
A New Distribution on the Simplex

with Auto-Encoding Applications

Andrew Stirn∗, Tony Jebara†, David A Knowles‡

Department of Computer Science
Columbia University
New York, NY 10027

④❛♥❞r❡✇✳st✐r♥✱❥❡❜❛r❛✱❞❛❦♥♦✇❧❡s⑥❅❝s✳❝♦❧✉♠❜✐❛✳❡❞✉

Abstract

We construct a new distribution for the simplex using the Kumaraswamy dis-
tribution and an ordered stick-breaking process. We explore and develop the
theoretical properties of this new distribution and prove that it exhibits symmetry
(exchangeability) under the same conditions as the well-known Dirichlet. Like
the Dirichlet, the new distribution is adept at capturing sparsity but, unlike the
Dirichlet, has an exact and closed form reparameterization–making it well suited
for deep variational Bayesian modeling. We demonstrate the distribution’s utility
in a variety of semi-supervised auto-encoding tasks. In all cases, the resulting
models achieve competitive performance commensurate with their simplicity, use
of explicit probability models, and abstinence from adversarial training.

1 Introduction

The Variational Auto-Encoder (VAE) [12] is a computationally efficient approach for performing
variational inference [11, 27] since it avoids per-data-point variational parameters through the use of
an inference network with shared global parameters. For models where stochastic gradient variational
Bayes requires Monte Carlo estimates in lieu of closed-form expectations, [23, 12] note that low-
variance estimators can be calculated from gradients of samples with respect to the variational
parameters that describe their generating densities. In the case of the normal distribution, such
gradients are straightforward to obtain via an explicit, tractable reparameterization, which is often
referred to as the “reparameterization trick”. Unfortunately, most distributions do not admit such
a convenient reparameterization. Computing low-bias and low-variance stochastic gradients is an
active area of research with a detailed breakdown of current methods presented in [4]. Of particular
interest in Bayesian modeling is the well-known Dirichlet distribution that often serves as a conjugate
prior for latent categorical variables. Perhaps the most desirable property of a Dirichlet prior is its
ability to induce sparsity by concentrating mass towards the corners of the simplex. In this work, we
develop a surrogate distribution for the Dirichlet that offers explicit, tractable reparameterization, the
ability to capture sparsity, and has barycentric symmetry (exchangeability) properties equivalent to
the Dirichlet.

Generative processes can be used to infer missing class labels in semi-supervised learning. The
first VAE-based method that used deep generative models for semi-supervised learning derived two
variational objectives for the same the generative process–one for when labels are observed and one
for when labels are latent–that are jointly optimized [13]. As they note, however, the variational
distribution over class labels appears only in the objective for unlabeled data. Its absence from
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the labeled-data objective, as they point out, results from their lack of a (Dirichlet) prior on the
(latent) labels. We suspect they neglected to specify this prior, because, at the time, it would have
rendered inference intractable. They ameliorate this shortcoming by introducing a discriminative third
objective, the cross-entropy of the variational distribution over class labels, which they compute over
the labeled data. They then jointly optimize the two variational objectives after adding a scaled version
of the cross-entropy term. Our work builds on [13], while offering some key improvements. First,
we remove the need for adding an additional discriminative loss through our use of a Dirichlet prior.
We overcome intractability using our proposed distribution as an approximation for the Dirichlet
posterior. Naturally, our generative process is slightly different, but it allows us to consider only
unmodified variational objectives. Second, we do not stack models together. Kingma et al.’s best
results utilized a standard VAE (M1) to learn a latent space upon which their semi-supervised VAE
(M2) was fit. For SVHN data, they perform dimensionality reduction with PCA prior to fitting M1.
We abandon the stacked-model approach in favor of training a single model with more expressive
recognition and generative networks. Also, we use minimal preprocessing (rescaling pixel intensities
to [0, 1]).

