By Invariant 3.3, every element e ∈ E ∪D = E∗ belongs to at least one set in S∗tight. We sum over

the weights of these elements. Since f is an upper bound on the maximum frequency of an element, we get:

∑

e∈E∗

w(e) ≥ f−1
∑

s∈S

W ∗(s) ≥ f−1
∑

s∈S∗
tight

W ∗(s) ≥ f−1
∑

s∈S∗
tight

(1 + ǫ)−1cs = ((1 + ǫ)f)−1 · c
(

S∗tight
)

.

Corollary 4.10. We have
∑

e∈E w(e) ≥ ((1 + ǫ)(1 + 2ǫ)f)−1 · c
(

S∗tight

)

.

Proof. Using Lemma 4.8, we derive that:

(

1 + (2ǫ)−1
)

·
∑

e∈A

w(e) ≥ (2ǫ)−1 ·

(

∑

e∈D

w(e) +
∑

e∈A

w(e)

)

Multiplying both sides in the above inequality by 2ǫ(1 + 2ǫ)−1 = (1 + (2ǫ)−1)−1, we get:

∑

e∈A

w(e) ≥ (1 + 2ǫ)−1 ·
∑

e∈A∪D

w(e). (4.7)

Now, adding the weights of the passive elements – given by
∑

e∈P w(e) – on both sides of (4.7), we get:

∑

e∈A∪P

w(e) ≥ (1 + 2ǫ)−1 ·
∑

e∈A∪P∪D

w(e). (4.8)

Since E = A ∪ P and E∗ = A ∪ P ∪D, the corollary follows from (4.8) and Lemma 4.9.

Proof of Theorem 4.7. By Invariant 3.3, every element e ∈ E belongs to at least one set in S∗tight. In other

words, the collection of sets S∗tight forms a valid set cover in the input (S, E). Next, from Invariant 3.2 we

infer the following bound on the weight W (s) of any set s ∈ S:

W (s) ≤W ∗(s) ≤ cs for all sets s ∈ S.

The first inequality holds since we consider the weights of the elements e ∈ E∗ = E ∪D while calculating

W ∗(s), whereas we only consider the weights of the elements e ∈ E while calculating W (s). Thus, the

element-weights {w(e)}e∈E form a valid fractional packing in (S, E). Finally, Corollary 4.10 implies that

the size of this fractional packing is at least α times of the total cost of the set cover S∗tight in (S, E), where

α = ((1+ ǫ)(1+2ǫ)f)−1 ≥ ((1+5ǫ)f)−1 when 0 < ǫ < 1/2. Theorem 4.7 now follows from Lemma 2.1.

Acknowledgement

The research leading to these results has received funding from the European Research Council under the

European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement no. 340506.

This project has received funding from the European Research Council (ERC) under the European

Union’s Horizon 2020 research and innovation programme under grant agreement No 715672. Nanongkai

was also supported by the Swedish Research Council (Reg. No. 2015-04659).

15

References

[1] Amir Abboud, Raghavendra Addanki, Fabrizio Grandoni, Debmalya Panigrahi, and Barna Saha. Dy-

namic set cover: Improved algorithms & lower bounds. In STOC. ACM, 2019. (cit. on p. 1, 2, 3)

[2] Surender Baswana, Manoj Gupta, and Sandeep Sen. Fully dynamic maximal matching in o(log n)

update time (corrected version). SIAM J. Comput., 47(3):617–650, 2018. announced at FOCS’11. (cit.

on p. 3)

[3] Aaron Bernstein and Shiri Chechik. Deterministic decremental single source shortest paths: beyond

the o(mn) bound. In STOC, pages 389–397. ACM, 2016. (cit. on p. 2)

[4] Aaron Bernstein and Shiri Chechik. Deterministic partially dynamic single source shortest paths for

sparse graphs. In SODA, pages 453–469. SIAM, 2017. (cit. on p. 2)

[5] Sayan Bhattacharya, Deeparnab Chakrabarty, and Monika Henzinger. Deterministic fully dynamic

approximate vertex cover and fractional matching in O(1) amortized update time. In IPCO, volume

10328 of Lecture Notes in Computer Science, pages 86–98. Springer, 2017. (cit. on p. 1, 2, 5)

[6] Sayan Bhattacharya, Monika Henzinger, and Giuseppe F. Italiano. Deterministic fully dynamic data

structures for vertex cover and matching. SIAM J. Comput., 47(3):859–887, 2018. announced at

