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Abstract 

Recently, Jaakkola and Haussler proposed a method for construct­
ing kernel functions from probabilistic models. Their so called 
"Fisher kernel" has been combined with discriminative classifiers 

such as SVM and applied successfully in e.g. DNA and protein 
analysis. Whereas the Fisher kernel (FK) is calculated from the 
marginal log-likelihood, we propose the TOP kernel derived from 
Tangent vectors Of Posterior log-odds. Furthermore we develop 
a theoretical framework on feature extractors from probabilistic 
models and use it for analyzing FK and TOP. In experiments our 
new discriminative TOP kernel compares favorably to the Fisher 
kernel. 

1 Introduction 

In classification tasks , learning enables us to predict the output y E {-1 , + 1} of 
some unknown system given the input a! E X based on the training examples 

{a!i ' y;}i=l' The purpose of a feature extractor f : X --+ ]RD is to convert the 
representation of data without losing the information needed for classification [3] . 
When X is a vector space like ]Rd , a variety of feature extractors have been proposed 

(e .g. Chapter 10 in [3]) . However, they are typically not applicable when X is a 
set of sequences of symbols and does not have the structure of a vector space as in 
DNA or protein analysis [2]. 

Recently, the Fisher kernel (FK) [6] was proposed to compute features from a proba­

bilistic model p( a!, Y 18). At first, the parameter estimate 9 is obtained from training 

examples . Then , the tangent vector of the log marginal likelihood log p( ~ 19) is used 
as a feature vector. The Fisher kernel refers to the inner product in this feature 
space, but the method is effectively a feature extractor (also since the features are 
computed explicitly). The Fisher kernel was combined with a discriminative clas­
sifier such as SVM and achieved excellent classification result s in several fields, for 
example in DNA and protein analysis [6 , 5]. Empirically, it is reported that the 
FK-SVM system often outperforms the classification performance of the plug-in es-



timate. 1 Note that the Fisher kernel is only one possible member in the family of 
feature extractors f iJ (re ) : X --+ ]RD that can be derived from probabilistic models . 
We call this family "model-dependent feature extractors" . Exploring this family is 
a very important and interesting subject. 

Since model-dependent feature extractors have been newly developed, the perfor­
mance measures for them are not yet established. We therefore first propose two 
performance measures . Then, we define a new kernel (or equivalently a feature 
extractor) derived from the Tangent vector Of Posterior log-odds - that we denote 

as TOP kernel. vVe will analyze the performance of the TOP kernel and the Fisher 
kernel in terms of our performance measures. Then the TOP kernel is compared 
favorably to the Fisher kernel in a protein classification experiment. 

2 Performance Measures 

To begin with, let us describe the notations. Let re E X be the input 'point' and 
y E {-1 , +1} be the class label. X may be a finite set or an infini te set like ]Rd. 

Let us assume that we know the parametric model of the joint probability p( re, y19) 
where 9 E]RP is the parameter vector. Assume that the model p(re,yI9) is regular 
[7] and contains the true distribution. Then the true parameter 9 * is uniquely 

determined. Let iJ be a consistent est imator [1] of 9 *, which is obtained by n training 

examples drawn i.i.d . from p(re , YI9*). Let oed = of 108i , Vof = (OeJ, ... ,Oep !) T , 

and V~f denote a p X P matrix whose (i,j) element is 02 f 1(08i 08 j ) . 

As the Fisher kernel is commonly used in combination with linear classifiers such 
as SVMs, one reasonable performance measure is the classification error of a linear 
classifier wTfiJ (re) + b (w E]RD and b E]R) in the feature space. Usually wand b 

are learned, so the optimal feature extractor is different with regard to each learning 
algorithm. To cancel out this ambiguity and to make a theoretical analysis possible , 
we assume the optimal learning algorithm is used. When wand b are optimally 
chosen, the classification error is 

R(fiJ) = min E""y<I>[-y(w T fiJ(re ) + b)], 
wES ,bE~ 

(2 .1 ) 

where S = {w l llwi l = 1,w E ]RD }, <I> [a ] is the step function which is 1 when 
a > 0 and otherwise 0, and E""y denotes the expectation with respect to the true 
distribution p( re, y 19*). R(f iJ) is at least as large as the Bayes error L * [3] and 
R(f iJ) = L * only if the linear classifier implements the same decision rule as the 
Bayes optimal rule. 