Use of the Kumaraswamy distribution [14] by the machine learning community has only occurred
in the last few years. It has been used to fit Gaussian Mixture Models, for which a Dirichlet prior
is part of the generative process, with VAEs [19]. To sample mixture weights from the variational
posterior, they recognize they can decompose a Dirichlet into its stick-breaking Beta distributions
and approximate them with the Kumaraswamy distribution. We too employ the same stick-breaking
decomposition coupled with Kumaraswamy approximations. However, we improve on this technique
by expounding and resolving the order-dependence their approximation incurs. As we detail in
section 2, using the Kumaraswamy for stick-breaking is not order agnostic (exchangeable); the
generated variable has a density that depends on ordering. We leverage the observation that one
can permute a Dirichlet’s parameters, perform the stick-breaking sampling procedure with Beta
distributions, and undo the permutation on the sampled variable without affecting its density. Those
same authors also use this Beta-Kumaraswamy stick-breaking approximation to fit a Bayesian non-
parametric model with a VAE [20]. Here too, they do not account for the impact ordering has on their
approximation. Their latent space, being non-parametric, grows in dimensions when it insufficiently
represents the data. As we demonstrate in section 2.2 and fig. 1, approximating sparse Dirichlet
samples with the Kumaraswamy stick-breaking decomposition without accounting for the ordering
dependence produces a large bias in the samples’ last dimension. We conjecture that their Bayesian
non-parametric model would utilize fewer dimensions with our proposed distribution and would be
an interesting follow up to our work.

Figure 1: Sampling bias for a 5-dimensional sparsity-inducing Dirichlet approximation using α =
1
5 (1, 1, 1, 1, 1). We maintain histograms for each sample dimension for three methods: Dirichlet,
Kumaraswamy stick-breaks with a fixed order, Kumaraswamy stick-breaks with a random ordering.
Note the bias on the last dimension when using a fixed order. Randomizing order eliminates this bias.

2 A New Distribution on the Simplex

The stick-breaking process is a sampling procedure used to generate a K dimensional random variable
in the K − 1 simplex. The process requires sampling from K − 1 (often out of K) distributions each
with support over [0, 1]. Let pi(v; ai, bi) be some distribution for v ∈ [0, 1] parameterized by ai and
bi. Let o be some ordering (permutation) of {1, . . . ,K}. Then, algorithm 1 captures a generalized
stick-breaking process. The necessity for incorporating ordering will become clear in section 2.1.
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Algorithm 1 A Generalized Stick-Breaking Process

Require: K ≥ 2, base distributions pi(v; ai, bi) ∀ i ∈ {1, . . . ,K}, and some ordering o
Sample: vo1 ∼ po1(v; ao1 , bo1)
Assign: xo1 ← vo1 , i← 2
while i < K do

Sample: voi ∼ poi(v; aoi , boi)

Assign: xoi ← voi

(

1−
∑i−1

j=1 xoj

)

, i← i+ 1

end while
Assign: xoK ← 1−

∑K−1
j=1 xoj

return x

From a probabilistic perspective, algorithm 1 recursively creates a joint distribution p(xo1 , . . . , xoK−1
)

from its chain-rule factors p(xo1)p(xo2 |xo1)p(xo3 |xo2 , xo1) . . . p(xoK−1
|xoK−2

, . . . xo1). Note, how-
ever, that xoK does not appear in the distribution. Its absence occurs because it is deterministic
given xo1 , . . . , xoK−1

(the K − 1 degrees of freedom for the K − 1 simplex). Each iteration of the
while loop generates p(xoi |xoi−1

, . . . , xo1) by sampling poi(v; aoi , boi) and a change-of-variables

transform Ti : [0, 1]
i → [0, 1]i to the samples collected thus far. This transform and its inverse are

Ti(xo1 , . . . , xoi−1
, voi) =

(

xo1 , . . . , xoi−1
, voi

(

1−
i−1
∑

j=1

xoj

)

)

(1)

T−1
i (xo1 , . . . , xoi−1

, xoi) =

(

xo1 , . . . , xoi−1
, xoi

(

1−
i−1
∑

j=1

xoj

)−1
)

. (2)

Applying the change-of-variables formula to the conditional distribution generated by a while loop
iteration, allows us to formulate the conditional as an expression involving just pi(v; ai, bi), which
we assume access to, and det(JT−1

i
), where JT−1

i
is the Jacobian of eq. (2).