SODA’15. (cit. on p. 2)

[7] Sayan Bhattacharya, Monika Henzinger, and Giuseppe F. Italiano. Dynamic algorithms via the primal-

dual method. Inf. Comput., 261(Part):219–239, 2018. announced at ICALP’15. (cit. on p. 1, 2, 3, 5)

[8] Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. New deterministic approximation

algorithms for fully dynamic matching. In STOC, pages 398–411. ACM, 2016. (cit. on p. 2)

[9] Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. New deterministic approximation

algorithms for fully dynamic matching. In STOC, pages 398–411. ACM, 2016. (cit. on p. 2)

[10] Julia Chuzhoy and Sanjeev Khanna. A new algorithm for decremental single-source shortest paths

with applications to vertex-capacitated flow and cut problems. In STOC. ACM, 2019. (cit. on p. 2)

[11] Vasek Chvátal. A greedy heuristic for the set-covering problem. Math. Oper. Res., 4(3):233–235,

1979. (cit. on p. 1)

[12] Irit Dinur, Venkatesan Guruswami, Subhash Khot, and Oded Regev. A new multilayered PCP and

the hardness of hypergraph vertex cover. SIAM J. Comput., 34(5):1129–1146, 2005. announced at

STOC’03. (cit. on p. 1)

[13] Irit Dinur and David Steurer. Analytical approach to parallel repetition. In STOC, pages 624–633.

ACM, 2014. (cit. on p. 1)

[14] Anupam Gupta, Ravishankar Krishnaswamy, Amit Kumar, and Debmalya Panigrahi. Online and dy-

namic algorithms for set cover. In STOC, pages 537–550. ACM, 2017. (cit. on p. 1, 2, 5)

[15] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. Dynamic approximate all-pairs

shortest paths: Breaking the o(mn) barrier and derandomization. SIAM J. Comput., 45(3):947–1006,

2016. announced at FOCS’13. (cit. on p. 2)

[16] Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within 2-epsilon. J.

Comput. Syst. Sci., 74(3):335–349, 2008. announced at CCC’03. (cit. on p. 1)

16

[17] Danupon Nanongkai and Thatchaphol Saranurak. Dynamic spanning forest with worst-case update

time: adaptive, las vegas, and o(n1/2 - ǫ)-time. In STOC, pages 1122–1129. ACM, 2017. (cit. on p. 2)

[18] Danupon Nanongkai, Thatchaphol Saranurak, and Sorrachai Yingchareonthawornchai. Breaking

quadratic time for small vertex connectivity and an approximation scheme. In STOC. ACM, 2019.

(cit. on p. 2)

[19] Peter Slavı́k. A tight analysis of the greedy algorithm for set cover. J. Algorithms, 25(2):237–254,

1997. (cit. on p. 1)

[20] Shay Solomon. Fully dynamic maximal matching in constant update time. In IEEE 57th Annual

Symposium on Foundations of Computer Science, FOCS, pages 325–334, 2016. (cit. on p. 3)

A A Static Primal-Dual Algorithm for Minimum Set Cover

We use the same notations as in Section 2. The discretized primal-dual algorithm proceeds in L rounds (see

Figure 3). In the beginning, we start by assigning a weight w(e) = (1 + ǫ)−L ≤ (Cn)−1 to every element

e ∈ E , and a level ℓ(s) = ℓ(e) = L to every set s ∈ S and every element e ∈ E . Since each set in S contains

at most n elements, at this point in time we have W (s) =
∑

e∈sw(e) ≤ n · (Cn)−1 = 1/C for all sets

s ∈ S . Hence, from (1.1) we infer that 0 ≤ W (s) ≤ cs for all sets s ∈ S . In other words, we have a valid

fractional packing at this point in time. Throughout the rest of this section, we say that a set s ∈ S is tight

if (1 + ǫ)−1cs ≤W (s) ≤ cs, and slack if 0 ≤W (s) < (1 + ǫ)−1cs.

In the beginning, we start with a counter t = L. The value of t keeps decreasing by one until we reach

t = 0. Each value of t corresponds to a distinct round in the algorithm. In each round t, we increase

(by a (1 + ǫ) factor) the weights of the elements that are exclusively covered by the slack sets, and we

decrease by one the levels of the concerned sets (that were slack in the beginning of the current round) and

elements (whose weights got increased in the current round). Thus, there are L rounds overall, one for each

t ∈ {L, . . . , 1}. At the end of round 1, we have a hierarchical partition of S into L + 1 levels {L, . . . , 0}.
We now describe a few key properties that are satisfied at the end of the algorithm in Figure 3.