As a related measure , we consider the estimation error of the posterior probability 
by a logistic regressor F(w T fiJ(re ) + b), with e.g. F(t) = 1/ (1 + exp( -t)): 

D(fiJ) = min E",IF(w T fo(re ) + b) - P(y = +1Ire,9*)I. (2 .2) 
wE~D ,bE~ 

The relationship between D(fiJ ) and R(fiJ) is illustrated as follows: Let L be the 

classification error rate of a posterior probability estimator P(y + lire). With 

regard t o L, the following inequality is known[l]: 

L - L* :s; 2E.,IP(y = +l lre ) - P(y = +1 Ire , 9*)I. (2 .3) 

When P(y +llre):= F(w T fiJ(re) + b) , this inequality leads to the following 
relationship between the two measures 

R(fiJ) - L* :s; 2D(fiJ)· (2.4) 
---------------------------

1 In classification by plug-in estimate, re is classified by t hresholding the posterior prob­

ability fj = sign(P(y = +llre, 0) - 0.5) [1]. 



Since D(fo ) is an upper bound on R(fo), it is useful to derive a new kernel to 

minimize D(f 0) ' as will be done in Sec. 4. 

3 The Fisher kernel 

The Fisher kernel (FK) is defined 2 as K (;e , ;e' ) = s(;e , iJ )TZ-1(iJ)s (;e' ,iJ) , where s 
is the Fisher score 

s(;e , iJ ) = (otl1logp(;eliJ) , ... ,Otlp 10gp( ;eliJ )) T = \7e logp(;e ,iJ ), 

and Z is the Fisher information matrix: Z(9) = E", [s(;e,9)s(;e,9)TI9]. The theo­

retical foundation of FK is described in the following theorem [6]: "a kernel classifier 
employed the Fisher kernel derived from a model that contains the label as a la tent 
variable is , asymptotically, at least as good a classifier as t he MAP labeling based 
on the model" . The theorem says that the Fisher kernel can perform at least as 
well as the plug-in estimate, if the parameters of linear classifier are properly de­

t ermined (cf. Appendix A of [6]). With our performance measure, this t heorem can 
be represented more concisely: R(f 0) is bounded by the classificat ion error of the 
plug-in estimate 

R(fo) :S; E""y<I> [- y(P(y = + ll;e,iJ ) - 0.5)] . (3.1 ) 

Note that the classification rule constructed by the plug-in estimate P( y = + 11;e , iJ) 
can also be realized by a linear classifier in feature space. Property (3.1) is important 
since it guarantees that the Fisher kernel performs better when the optimal w and b 
are available. However, the Fisher kernel is not the only one to satisfy this inequality. 
In the next section, we present a new kernel which satisfies (3.1) and has a more 
appealing theoretical property as well . 

4 The TOP Kernel 

Definition Now we proceed to propose a new kernel: Our aim is to obtain a feature 

extractor that achieves small D(f 0). When a feature extractor! 0 (;e) satisfies3 

W T !o(;e ) + b = p -1( p(y = + 11;e , 9 *)) for all;e E X (4 .1 ) 

with certain values of w and b, we have D(f 0) = O. However, since the true 
parameter 9 * is unknown, all we can do is t o construct ! 0 which approximately 
satisfies (4.1). Let us define 

v( ;e,9) = p-1 (p (y = +11;e , 9 )) = 10g( P( y = +11;e,9)) -log(P(y = -11;e,9) ), 

which is called the posterior log-odds of a probabilistic model [1]. By Taylor ex­

pansion around the estimate iJ up to t he first order4 , we can approximate v( ;e,9*) 
as 

l' 

v( ;e,9*) ~ v(;e,iJ) + L0tliv( ;e , iJ)(e: - ad. ( 4.2) 

i=l 

2In practice, some variants of the Fisher kernel are used. For example, if the derivative 

of each class distribution , not marginal , is taken, the feature vector of FK is quite similar 
to that of our kernel. However , these variants should b e deliberately discriminat ed from 

the Fisher kernel in theoretical discussions. Throughout this paper including experiments, 

we adopt the origi nal defini t ion of the F isher kernel from [6] . 