p(xoi |xoi−1
, . . . , xo1) = p(voi |xoi−1

, . . . , xo1) · det(JT−1

i
) = poi(v; aoi , boi) ·

(

1−
i−1
∑

j=1

xoj

)−1

A common application of the stick-breaking process is to construct a Dirichlet sample from

Beta samples. If we wish to sample from Dirichlet(x;α), with α ∈ R
K
++, it suffices to assign

pi(v; ai, bi) ≡ Beta(x;αi,
∑K

j=i+1 αj). With this assignment, algorithm 1 will return a Dirichlet

distributed x with density

p(xo1 , . . . , xoK ;α) =
Γ
(

∑K
i=1 αoi

)

∏K
i=1 Γ(αoi)

K
∏

i=1

x
αoi

−1
oi .

This form requires substituting for algorithm 1’s final assignment xoK ≡ 1 −
∑K−1

i=1 xoK . Upon
inspection, the Dirichlet distribution is order agnostic (exchangeable). In other words, given any
ordering o, the random variable returned from algorithm 1 can be permuted to (x1, . . . , xK) (along
with the parameters) without modifying its probability density. This convenience arises from the Beta
distribution’s form.

Theorem 1 For K ≥ 2 and pi(v; ai, bi) ≡ Beta(x;αi,
∑K

j=i+1 αj), algorithm 1 returns a random

variable whose density is captured via the Dirichlet distribution.

A proof of theorem 1 appears in section 7.1 (appendix). A variation of this proof also appears in [5].

2.1 The Kumaraswamy distribution

The Kumaraswamy(a, b) [14], a Beta-like distribution, has two parameters a, b > 0 and support

for x ∈ [0, 1] with PDF f(x; a, b) = abxa−1(1 − xa)b−1 and CDF F (x; a, b) = 1 − (1 − xa)b.
With this analytically invertible CDF, one can reparameterize a sample u from the continuous
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Uniform(0, 1) via the transform T (u) = (1− (1−u)1/b)1/a such that T (u) ∼ Kumaraswamy(a, b).
Unfortunately, this convenient reparameterization comes at a cost when we derive p(xo1 , . . . , xoK ;α),
which captures the density of the variable returned by algorithm 1. If, in a manner similar to generating

a Dirichlet sample from Beta samples, we let pi(v; ai, bi) ≡ Kumaraswamy(x;αi,
∑K

j=i+1 αj), then

the resulting variable’s density is no longer order agnostic (exchangeable). The exponential in the
Kumaraswamy’s (1− xa) term that admits analytic inverse-CDF sampling, can no longer cancel out
det(JT−1

i
) terms as the (1− x) term in the Beta analog could. In the simplest case, the 1-simplex

(K = 2), the possible orderings for algorithm 1 are o ∈ O = {{1, 2}, {2, 1}}. Indeed, algorithm 1
returns two distinct densities according to their respective orderings:

f12(x; a, b) = α1α2x
α1−1
1 xα2−1

2

(

1− xα1

1

1− x1

)α2−1

(3)

f21(x; a, b) = α1α2x
α1−1
1 xα2−1

2

(

1− xα2

2

1− x2

)α1−1

. (4)

In section 7.2 of the appendix, we derive f12 and f21 as well as the distribution for the 2-simplex,
which has orderings o ∈ O = {{1, 2, 3}, {1, 3, 2}, {2, 1, 3}, {2, 3, 1}, {3, 1, 2}, {3, 2, 1}}. For
K > 3, the algebraic book-keeping gets rather involved. We thus rely on algorithm 1 to succinctly
represent the complicated densities over the simplex that describe the random variables generated by
a stick-breaking process using the Kumaraswamy distribution as the base (stick-breaking) distribution.
Our code repository § contains a symbolic implementation of algorithm 1 with the Kumaraswamy
that programmatically keeps track of the algebra.