1. INITIALIZE: L = ⌈log(1+ǫ)(C · n)⌉+ 1,

w(e)← (1 + ǫ)−L for all elements e ∈ E .

ℓ(s)← L for every set s ∈ S .

ℓ(e)← L for every element e ∈ E .

2. FOR rounds t = L to 1:

3. Let S
(t)
slack = {s ∈ S : W (s) < (1 + ǫ)−1cs} be the collection of sets that are slack

in the beginning of round t, and let E
(t)
slack = {e ∈ E : e /∈ s for all s ∈ S \ S

(t)
slack} be the

collection of elements that are exclusively covered by the sets in S
(t)
slack.

4. FOR ALL sets s ∈ S
(t)
slack:

5. ℓ(s) = ℓ(s)− 1.

6. FOR ALL elements e ∈ E
(t)
slack:

7. w(e) = (1 + ǫ) · w(e).
8. ℓ(e) = ℓ(e)− 1. // This ensures that ℓ(e) = max{ℓ(s) : s ∈ S and e ∈ s}.

Figure 3: A static (1 + ǫ)f -approximation algorithm for minimum set cover.

Claim A.1. For every element e ∈ E , we have ℓ(e) = max{ℓ(s) : s ∈ S, e ∈ s} and w(e) = (1 + ǫ)−ℓ(e).

17

Proof. (Sketch) Fix any element e ∈ E . Initially, every set and every element is assigned to level L. See

step 1 in Figure 3. At this point, we clearly have ℓ(e) = max{ℓ(s) : s ∈ S, e ∈ s}. Subsequently, during

a given round t, we decrement the level of e only if e ∈ E
(t)
slack. See step 8 in Figure 3. Now, note that if

e ∈ E
(t)
slack, then by definition every set s ∈ S containing e belongs to S

(t)
slack. Furthermore, as is evident

from step 5 in Figure 3, during round t we also decrement the level of every set s ∈ S
(t)
slack. Thus, we always

have: ℓ(e) = max{ℓ(s) : s ∈ S, e ∈ s}.
Next, note that as per step 1 in Figure 3, we initially have ℓ(e) = L and w(e) = (1+ǫ)−L = (1+ǫ)−ℓ(e).

Subsequently, whenever we increase w(e) by a factor of (1 + ǫ), we also decrement the level ℓ(e) by one

(see steps 7, 8 in Figure 3). Hence, it follows that w(e) = (1 + ǫ)−ℓ(e) at the end of the algorithm.

Claim A.2. For every element e ∈ E , at least one of the sets containing e lies at level ≥ 1 (i.e., ℓ(e) ≥ 1).

Proof. (Sketch) Fix any element e ∈ E . For the sake of contradiction, suppose that ℓ(e) = 0 at the end of

the algorithm. This implies that e ∈ E
(1)
slack in the beginning of round 1. This is because only the elements

in E
(1)
slack get moved down to level 0. Hence, as per the proof of Claim A.1, we have w(e) = (1 + ǫ)−1 in

the beginning of round 1. This means that every set s ∈ S containing the element e has W (s) ≥ w(e) ≥
(1 + ǫ)−1 ≥ (1 + ǫ)−1cs in the beginning of round 1. The last inequality holds since cs ≤ 1 for all sets

s ∈ S , as per (1.1). Accordingly, no set containing e can be part of S
(1)
slack. This leads to a contradiction, for

we assumed that e ∈ E
(1)
slack, which in turn means that e is exclusively covered by the sets from S

(1)
slack.

Corollary A.1. We have E
(1)
slack = ∅.

Proof. Follows from the proof of Claim A.2.

Claim A.3. For every set s ∈ S we have:

W (s) ∈

{

[(1 + ǫ)−1cs, cs] if ℓ(s) > 0;

[0, (1 + ǫ)−1cs) else if ℓ(s) = 0.

Proof. (Sketch) Fix any set s ∈ S . Initially, in the beginning of round L, we have W (s) =
∑

e∈sw(e) ≤
|E| · (Cn)−1 = 1/C. From (1.1), we conclude that 0 ≤ W (s) ≤ cs at this point in time. Subsequently, in

each round t ∈ {L, . . . , 1}, we keep moving down the set s to level t−1 iff we have W (s) < (1+ ǫ)−1cs in

the beginning of the current round. Consider such a round t where the set s gets moved down to level t− 1.