3Notice t hat p- l (t) = log t - log(l - t ) 
40 ne can easily derive TOP kernels from higher order Taylor expansions . However, we 

will only deal with t he first order expansion here, because higher order expansio ns would 

induce extremely high dimensional feature vectors in practical cases. 



Thus, by setting 

( 4.3) 

and 
w:= w * = (1, 8; - el , ··· , 8; - ep)T, b = 0, (4.4) 

equation (4.1) is approximately satisfied. Since a Tangent vector Of the Posterior 
log-odds const itutes the main part of the feature vector, we call the inner product 
of the two feature vectors "TOP kernel" : 

( 4.5) 

It is easy to verify that the TOP kernel satisfies (3.1) , b ecause we can construct 
the same decision rule as the plug-in estimate by using the first element only (i.e. 
w = (1 , 0, . .. ,0), b = 0). 

A Theoretical Analysis In this section , we compare the TOP kernel with the plug­
in es timate in terms of p erformance measures . Later on, we assume that 0 < P (y = 

+1Ial,8 ) < 1 to prevent IV( al,8)1 from going to infinity. Also, it is assumed that 
VeP (y = +1Ial , 8) and V~P ( y = +1Ial,8) are bounded. Substituting the plug-in 
estimate denoted by the subscript IT into D(fo ), we have 

Define 68 = 8 - 8*. By Taylor expansion around 8* , we have 

where 8 0 = 8* + "(68 (O :S "( :S 1). When the TOP kernel is used, 

D(fo) :S E",IF((w* )T fo(al)) - P (y = +1 Ial,8*)I , ( 4.7) 

where w* is defined as in (4.4). Since P is Lipschitz-continuous, there is a finit e 
positive constant M such that IP(a) - P(b)1 :S Mia - bl. Thus, 

D(fo) :S ME",I(w *)T fo (rn ) - P-l (P (y = + 1Irn , 8* )) I· (4.8) 

Since (w* ) T f 0 (al ) is the Taylor expansion of p - 1 (P(y = + 11al , 8 *)) up to the first 
order (4.2) , the first order t erms of 68 are excluded from the right side of (4.8 ), 

thus D(fo ) = 0 (11 68 112 ) . Since both, the plug-in and the TOP kernel, depend on 

the parameter estimate 8, the errors D,,(8) and D(fo) become smaller as 1168 11 
decreases. This shows th at if w and b are optimally chosen , t he rate of convergence 
of the TOP kernel is much faster than that of the plug-in estimate. 

This result is closely related to large sample performances : Assuming that 8 is a 
n 1/2 consistent estimator with asymptotic normality (e .g. the maximum likelihood 

estimator) , we have 116811 = Op(n- l / 2 )[7J, where 01' denotes stochastic order cf. [1]. 

So we can directly derive the convergence order as D,,(8) = Op (n- l / 2 ) and D(f 0) = 

Op(n- l ). By using the relation (2.4) , it follows that R,, (8 ) - L* = Op(n- l / 2 ) and 

R(f 0) - L * = Op (n- l ).5 Therefore, t he TOP kernel has a much b etter convergence 

rate in R(f 0)' which is a strong motivation to use the TOP kernel instead of plug-in 
estimate. 

5For detail ed discussion about t he convergence orders of classification e rror, see C ha pte r 

6 of [1] 



However, we must notice that this fast rate is possible only when the optimal lin­
ear classifier is combined with the TOP kernel. Since non-optimal linear classifiers 
typically have the rate Op(n- 1 / 2 ) [1 ], the overall rate is dominated by the slower 

rate and turns out to be Op (n - 1 / 2 ) . But this theoretical analysis is still meaning­

ful, because it shows the existence of a very efficient linear boundary in the TOP 
feature space. This result encourages practical efforts to improve linear boundaries 
by engineering loss functions and regularization terms with e.g. cross validation, 
bootstrapping or other model selection criteria [1]. 