2.2 The multivariate Kumaraswamy

We posit that a good surrogate for the Dirichlet will exhibit symmetry (exchangeability) properties
identical to the Dirichlet it is approximating. If our stick-breaking distribution, pi(v; ai, bi), cannot
achieve symmetry for all values ai = bi > 0, then it is possible that the samples will exhibit bias
(fig. 1). If x ∼ Beta(a, b), then (1−x) ∼ Beta(b, a). It follows then that when a = b, p(x) = p(1−x).
Unfortunately, Kumaraswamy(a, b) does not admit such symmetry for all a = b > 0. However, hope
is not lost. From [6, 8], we have lemma 1.

Lemma 1 Given a function f of n variables, one can induce symmetry by taking the sum of f over
all n! possible permutations of the variables.

If we define fo(xo1 , . . . , xoK ;αo1 , . . . , αoK ) to be the joint density of the K-dimensional ran-
dom variable returned from algorithm 1 with stick-breaking base distribution as pi(v; ai, bi) ≡

Kumaraswamy(x;αi,
∑K

j=i+1 αj) and some ordering o, then our proposed distribution for the

(K − 1)-simplex is

MV-Kumaraswamy(x;α) = E
o∼Uniform(O)

[fo(xo1 , . . . , xoK ;αo1 , . . . , αoK )], (5)

where MV-Kumaraswamy stands for Multivariate Kumaraswamy. Here, O is the set of all possible
orderings (permutations) of {1, . . . ,K}. In the context of [8], we create a U-statistic over the
variables x, α. The expectation in eq. (5) is a summation since we are uniformly sampling o from a
discrete set. We therefore can apply lemma 1 to eq. (5) to prove corollary 1.

Corollary 1 Let S ⊆ {1, . . . ,K} be the set of indices i where for i 6= j we have αi = αj . Define
A = {1, . . . ,K} \ S. Then, Eo∼Uniform(O)[fo(xo1 , . . . , xoK ;αo1 , . . . , αoK )] is symmetric across
barycentric axes xa ∀ a ∈ A.

While the factorial growth (|O| = K!) for full symmetry is undesirable, we expect approximate
symmetry should arise, in expectation, after O(K) samples. Since the problematic bias occurs
during the last stick break, each label ideally experiences an ordering where it is not last; this occurs
with probability K−1

K . Thus, a label is not last, in expectation, after K
K−1 draws from Uniform(O).

§❤tt♣s✿✴✴❣✐t❤✉❜✳❝♦♠✴❛st✐r♥✴▼❱✲❑✉♠❛r❛s✇❛♠②
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Therefore, to satisfy this condition for all labels, one needs K2

K−1 = O(K) samples, in expectation. An

alternative, which we discuss and demonstrate below in fig. 4, would be to use the K cyclic orderings
(e.g. {{1, 2, 3}, {2, 3, 1}, {3, 1, 2}} for K = 3) to achieve approximate symmetry (exchangeability).

In fig. 2, we provide 1-simplex examples for varying α that demonstrate the effect ordering has on the
Kumaraswamy distributions f12(x;α) and f21(x;α) (respectively in eqs. (3) and (4)). In each exam-
ple, we plot the symmetrized versions arising from our proposed distribution Eo[fo(x;α)] (eq. (5)).
For reference, we plot the corresponding Dirichlet(x;α), which is equivalent to Beta(x1;α1, α2)
for the 1-simplex. Qualitatively, we observe how effectively our proposed distribution resolves the
differences between f12 and f21 and yields a E[fo(x;α)] ≈ Dirichlet(x;α).

Figure 2: Kumaraswamy asymmetry and symmetrization examples on the 1-simplex.

In fig. 3, we employ Beta distributed stick breaks to generate a Dirichlet random variable. In this
example, we pick an α such that the resulting density should be symmetric only about the barycentric
x1 axis. Furthermore, because the resulting density is a Dirichlet, the densities arising from all
possible orderings should be identical with identical barycentric symmetry properties. The first row
contains densities. The subsequent rows measure asymmetry across the specified barycentric axis
by computing the absolute difference of the PDF folded along that axis. The first column is for
expectation over all possible orderings. The second column is for the expectation over the cyclic
orderings. Each column thereafter represents a different stick-breaking order. Indeed, we find that the
Dirichlet has an order agnostic density with symmetry only about the barycentric x1 axis.