In the beginning of round t, we had W (s) < (1 + ǫ)−1cs. During round t, we only increase (by a (1 + ǫ)
factor) the weights w(e) of some of the elements e contained in s. Thus, even at the end of round t, we have

W (s) ≤ cs. This is sufficient for us to conclude that at the end of the algorithm, we have:

(a) Ws ≤ cs and (b) Ws ∈ [(1 + ǫ)−1cs, cs] if ℓ(s) > 0.

It remains now to consider the case where ℓ(s) = 0 at the end of the algorithm. If this is the case, then

we must have had s ∈ S
(1)
slack, for only the sets in S

(1)
slack gets demoted to level 0 during round 1. Accordingly,

we infer that Ws < (1 + ǫ)−1cs in the beginning of round 1. Now, by Corollary A.1, we have E
(1)
slack = ∅.

In other words, no element changes its weight during round 1. So the weight W (s) of the set s also remains

unchanged during round 1. We accordingly infer that W (s) < (1 + ǫ)−1cs at the end of the algorithm.

Claim A.4. Consider any set s ∈ S . At the end of the algorithm in Figure 3, it must be the case that every

element e ∈ s is at a level ℓ(e) ≥ b(s).

Proof. For the sake of contradiction, suppose that there is an element e ∈ s at level ℓ(e) < b(s). From (2.2)

and Claim A.1, we infer that: W (s) ≥ w(e) = (1+ǫ)−ℓ(e) > (1+ǫ)−b(s) = cs. But this violates Claim A.3,

which leads to a contradiction. We therefore conclude that every element e ∈ s is at a level ℓ(e) ≥ b(s).

18

A.1 Post-processing

We now need to slightly modiy the hierarchical partition returned by the algorithm in Figure 3. Specifically,

armed with Claim A.4, we perform the following post-processing step:

• We move every set s ∈ S at level ℓ(s) < b(s) to its base level b(s).

Consider any set s ∈ S that changes its level due to the post-processing step described above. Claim A.4

implies that moving the set s up to level b(s) does not affect the level (and weight) of any element e. In

other words, the post-processing step does not change any of the weights {W (s)} and {w(e)}.
After this post-processing, the resulting hierarchical partition satisfies the three crucial properties stated

towards the end of Section 2. Property 2.2 follows from Claim A.1, Property 2.3 follows from Claim A.3

and the fact that b(s) ≥ 0 for all sets s ∈ S , and Property 2.4 follows from Claim A.2 and Claim A.3.

B A detailed description of the REBUILD(≤ k) subroutine

The subroutine works in 9 steps. We explain them in details below.

Step 1: Scan through all the elements in E≤k∪D≤k and identify the collection of sets S ′ = {s ∈ S : ℓ(s) ≤
k, s ∩ (E≤k ∪D≤k) 6= ∅}. A set belongs to S ′ iff it is at level ≤ k and contains at least one element from

E≤k ∪D≤k. These are the sets whose levels and weights will be affected due to the call to REBUILD(≤ k).

Remark: Consider any element e ∈ E≤k ∪D≤k. These are the elements that get affected due to the call to

REBUILD(≤ k). Since ℓ(e) = max{ℓ(s) : s ∈ S, e ∈ s} ≤ k, it follows that every set s ∈ S containing e
lies at a level ℓ(s) ≤ k. In other words, every set s ∈ S that contains such an element e also belongs to the

collection S ′. We will be using this observation throughout the rest of this section.

Step 2: Remove all the elements from D≤k, and accordingly modify the weights W ∗(s) of the concerned

sets in S ′. At the end of this step, we have D≤k = ∅. This is stated in part (1) of Property 3.6.

Step 3: For every element e ∈ A≤k, set w(e) ← (1 + ǫ)−(k+1) and accordingly modify the weight W ∗(s)
of each set s ∈ S ′ that contains e. Next, for every element e ∈ P≤k, set w(e)← 0, and accordingly modify

the weight W ∗(s) of each set s ∈ S ′ that contains e.