Exponential Family: A Special Case ·When the distribut ion of two classes belong 

to the exponential family, the TOP kernel can achieve an even better result than 
shown above. Distributions of the exponential family can be written as q( re , 11) = 
exp( 11 T t (;I!) +~( 11)) , where t (;I!) is a vector-valued function called sufficient statist ics 
and ~ ( 11 ) is a normalization factor [4]. Let 0' denote the parameter for class prior 
probability of the positive model P( y = +1). Then, the probabilistic model IS 

described as 

where 8 = {O' , 11+1 ' 11 - 1}· The posterior log-odds reads 

The TOP feature vector is described as 

A A AT ATT 
iiJ(;I! ) = (v( ;I! ,8) ,Oav(re ,8 ), V'7+1 v(re , 8 ) , V'7 _1 v(;I!,8) ) . 

where V'7 ,v(;I!,iJ ) = s(ts(re) + V'7 ,~ s(f,s)) for s = {+1,-1}. So, when w = 

(1,0, 11+1 - "'+1,11"-1 - "'- 1) T and b is properly set, the true log-odds p - l (P(y = 

+11;I!,8*)) can be constructed as a linear function in the feature space (4.1). Thus 
DUiJ) = 0 and RUiJ) = L*. Furthermore, since each feature is represented as 

a linear function of sufficient statistics t+1 (re) and t - l (re), one can construct an 

equivalent feature space as (t+ l (re) T, Ll (re) T) T without knowing iJ. This result is 
important because all graphical models without hidden states can be represented 
as members of the exponential family, for example markov models [4] . 

5 Experiments on Protein Data 

In order to illustrate that the TOP kernel works well for real-world problems, we 
will show the result s on protein classification. The protein sequence data is obtained 
from the Superfamily website. 6 This site provides sequence files with different de­
grees of redundancy filtering ; we used the one with 10% redundancy filtering. Here, 
4541 sequences are hierarchically labeled into 7 classes, 558 folds, 845 superfam­
ilies and 1343 families according to the SCOP(1.53) scheme. In our experiment , 
we determine the top category "classes" as the learning target. The numbers of 
sequences in the classes are listed as 791, 1277, 1015, 915,84,76,383. We only use 
the first 4 classes, and 6 two-class problems are generated from all pairs among t he 
4 classes . The 5th and 6th classes are not used because the number of examples is 

too small. Also, the 7th class is not used because this class is quite different from 
the others and too easy to classify. In each two-class problem , the examples are 
randomly divided into 25% training set, 25% validation set and 50% t est set. The 
validation set is used for model selection. 

6http://stash.mrc-lmb.cam.ac.uk/SUPERFAMILY / 



As a probabilistic model for protein sequences, we make use of hidden markov mod­
els [2] with fully connected states.7 The Baum-Welch algorithm (e.g. [2]) is used 
for maximum likelihood training. To construct FK and TOP kernels , the deriva­
tives with respect to all parameters of the HMMs from both classes are included. 
The derivative with respect to the class prior probability is included as well: Let 
q( OIl , e) be the probability density function of a HMM. Then, the marginal di stri-

bution is written as p(ocI8) = aq( oc, e+1 ) + (1- a)q( oc, L1) , where a is a parameter 
corresponding to the class prior. The feature vector of FK consists of the following: 

V'e , logp( oc I8) 

00: logp(oc I8) 

P(y=s loc ,8)V'e , logq(oc ,es) SE {-l,+l} 

1 , 1 ' 
--;;-P (y = +1 1°c , 9) - --, P(y = -11°c, 9) , 
a I -a 

(5.1 ) 

(5.2) 

while the feature vector of TOP includes V'e ,v( oc ,8) sV'e , logq( oc ,es) s = 

{+ 1, _ 1}.8 We obtained e+1 and e-1 from the training examples of respective 
classes and set a = 0.5. In the definition of the TOP kernel (4.5), we did not 
include any normalization of feature vectors. However, in practical situations, it is 
effective to normalize features for improving classification performance. Here, each 
feature of the TOP kernel is normalized to have mean 0 and variance 1. Also in FK, 
we normalized the features in the same way instead of using the Fisher information 
matrix, because it is difficult to estimate it reliably in a high dimensional parameter 
space. Both, the TOP kernel and FK are combined with SVMs with bias terms. 

