
A New Diversity Guided Particle Swarm Optimization with Mutation 

Radha Thangaraj1, Millie Pant1 and Ajith Abraham2 
1Indian Institute of Technology Roorkee, India 

2Norwegian University of Science and Technology, Norway 
t.radha@ieee.org, millifpt@iitr.ernet.in, ajith.abraham@ieee.org  

 
 

Abstract— This paper presents a new diversity guided Particle 
Swarm Optimization algorithm (PSO) named Beta Mutation 
PSO or BMPSO for solving global optimization problems. The 
BMPSO algorithm makes use of an evolutionary programming 
based mutation operator to maintain the level of diversity in 
the swarm population, thereby maintaining a good balance 
between the exploration and exploitation phenomena and 
preventing premature convergence. Beta distribution is used to 
perform the mutation in the proposed BMPSO algorithm. The 
performance of the BMPSO algorithm is investigated on a set 
of ten standard benchmark problems and the results are 
compared with the original PSO algorithm. The numerical 
results show that the proposed algorithm outperforms the 
basic PSO algorithm in all the test cases taken in this study. 

Keywords-Particle Swarm Optimization; Diversity; Mutation; 
global optimization. 

I.  INTRODUCTION  
The concept of Particle Swarm Optimization (PSO) was 

first suggested by Kennedy and Eberhart [1]. Since its 
development is 1995, PSO has become one of the most 
promising optimizing techniques for solving global 
optimization problems. It has been shown empirically in 
many studies to work well, outperforming other optimization 
techniques such as evolutionary algorithms. Although the 
rate of convergence of PSO is good due to fast information 
flow among the solution vectors, its diversity decreases very 
quickly in the successive iterations resulting in a suboptimal 
solution. One of the simplest methods to overcome the 
problem of diversity loss is to capitalize the strengths of EA 
and PSO together in an algorithm. A variety of methods 
combining the aspects of EA and PSO are available in 
literature [2] – [7] etc. Out of the EA operators, mutation is 
the most widely used EA tool applied in PSO [8], [9]. The 
concept of mutation is quite common to Evolutionary 
Programming (EP), Genetic Algorithms and Differential 
Evolution. Mutation has been introduced into the PSO as a 
mechanism to increase the diversity of PSO, and by doing so 
improving the exploration abilities of the algorithm. 
Mutation can be applied to different elements of a particle 
swarm. The effect of mutation depends on which elements of 
the swarm are mutated. If only the neighbourhood best 
position vectors are mutated, then effect is minimal, 
compared to mutation of particle position vectors. Velocity 
vector mutation is equivalent to particle’s position vector 
mutation, under the condition that the same mutation 
operator is considered [10].  

There are several instances in PSO where mutation is 
introduced in the swarm. Some mutation operators that have 
been applied to mutate the position vector in PSO include 
Gaussian Mutation [11] - [15], Cauchy [15], [16], Chaos 
mutation [17] – [19] etc. However, in our knowledge none of 
the above mentioned techniques uses diversity as a measure 
to guide the swarm.  This paper presents a new PSO 
algorithm based on EP Mutation with the help of Beta 
distribution; also it uses a diversity enhancing mechanism to 
improve the performance of the swarm. The proposed Beta 
Mutation PSO algorithm is named as BMPSO. The BMPSO 
algorithm uses diversity threshold values dlow and dhigh to 
guide the movement of the swarm. The threshold values are 
predefined by the user.  

The rest of the paper is organized as follows: Section II 
describes the original Particle Swarm Optimization 
algorithm. In section III, the proposed BMPSO algorithm is 
discussed; section IV deals with the results and discussion. 
Finally, this paper concludes with section V. 

II. PARTICLE SWARM OPTIMIZATION 
PSO is a multi-agent parallel search technique developed 

by Eberhart and Kennedy in 1995, inspired by social 
behavior of bird flocking or fish schooling. The particles or 
members of the swarm fly through a multidimensional 
search space looking for a potential solution. Each particle 
adjusts its position in the search space from time to time 
according to the flying experience of its own and of its 
neighbors (or colleagues). 