Remark: Steps 2 and 3 can only decrease the weights W ∗(s) of the sets s ∈ S ′. This is because just before

step 2 we had w(e) ≥ (1 + ǫ)−k for all elements e ∈ A≤k, and w(e) ≥ 0 for all elements e ∈ P≤k. We also

had W ∗(s) ≤ cs for all sets s ∈ S ′, as per Invariant 3.2. Now, Step 2 removed the elements from D≤k and

Step 3 decreased the weights of the elements in A≤k ∪ P≤k. Thus, we continue to have W ∗(s) ≤ cs for all

sets s ∈ S ′ even after Step 3.

Step 4: FOR every element e ∈ P≤k:

• Let S ′e ⊆ S
′ denote the collection of all sets that contain e. Note that |S ′e| ≤ f .

• (a) IF W ∗(s) ≤ cs − (1 + ǫ)−(k+1) for all sets s ∈ S ′e, THEN

– Increase the weight of element e from 0 (see Step 3 above) to w(e)← (1 + ǫ)−(k+1), move the

element e from P≤k to A≤k, and accordingly modify the weight W ∗(s) of every set s ∈ S ′e.

• (b) ELSE

– Let λ = min{x : W ∗(s) + x = cs for some s ∈ S ′e}. Note that in this case λ < (1 + ǫ)−(k+1).

– Increase the weight of element e from 0 (see Step 3 above) to w(e) ← max(0, λ), and accord-

ingly modify the weight W ∗(s) of every set s ∈ S ′e.

19

Remark: In Step 4 above, we set a weight w(e) = (1 + ǫ)−(k+1) to an element e ∈ P≤k (thereby making

it active) only if W ∗(s) ≤ cs − (1 + ǫ)−(k+1) for all sets s ∈ S ′ containing e. Thus, even after Step 4, we

continue to have W ∗(s) ≤ cs for all sets s ∈ S ′.

Step 5: For each set s ∈ S ′, if (1 + ǫ)−1cs ≤W ∗(s) ≤ cs, then:

• Set ℓ(s)← k + 1.

• For all elements e ∈ s ∩A≤k, set ℓ(e)← k + 1 and move the element e from A≤k to Ak+1.

• For all elements e ∈ s ∩ P≤k, set ℓ(e)← k + 1 and move the element e from P≤k to Pk+1.

In words, we move the set s to level k+1, and all the (active or passive) elements e ∈ s which were till now

at some level ≤ k also get moved up to level k + 1.

Remark: We now show that P≤k = ∅ at the end of Step 5. To see why this is true, consider any element

e that belonged to P≤k just before Step 5. This means that the element e was processed under case (b) in

Step 4, because if it were processed under case (a) then it would no longer be part of P≤k at the end of Step

4. Accordingly, recall what we do with the element e under case (b) in Step 4. After we assign a weight

max(0, λ) to the element e, at least one set s′ ∈ S ′e gets a weight W ∗(s′) = cs′ . In Step 5, this set s′ gets

promoted to level k + 1, and it takes the element e along with it. To summarize, every element e that was

part of P≤k in the beginning of Step 5 gets promoted to level (k + 1) during Step 5. Hence, at the end of

Step 5 we have P≤k = ∅. This is stated in part (2) of Property 3.6.

Furthermore, note that if an element e ∈ P≤k was processed under case (b) in Step 4, then it receives

weight w(e) ≤ λ ≤ (1 + ǫ)−(k+1). From the preceding discussion, it follows that such an element gets

added to the set Pk+1 in Step 5. Hence, such an element continues to satisfy Invariant 3.1.

Finally, note that if a set s ∈ S ′ gets moved up to level k+1 during Step 5, then we have (1+ ǫ)−1cs ≤
W ∗(s) ≤ cs by definition. Thus, Invariant 3.2 continues to hold at level k + 1 even after Step 5.

Step 6: Let S ′′ ⊆ S ′ be the collection of sets that moved up to level k + 1 during step 5 above. For every

s ∈ S ′ \ S ′′, set ℓ(s) ← k. Similarly, for every element e ∈ E≤k, set ℓ(e) ← k, w(e) ← (1 + ǫ)−k, and

accordingly modify the weights W ∗(s) of all the sets s ∈ S ′ \ S ′′ that contain e. In words, all the sets and

elements that did not move up to level k + 1 during step 5 are now assigned to level k, and we accordingly

update the weights of the elements that get assigned to level k.