Figure 3: 2-simplex with Beta sticks Figure 4: 2-simplex with Kumaraswamy sticks

In fig. 4, we employ the same methodology with the same α as in fig. 3, but this time we use
Kumaraswamy distributed stick breaks. Note the significant variations among the densities resulting
from the different orderings. It follows that symmetry/asymmetry too vary with respect to ordering.
We only see the desired symmetry about the barycentric x1 axis when we take the expectation over
all orderings. This example qualitatively illustrates corollary 1. However, we do achieve approximate
symmetry when we average over the K cyclic orderings–suggesting we can, in practice, get away
with linearly scaling complexity.

3 Gradient Variance

We compare our method’s gradient variance to other non-explicit gradient reparameterization methods:
Implicit Reparameterization Gradients (IRG) [4], RSVI [18], and Generalized Reparameterization
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Gradient (GRG) [22]. These works all seek gradient methods with low variance. In fig. 5, we compare
MV-Kumaraswamy’s (MVK) gradient variance to these other methods by leveraging techniques and
code from [18]. Specifically, we consider their test that fits a variational Dirichlet posterior to
Categorical data with a Dirichlet prior. In this conjugate setting, true analytic gradients can be
computed. Their reported ‘gradient variance’ is actually the mean square error with respect to the true
gradient. In our test, however, we are fitting a MV-Kumaraswamy variational posterior. Therefore,
we compute gradient variance, for all methods, according to variance’s more common definition. Our
tests show that IRG and RSVI (B = 10) offer similar variance; this result matches findings in [4].

Figure 5: Variance of the ELBO’s gradient’s first dimension for GRG [22], RSVI [18], IRG [4],
and MVK (ours) when fitting a variational posterior to Categorical data with 100 dimensions and
a Dirichlet prior. They fit a Dirichlet. We fit a MV-Kumaraswamy using K = 100 samples from
Uniform(O) to Monte-Carlo approximate the full expectation; this corresponds to linear complexity.

4 A single generative model for semi-supervised learning

We demonstrate the utility of the MV-Kumaraswamy in the context of a parsimonious generative
model for semi-supervised learning, with observed data x, partially observable classes/labels y with
prior π and latent variable z, all of which are local to each data point. We specify,

π ∼ Dirichlet(π;α), z ∼ N (z; 0, I),

y|π ∼ Discrete(y;π), x|y, z ∼ p(x|fθ(y, z)),

where fθ(y, z) is a neural network, with parameters θ, operating on the latent variables. For observable
y, the evidence lower bound (ELBO) for a mean-field posterior approximation q(π, z) = q(π)q(z) is

ln p(x, y) ≥ E
q(π,z)

[ln p(x|fθ(y, z)) + lnπy]−DKL(q(π) || p(π))−DKL(q(z) || p(z))

≡Ll(x, y, φ, θ). (6)

For latent y, we can derive an alternative ELBO that corresponds to the same generative process
of eq. (6), by reintroducing y via marginalization. We derive eqs. (6) and (7) in section 7.3 of the
appendix.

ln p(x) ≥ E
q(π,z)

[

ln
∑

y

p(x|fθ(y, z))πy

]

−DKL(q(π) || p(π))−DKL(q(z) || p(z))

≡Lu(x, φ, θ) (7)

Let L be our set of labeled data and U be our unlabeled set. We then consider a combined objective

L =
1

|L|

∑

(x,y)∈L

Ll(x, y, φ, θ) +
1

|U |

∑

x∈U

Lu(x, φ, θ) (8)

≈
1

B

∑

(xi,yi)∼L ∀ i∈[B]

Ll(xi, yi, φ, θ) +
1

B

∑

xi∼U ∀ i∈[B]

Lu(xi, φ, θ) (9)
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that balances the two ELBOs evenly. Of concern is when |U | ≫ |L|. Here, the optimizer could
effectively ignore Ll(x, y, φ, θ). This possibility motivates our rebalancing in eq. (8). During
optimization we employ batch updates of size B to maximize eq. (9), which similarly balances
the contribution between U and L. We define an epoch to be the set of batches (sampled without
replacement) that constitute U . Therefore, when |U | ≫ |L|, the optimizer will observe samples from
L many more times than samples from U . Intuitively, the data with observable labels in conjunction
with eq. (6) breaks symmetry and encourages the correct assignment of classes to labels.