When classifying with HMMs , one observes the difference of the log-likelihoods for 
the two classes and discriminates by thresholding at an appropriate value. Theo­
retically, this threshold should be determined by the (true) class prior probability. 
But, this is typically not available. Furthermore the estimation of the prior prob­
ability from training data often leads to poor results [2] . To avoid this problem, 
the threshold is determined such that the false positive rate and the false negative 
rate are equal in the test set. This threshold is determined in the same way for 

FK-SVMs and TOP-SVMs. 

The hybrid HMM-TOP-SVM system has several model parameters: the number 
of HMM states, the pseudo count value [2] and the regularization parameter C of 
the SVM. vVe determine these parameters as follows: First, the number of states 
and the pseudo count value are determined such that the error of the HMM on 

the validation set (i. e. validation error) is minimized. Based on the chosen HMM 
model, the parameter C is det ermined such that the validation error of TOP-SVM is 
minimized. Here, the number of states and the pseudo count value are chosen from 
{3, 5,7,10,15,20,30,40, 60} and {l0-10, 10- 7 , 10 - 5 , 10- 4 ,10 - 3 , 1O- 2 }, respectively. 
For C, 15 equally spaced points on the log scale are taken from [10-4 ,101]. Note 

that the model selection is performed in the same manner for the Fisher kernel as 
well. 

The error rates over 15 different training/validation/test divisions are shown in Fig­
ure 1 and 2. The results of stat istical tests are shown in Table 1 as well. Compared 
with the plug-in est imate, the Fisher kernel performed significantly better in sev­
eral sett ings (i.e. 1-3, 2-3, 3-4). This result partially agrees with observations in 
[6]. However, our TOP approach significantly outperforms the Fisher kernel: Ac­
cording to the Wilcoxson signed ranks test, the TOP kernel was significantly better 

7Several HMM models have been engineered for protein classification [2]. However, we 

do not use such HMMs because the main purpose of experiment is to compare FK and 

TOP. 

8 0aV (OC, 0) is a constant which does not depend on OIl. So it is not included in the 

feature vector. 



1-2 1-3 1-4 
0.1 6 0.3 

0.36
1 

0.1 4 

~ ~ ~ ""I ~ ~ 
0.25 0. 32 

~ 
0.1 2 

0.3 

0.1 0.2 $ 0. 281 
0.26 

0.08 
0. 24 

0.15 

P FK TOP P FK TOP P FK TOP 

2-3 2-4 3-4 

0.18 
0.32 

0 4
1 

~ t8 
0.3 

! :::1 , ~ 
0.16 

~ ffi 
0.28 

~ 
0.14 0.26 034 

~ 0.24 
032 , 

0.12 
0 3

1 

0.22 

0.1 0 28 
0.2 I 

P FK TOP P FK TOP P FK TOP 

Figure 1: The error rates of SVMs with two feature extractors in the protein clas­
sification experiments. T he labels 'P ','FK' ,'TOP' denote the plug-in estimate , the 

Fisher kernel and t he TOP kernel, respect ively. T he t it le on each subfigure shows 
the two prot ein classes used for t he experiment. 
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Figure 2: Comparison of the error rates 
of the F isher kernel and the TOP ker­
nel in discrimination between class 1 and 
2. Every point corresponds to one of 
15 differen t t raining/validation/test set 
splits. Except two cases, t he T OP kernel 
achieves smaller error rates . 

in all settings . Also, the t-test judged t hat t he difference is significant except for 
1-4 and 2-4. This indicates that the T OP kernel was able to capture discriminative 
information better than the Fisher kernel. 