Remark: Consider a set s ∈ S ′\S ′′ that did not move up to level k+1 in Step 5. This means that during our

scan in Step 5, we had W ∗(s) < (1+ ǫ)−1cs. In Step 6, we change the weights of some elements contained

in s from (1 + ǫ)−(k+1) to (1 + ǫ)−k. This increases the weight W ∗(s) by at most a multiplicative factor of

(1 + ǫ). Thus, we have 0 ≤W ∗(s) ≤ cs at the end of Step 6 for all sets s ∈ S ′ \ S ′′.
If an element belonged to A≤k in the beginning of Step 1, then it remains in A≤k+1 at the end of Step

6. This is because Steps 1 – 6 do not ever change the state of an element from active to passive, and Step 5

only moves some elements from level ≤ k to level k + 1. This is stated in part (3) of Property 3.6.

To summarize, at the end of Step 6 we end up with the following situation. (a) Invariants 3.1, 3.2, 3.3

hold for every element and set at level ≥ k + 1. (b) All the remaining, relevant sets s ∈ S ′ \ S ′′ are at level

k with weight 0 ≤W ∗(s) ≤ cs. All the elements e ∈ E≤k are at level k, with weight w(e) = (1+ ǫ)−k. (c)

There is no passive or dead element at level ≤ k, that is, we have P≤k = D≤k = ∅. (d) Finally, until this

point the total time spent in the call to REBUILD(≤ k) is proportional to f times the number of elements in

E≤k ∪D≤k in the beginning of the call (see Property 3.5). It now remains to fix the hierarchical partition at

levels ≤ k, by calling a subroutine that is very similar to the static algorithm from Appendix A.

Step 7: Now call the subroutine FIX-LEVEL(k,S ′ \ S ′′, E≤k). See Section B.1 for the details.

Step 8: For all levels j ≤ k, set C≤j = ǫ · |E≤j | (see Property 3.5).

Step 9: RETURN.

20

B.1 The subroutine FIX-LEVEL(k,S ′, E ′)

The most natural way to think about this subroutine as follows. Suppose that we are executing the algorithm

described in Appendix A, and so far we have have fixed everything above level k. Let S ′ and E ′ be the

remaining sets and elements whose levels are still undecided, meaning that every set s ∈ S \ S ′ and every

element e ∈ E \E ′ have already been assigned to some levels > k. Throughout the rest of this section, we

assume that |S ′| = m′ and |E ′| = n′. At the present moment, all the elements in E ′ have weight (1+ ǫ)−k,

because we know for sure that these elements will eventually get assigned to some level ≤ k. Furthermore,

at the present moment every set s ∈ S ′ has weight W ∗(s) ≤ cs.10 In order to ensure Property 3.5, our

task now is to construct the levels ≤ k of the hierarchical partition in O(fn′ + log(Cn)/ǫ′) time. If we

follow the exact procedure in Appendix A, then we will need O(k · fn′) time for performing this task,

because in that procedure we need to pay O(fn′) time per level and we have to construct k levels overall.

Unfortunately, the resulting running time can be as large as Ω(fn′ · log(Cn)/ǫ) because k can be as large

as Ω(L) = Ω(log(Cn)/ǫ). The main challenge, therefore, is to come up with a procedure for our task that

is much faster than the one described in Appendix A.

Our new algorithm will maintain a partition of the collection of elements E ′ into two subsets: E ′frozen ⊆
E ′ and E ′alive = E ′ \ E ′frozen. Similarly, it will maintain a partition of the collection of sets S ′ into two

subsets: S ′frozen ⊆ S
′ and S ′alive = S

′ \ S ′frozen. In the very beginning, it will start by setting E ′ = E ′alive,

S ′ = S ′alive and E ′frozen = S ′frozen = ∅. Intuitively, the levels of all the sets in S ′ and all the elements

in E ′ are undecided in the beginning. Whenever the algorithm decides the final level of an alive set (resp.

element), it will make the set (resp. element) frozen from that point onward.

We next introduce the crucial notion of the target level ℓT (s) of a set s ∈ S ′. It is defined as follows.

ℓT (s) =

{

b(s) if s ∩ E ′alive = ∅;

max
{

i ∈ [1, k] : W ∗(s) +
(

(1 + ǫ)−i − (1 + ǫ)−k
)

· |s ∩ E ′alive| ≥ (1 + ǫ)−1cs
}

otherwise.