Following [12, 13], we use an inference network with parameters φ and define our variational
distribution q(z) = N (z;µφ(x),Σφ(x)), where µφ(x) and Σφ(x) are outputs of a neural network
operating on the observable data. We restrict Σφ(x) to output a diagonal covariance and use a softplus,

ln(exp(x) + 1), output layer to constrain it to the positive reals. Since µφ(x) ∈ R
dim(z), we use an

affine output layer. We let q(π) = MV-Kumaraswamy(π;αφ(x)), where αφ(x) is also an output of
our inference network. We similarly restrict αφ(x) to the positive reals via the softplus activation.

We evaluate the expectations in eqs. (6) and (7) using Monte-Carlo integration. For q(z), we sample
from N (0, I) and utilize the reparameterization trick. Since q(π) contains an expectation over
orderings, we first sample o ∼ Uniform(O) and then employ algorithm 1 with pi(v; ai, bi) ≡

Kumaraswamy(x;αi,
∑K

j=i+1 αj), for which we use inverse-CDF sampling. In both cases, gradients

are well defined with respect to the variational parameters.

We can decompose DKL(MV-Kumaraswamy(αφ(x)) || Dirichlet(α)) into a sum over the corre-

sponding Kumaraswamy and Beta stick-breaking distributions as in [20]. Let α
(j)
φ (x) be the jth con-

centration parameter of the inference network, and α(j) be jth parameter of the Dirichlet prior. If, as
above, we let p(o) = Uniform(O) for the set of all orderings O, then DKL(q(π;αφ(x)) || p(π;α)) =

E
p(o)

[

K−1
∑

i=1

DKL

(

Kumaraswamy
(

α
(oi)
φ (x),

K
∑

j=i+1

α
(oj)
φ (x)

)
∣

∣

∣

∣

∣

∣
Beta

(

α(oi),

K
∑

j=i+1

α(oj)
))

]

We compute DKL(Kumaraswamy(a, b) || Beta(a′, b′)) analytically as in [20] with a Taylor approxi-
mation order of 5. We too approximate this expectation with far fewer than K! samples from p(o).
Please see section 7.4 of the appendix for a reproduction of this KL-Divergence’s mathematical form.

5 Experiments

We consider a variety of baselines for our semi-supervised model. Since our work expounds and
resolves the order dependence of the original Kumaraswamy stick-breaking construction [20] that
uses fixed and constant ordering, we employ their construction (Kumar-SB) as a baseline, for which
we force our implementation to use a fixed and constant order during the stick-breaking procedure.
As noted in section 1, our model is similar to the M2 model [13]. We too consider it an important
baseline for our semi-supervised experiments. Additionally, we use the Softmax-Dirichlet sampling
approximation [25]. This approximation forces logits sampled from a Normal variational posterior
onto the simplex via the softmax function. In this case, the Dirichlet prior is approximated with
a prior for the Gaussian logits [25]. However, this softmax approximation struggles to capture
sparsity because the Gaussian prior cannot achieve the multi-modality available to the Dirichlet
[22]. Lastly, we include a comparison to Implicit Reparameterization Gradients (IRG) [4]. Here,
we set q(π;αφ(x)) = Dirichlet(π;αφ(x)) in our semi-supervised model with the same architecture.
IRG uses independent Gamma samples to construct Beta and Dirichlet samples. IRG’s principle
contribution for gradient reparameterization is that it side-steps the need to invert the standardization
function (i.e. the CDF). However, IRG still requires Gamma CDF gradients w.r.t. the variational
parameters. These gradients do not have a known analytic form, mandating their application of
forward-mode automatic differentiation to a numerical method. In our IRG baseline, both the prior
and variational posterior are Dirichlet distributions yielding an analytic KL-Divergence. We mention
but do not test [9], which similarly constructs Dirichlet samples from normalized Gamma samples.
They too employ implicit differentiation to avoid differentiating the inverse CDF, but necessarily fall
back to numerically differentiating the Gamma CDF.