6 Conclusion 

In this study, we presented the new discriminative TOP kernel derived from prob­
abilistic models. Since the theoret ical framework for such kernels has so far not 
been established, we proposed two performance measures to analyze them and gave 
bounds and rates to gain a bett er insigh t into model dependent feature extractors 
from probabilistic models. Experimentally, we showed that the T OP kernel com­
pares favorably to F K in a realistic protein classification experiment . Note t hat 
Smith and Gales[8] have shown t hat a similar approach works excellent ly in speech 
recogni tion tasks as well. Fu ture research will focus on constructing small sample 
bounds for t he T OP kernel to extend the validity of t his work. Since other nonlinear 
transformat ions F are possible for obtaining different and possibly b etter features, 
we will furthermore consider to learn t he nonlinear transformat ion F from train­
ing samples . An interes ting point is that so far T OP kernels perform local linear 
approximations, it would be interest ing to move in the direction of local or even 



Table 1: P-values of statistical test s in the protein classification experiments . Two 
kinds of tests, t- test (denoted as T in the table) and Wilcoxson signed ranks test 
(i .e. WX) , are used. When the difference is significant (p-value < 0.05), a single 
star * is put beside the value. Double stars ** indicate that the difference is very 
significant (p-value < 0.01). 

I Methods I Test II 1-2 1-3 1-4 

P, FK T 0.95 0.14 0.78 
WX 0.85 0.041 * 0.24 

P, TOP T 0.015* 1.7 X 10 - ~** 0.11 

WX 4.3 X 10-4** 6.1 X 10-5** 0.030* 

FK,TOP T 0.0093** 2.2 X 10 -4** 0.21 

WX 8.5 X 10- 4 ** 6.1 X 10- 5** 0.048* 

I Methods I Test II 2-3 2-4 3-4 

P, FK T 0.0032** 0.79 0.12 
WX 0.0040** 0.80 0.026* 

P, TOP T 3.0 X 10 -1~** 0.059 5.3 X 10 -0** 

WX 6.1 X 10- 5** 0.035* 3.1 X 10- 4 ** 

FK,TOP T 2.6 X 10 -M* 0.079 0.0031 ** 

WX 6.1 X 10- 5** 0.0034** 1.8 X 10- 4** 

global nonlinear expansions. 

Acknowledgments vVe thank T. Tanaka, M. Sugiyama, S.-I. Amari, K. Karplus, 
R. Karchin, F. Sohler and A. Zien for valuable discussions. Moreover, we gratefully 
acknowledge partial support from DFG (JA 379/9-1, MU 987/1-1) and travel grants 
from EU (Neurocolt II). 

References 

[1] L. Devroye, L. Gyorfi, and G. Lugosi. A Probabilistic Theory of Pattern Recog­
nition. Springer , 1996. 

[2] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis: 
Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press , 
1998. 

[3] K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic Press, 
San Diego, 2nd edition, 1990. 

[4] D. Geiger and C. Meek. Graphical models and exponential famili es . Technical 
Report MSR-TR-98-10, Microsoft Research, 1998. 

[5] T.S. Jaakkola, M. Diekhans, and D. Haussler. A discriminative framework for 
detecting remote protein homologies. J. Compo Biol. , 7:95-114, 2000. 

[6] T.S. Jaakkola and D. Haussler. Exploiting generative models in discriminative 
classifiers. In M.S. Kearns, S.A. SoHa, and D.A. Cohn, editors, Advances in 
Neural Information Processing Systems 11 , pages 487- 493. MIT Press, 1999. 

[7] N. Murata, S. Yoshizawa, and S. Amari. Network information criterion -

determining the number of hidden units for an artificial neural network model. 
IEEE Trans. Neural Networks, 5:865- 872, 1994. 

[8] N. Smith and M. Gales. Speech recognition using SVMs. In T.G. Dietterich, 
S. Becker, and Z. Ghahramani , editors, Advances in Neural Information Pro­
cessing Systems 14. MIT Press, 2002. to appear. 