(B.1)

We now explain the intuition behind this definition. Fix any set s ∈ S ′alive. Suppose that there is no other

alive set that shares a common alive element with s, i.e., s ∩ s′ ∩ E ′alive = ∅ for all s′ ∈ S ′alive \ {s}. If

this is the case, then a moment’s thought will reveal that the set s will get assigned to the level ℓT (s) at the

end of the algorithm in Appendix A. This holds for the following reason: the set s will keep decreasing its

level and the alive elements in s will keep increasing their weights in powers of (1 + ǫ) until the weight of

s (given by W ∗(s) here) becomes larger than or equal to (1 + ǫ)−1cs. Also, note that if we move an alive

element down from level k to some level i ≤ k, then its weight increases by (1 + ǫ)−i − (1 + ǫ)−k. Hence,

by definition, ℓT (s) is the maximum level i with the following property: If we move down the set s (along

with all the alive elements contained in s) to level i, then W ∗(s) becomes ≥ (1 + ǫ)−1cs. So the set s will

get assigned to level ℓT (s) at the end of the algorithm in Appendix A.

Unfortunately, the above argument does not hold if the set s has some alive element e in common with

some other alive set s′. This is because in the algorithm described in Appendix A, the set s′ can get assigned

to a level i′ > ℓT (s). This creates some problem in the argument above, because there we assumed that

we can move all the alive elements in s down to level ℓT (s). But now, when the set s′ gets stuck at level

i′ > ℓT (s), it enforces that the element e ∈ s′ also gets stuck at level i′. In other words, we cannot move

the element e down all the way to level ℓT (s). So even after the set s moves down to level ℓT (s), its weight

W ∗(s) might still remain below the threshold (1 + ǫ)−1cs.

Nevertheless, we can still salvage the situation because of the following fact. Suppose that s is an alive

element with maximum possible value of ℓT (s). Then the objection in the preceding paragraph does not

10Note that in Appendix A we denoted the weight of a set s by W (s), but here we are denoting its weight by W ∗(s). This is

because here a part of the weight W ∗(s) might be coming from the weight of dead elements at level > k.

21

apply to the set s.11 Accordingly, we pick the alive set s with maximum possible value of ℓT (s), and then

we move that set s down to level ℓT (s), along with all the alive elements contained in s. Then we move the

set s from S ′alive to S ′frozen and also move all the “relevant” elements e ∈ s ∩ E ′alive from E ′alive to E ′frozen.

For every relevant element e, we next visit all the alive sets s′′ that contain e, and accordingly update their

target levels ℓT (s
′′) in light of the facts that (a) the weight W ∗(s′′) has increased by (1 + ǫ)−i − (1 + ǫ)−k

as the element e has moved down from level k to level i, and (b) the element e is no longer alive.

Now comes a very crucial observation. Suppose that we pick an alive set s that maximizes ℓT (s) and

assign the set s (and all the alive elements contained in s) to level ℓT (s), as described in the previous

paragraph. This can only decrease the value of ℓT (s
′′) for the other alive sets s′′. To see why this is the case,

fix any other alive element s′′ 6= s′ and suppose that we had ℓT (s
′′) = i′′ just before we decided to move

the set s. At that point, we had i′′ < ℓT (s) by definition of s. Hence, only the following situation can occur

as the set s moves down to level ℓT (s). Prior to this event, the set s′′ felt that its weight W ∗(s′′) will exceed

the threshold (1+ ǫ)−1cs′′ if it can move down to level i′′ (along with all the alive elements in s′′). But now,

after the set s settles at level ℓT (s), the set s′′ realizes that it can no longer take some element e′′ ∈ s′′ (that

was alive just before we moved s) all the way down to level i′′, because e′′ also belonged to s and now it has

become frozen at a higher level ℓT (s) ≥ i′′ with a smaller weight w(e′′) ≤ (1 + ǫ)−i′′ . Thus, at this point

(after we have moved s), if the set s′′ decides to go down to level i′′, then its weight W ∗(s) can only be less

than what it would have been prior to the instant we moved s. In other words, while moving s down to level

ℓT (s), we can only decrease the value of ℓT (s
′′), for the set s′′ will now need to go down to an even lower

level in order to ensure that W ∗(s) exceeds the threshold (1 + ǫ)−1cs′′ .
This leads us to the following natural algorithm. Consider an array Γ[0, . . . , k], where Γ[i] = {s ∈