Our source code can be found at ❤tt♣s✿✴✴❣✐t❤✉❜✳❝♦♠✴❛st✐r♥✴▼❱✲❑✉♠❛r❛s✇❛♠②. For our latest
experimental results, please refer to ❤tt♣s✿✴✴❛r①✐✈✳♦r❣✴❛❜s✴✶✾✵✺✳✶✷✵✺✷. In our generative
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process and eqs. (6) and (7), we referred generally to our data likelihood as p(x|fθ(y, z)). In all of
our experiments, we assume p(x|fθ(y, z)) = N (x, µθ(y, z),Σθ(y, z)), where µθ(y, z) and Σθ(y, z)
are outputs of a neural network with parameters θ operating on the latent variables. We use diagonal
covariance for Σθ(y, z). Across all of our experiments, we maintain consistent recognition and
generative network architectures, which we detail in section 7.5 of the appendix.

We do not use any explicit regularization. Our models are implemented in TensorFlow and were
trained using ADAM with a batch size B = 250 and 5 Monte-Carlo samples for each training
example. We use learning rates 1× 10−3 and 1× 10−4 respectively for MNIST and SVHN. Other
optimizer parameters were kept at TensorFlow defaults. We utilized GPU acceleration and found that
cards with ∼8 GB of memory were sufficient. We utilize the TensorFlow Datasets API, from which
we source our data. For all experiments, we split our data into 4 subsets: unlabeled training (U )
data, labeled training (L) data, validation data, and test data. For MNIST: |U | = 49, 400, |L| = 600,
|validation| = |test| = 10, 0000. For SVHN: |U | = 62, 257, |L| = 1000, |validation| = 10, 000,
|test| = 26, 032. When constructing L, we enforce label balancing. We allow all trials to train for a
maximum of 750 epochs, but use validation set performance to enable early stopping whenever the
loss (eq. (8)) and classification error have not improved in the previous 15 epochs. All reported metrics
were collected from the test set during the validation set’s best epoch–we do this independently for
classification error and log likelihood. For each trial, all models utilize the same random data split
except where noted†. We translate the uint8 encoded pixel intensities to [0, 1] by dividing by 255, but
perform no other preprocessing.

Table 1: Held-out test set classification errors and log likelihoods. A “−−” for a p-value indicates it
was unavailable either because it was with respect to itself or the corresponding data and/or number
of trials were missing. Since [13] did not report log likelihoods, we did not collect them with our
implementation.

Experiment Method Error p-value Log Likelihood p-value

MNIST MV-Kum. 0.099± 0.011 −− −6.4± 6.3 −−

10 trials IRG[4] 0.097± 0.008 0.72 −7.8± 7.1 0.64
600 labels Kumar-SB[20] 0.248± 0.009 1.05× 10−17

−6.5± 6.3 0.95
dim(z) = 0 Softmax 0.093± 0.009 0.24 −6.5± 6.2 0.95

MNIST MV-Kum. 0.043± 0.005 −− 45.06± 0.92 −−

10 trials IRG[4] 0.044± 0.006 0.89 45.69± 0.38 0.06
600 labels M2 (ours) 0.098± 0.014 5.37× 10−10 Not collected −−

dim(z) = 2 Kumar-SB[20] 0.138± 0.015 1.65× 10−13 44.33± 1.65 0.24
Softmax 0.042± 0.003 0.40 45.14± 0.73 0.82

MNIST MV-Kum. 0.018± 0.004 −− 116.58± 0.68 −−

10 trials IRG[4] 0.018± 0.004 0.98 116.57± 0.43 0.97
600 labels M2 (ours) 0.020± 0.003 0.32 Not collected −−

dim(z) = 50 Kumar-SB[20] 0.071± 0.008 2.58× 10−13 116.22± 0.33 0.15
Softmax 0.018± 0.003 0.87 116.24± 0.45 0.21