S ′alive : ℓT (s) = i} for each i ∈ [0, k]. As far as data structures are concerned, we can store each entry Γ[i]
of this array as a doubly linked list. Using appropriate pointers, we can insert/delete a given set s′ in such

a doubly linked list in O(1) time. Now, the algorithm proceeds in rounds i = k, . . . , 0. In the beginning of

round i, we have Γ[j] = ∅ for all j > i. During round i, we repeatedly keep pulling out a set s from Γ[i]
(this is a set which currently maximizes ℓT (s)), move the set s – along with all the elements in E ′alive ∩ s –

down to level ℓT (s), transfer the set s from S ′alive to S ′frozen, and also transfer all the elements e ∈ s∩E ′alive
from E ′alive to E ′frozen. By the discussion above, these steps can only decrease the values of ℓT (s

′′) of the

other alive sets s′′. Accordingly, we continue to satisfy the invariant that Γ[j] = ∅ for all j > i. The current

round ends when we have Γ[i] = ∅. At that point, we proceed with round (i− 1).
From the above discussion, it becomes clear that this algorithm produces exactly the same output as

the algorithm described in Appendix A. It now remains to bound the total runtime of this algorithm. The

pseudocode of the algorithm appears in Figure 4.

Runtime analysis: Since each element is contained in at most f sets, steps 12 – 18 in Figure 4 can be im-

plemented in O(f) time (note that step 18 can be implemented in O(1) time). Furthermore, while executing

steps 12 – 18 on a given element e, we move the element from E ′alive to E ′frozen. Hence, steps 12 – 18

get executed on a given element e at most once. Summing over all the n′ elements in E ′, the subroutine in

Figure 4 spends at most O(f · n′) time on steps 11 – 18.

Next, note that while executing steps 07 – 10 on a given set s, the subroutine in Figure 4 moves the set

from S ′alive to S ′frozen. Accordingly, steps 07 – 10 get executed on a given set s at most once. Since every

such execution of steps 07 – 10 takes O(1) time and since there are m′ sets in S ′, we conclude that the

subroutine overall spends O(m′) time on steps 06 – 10.

Finally, the subroutine spends O(k) ≤ O(L) = O(log(Cn)/ǫ) time on step 05. Since m′ ≤ fn′, the

total time required by the subroutine in Figure 4 is at most O(fn′+m′+log(Cn)/ǫ) = O(fn′+log(Cn)/ǫ).

11Because in the paragraph we crucially relied on the fact that i′ > ℓT (s), which will not be the case if ℓT (s) ≥ ℓT (s
′).

22

01. INITIALIZE: S ′alive ← S
′, S ′frozen ← ∅, E

′
alive ← E

′, E ′frozen ← ∅.

02. Compute ℓT (s) for every set s ∈ S ′alive, and set up the array Γ[0, . . . , k] accordingly.

05. FOR i = k down to 0:

06. WHILE Γ[i] 6= ∅:
07. Pick any s ∈ Γ[i].
08. Γ[i]← Γ[i] \ {s}.
09. ℓ(s)← ℓT (s).
10. Move the set s from S ′alive to S ′frozen.

11. FOR every element e ∈ E ′alive ∩ s:

12. ℓ(e)← ℓT (s).

13. w(e)← w(e) + (1 + ǫ)−ℓT (s) − (1 + ǫ)−k. // We had w(e) = (1 + ǫ)−k before this step.

14. W ∗(s)←W ∗(s) + (1 + ǫ)−ℓT (s) − (1 + ǫ)−k.

15. Move the element e from E ′alive to E ′frozen.

16. FOR every set s′ ∈ S ′alive that contains e:

17. W ∗(s′)←W ∗(s′) + (1 + ǫ)−ℓT (s) − (1 + ǫ)−k.

18. Update the value of ℓT (s
′) and the array Γ[0, . . . , k] accordingly.

Figure 4: The subroutine FIX-LEVEL(k,S ′, E ′).

23

	1 Introduction
	1.1 Technical Overview

	2 Preliminaries: Minimum Set Cover in the Static Setting
	3 Our Dynamic Algorithm
	3.1 A classification of elements
	3.2 The shadow input and the invariants
	3.3 The algorithm
	3.4 The Rebuild(k) subroutine

	4 Analysis of our dynamic algorithm
	4.1 Bounding the update time of our dynamic algorithm
	4.2 Bounding the approximation ratio of our dynamic algorithm

	A A Static Primal-Dual Algorithm for Minimum Set Cover
	A.1 Post-processing

	B A detailed description of the Rebuild(k) subroutine
	B.1 The subroutine FIX-LEVEL(k, S', E')