M2†[13] 0.049± 0.001 −− Not reported −−

M1 + M2†[13] 0.026± 0.005 −− Not reported −−

SVHN MV-Kum. 0.296± 0.014 −− 669.37± 0.57 −−

4 trials IRG[4] 0.288± 0.008 0.38 669.84± 0.84 0.39
1000 labels M2 (ours) 0.406± 0.027 3.64× 10−04 Not collected −−

dim(z) = 50 Kumar-SB[20] 0.702± 0.011 7.42× 10−09 669.44± 0.77 0.89
Softmax 0.300± 0.007 0.61 669.51± 0.72 0.78

M1 + M2†[13] 0.360± 0.001 −− Not reported −−

For the semi-supervised learning task, we present classification and reconstruction performances in
table 1 using our algorithm as well as the baselines discussed previously. We organize our results
by experiment group. All reported p-values are with respect to our MV-Kumaraswamy model’s
performance for corresponding dim(z). We say, “M2 (ours),” whenever we use the generative
process of [13] with our neural network architecture. For a subset of experiments, we present results
from [13]–without knowing how many trials they ran we cannot compute the corresponding p-value.
We recognize that there are numerous works [21, 1, 26, 15, 10, 7, 24, 2, 16, 17] that offer superior
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performance on these tasks, however, we abstain from reporting these performances whenever those
models are not variational Bayesian, use adversarial training, lack explicit generative processes, use
architectures vastly larger in size than ours, or use a different number of labeled examples (6= 600 for
MNIST and 6= 1000 for SVHN).

In fig. 6, we plot the latent space representation for our MV-Kumaraswamy model for MNIST when
dim(z) = 2. Each digit’s manifold is over (−1.5,−1.5) × (1.5, 1.5), which corresponds to ±1.5
standard deviations from the prior. The only difference in latent encoding between corresponding
manifold positions is the label provided to the generative network. Interestingly, the model learns to
use z in a qualitatively similar way to represent character transformations across classes.

Figure 6: Latent space for MV-Kumaraswamy model with dim(z) = 2.

6 Discussion

The statistically significant classification performance gains of MV-Kumaraswamy (approximate
integration over all orderings) against Kumar-SB [20] (fixed and constant ordering) validates the
impact of our contribution. Kumar-SB’s worse performance is likely due to the over allocation of
probability mass to the final stick during sampling (fig. 1). When the class-assignment posterior has
high entropy, the fixed order sampling will bias the last label dimension. Further, MV-Kumaraswamy
beats [13] for both classification tasks despite our single model approach and minimal preprocessing.
Interestingly, our implementation of M2 seemingly requires a larger dim(z) to match the classification
performance of MV-Kumaraswamy. Lastly, IRG’s classification performance is not statistically
distinguishable from ours. Deep learning frameworks’ (e.g. TensorFlow, PyTorch, Theano, CNTK,
MXNET, Chainer) distinct advantage is NOT requiring user-computed gradients. We argue that
methods requiring numerical gradients [4, 9] do not admit a straightforward implementation for
the common practitioner as they require additional (often non-trivial) code to supply the gradient
estimates to the framework’s optimizer. Conversely, our method has analytic gradients, enabling easy
integration into ANY deep learning framework. To the best of our knowledge, IRG for the Gamma,
Beta, and Dirichlet distributions only exists in TensorFlow (IRG was developed at Deep Mind).

VAEs offer scalable and efficient learning for a subset of Bayesian models. Applied Bayesian
modeling, however, makes heavy use of distributions outside this subset. In particular, the Dirichlet,
without some form of accommodation or approximation, will render a VAE intractable since gradients
with respect to variational parameters are challenging to compute. Efficient approximation of such
gradients is an active area of research. However, explicit reparameterization is advantageous in terms
of simplicity and efficiency. In this article, we present and develop theory for a computationally
efficient and explicitly reparameterizable Dirichlet surrogate that has similar sparsity-inducing
capabilities and identical exchangeability properties to the Dirichlet it is approximating. We confirm
its surrogate candidacy through a range of semi-supervised auto-encoding tasks. We look forward to
utilizing our new distribution to scale inference in more structured probabilistic models such as topic
models. We hope others will use our distribution not only as a surrogate for a Dirichlet posterior but
also as a prior. The latter might yield a more exact divergence between the variational posterior and
its prior.
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