For a D-dimensional search space, the position of the ith 
particle is represented as ),...,,...,,( 21 iDidiii xxxxX = . Each 
particle maintains a memory of its previous best 
position ),...,,...,,( 21 iDidiii ppppP = . The best one among 
all the particles in the population is represented 
as ),...,,...,,( 21 gDgdggg ppppP = . The velocity of each 
particle is represented as ),...,,...,,( 21 iDidiii vvvvV = .  

During each generation each particle is accelerated 
toward the particles previous best position and the global 
best position. At each iteration a new velocity value for each 
particle is calculated based on its current velocity, the 
distance from the global best position. The new velocity 
value is then used to calculate the next position of the 
particle in the search space. This process is then iterated a 
number of times or until a minimum error is achieved. The 
two basic equations which govern the working of PSO are 
that of velocity vector and position vector given by: 
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Here ω is inertia weight, predefined by the user. c1 and c2 
are acceleration constants. They represent the weighting of 
the stochastic acceleration terms that pull each particle 
toward personal best and global best positions. Therefore, 
adjustment of these constants changes the amount of tension 
in the system. Low value of these constants allow particles to 
roam far from the target regions before tugged back, while 
high values result in abrupt movement toward, or past, target 
regions [20]. The constants r1, r2 are the uniformly generated 
random numbers in the range of [0, 1]. The first part of 
equation (1) represents the inertia of the previous velocity, 
the second part tells us about the personal thinking of the 
particle and the third part represents the cooperation among 
particles and is therefore named as the social component 
[21]. 

III. PROPOSED BMPSO ALGORITHM 
The Beta Mutation Particle Swarm Optimization is 

simple and modified version of Particle Swarm Optimization 
algorithm; it uses Beta distribution to mutate the particle. 
The BMPSO algorithm has two phases namely attraction 
phase and mutation phase. The attraction phase is same as 
that of the classical PSO, while in the mutation phase the 
swarm particles position vectors are mutated using Beta 
Distributed Mutation (BDM) operator. The BDM operator is 
EP based mutation operator and is defined as: 
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where, τσσ exp(*ii =′ τ ′+)1,0(N ))1,0(jN   
)1,0(N denotes a normally distributed random number 

with mean zero and standard deviation one. )1,0(jN  
indicates that a different random number is generated for 
each value of j. τ and τ′ are set as n2/1  and 

n2/1 respectively. Betarandj () is a random number 
generated by beta distribution with parameters less than 1. 

The BMPSO starts like the classical PSO i.e. it uses 
attraction phase (Eqn. (1)) for updating velocity vector and 
uses (2) for updating position vector. In this phase, the 
swarm contracts rapidly due to the fast information flow 
among the particles, as a result, the diversity also decreases 
consequently the chances of the swarm particles to get 
trapped in some local region or some suboptimal solution 
also increases. In BMPSO algorithm, we keep a check on the 
decreasing value of diversity with the help of a user-defined 
parameter called dlow. When the diversity of population drops 
below, dlow, it switches over to the mutation phase, with the 
hope of increasing the diversity of the swarm population and 
thereby helping the swarm to escape the possible local 
regions. This process is repeated until a maximum number 
iteration is reached or the stopping criterion is reached. 

The Beta distribution used in this study has the 
probability density function, 
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with parameters less than 1. 
The computational steps of BMPSO are given below:  

Step 1 Initialize PSO parameters 
Step 2  Initialize the positions and 

velocities of all particles 
using uniformly distributed 
random numbers 

Step 3 Evaluate the objective function 
values of all particles in the 
swarm 

Step 4  Update particles personal best 
position and global best 
position (i.e. Pi and Pg) 

Step 5 Calculate the diversity of 
swarm 

Step 6 If (diversity < dlow)  
Update particles position 
using Eqn. (3) 

 Else  
Update particles velocity 
and position vectors 
according to equations (1) 
and (2) respectively 

 End if 
Step 7 Evaluate particle’s fitness 

values 
Step 8 Update Pi and Pg  
Step 9  If (Stopping criteria is 

reached) then go to step 10 
 Else go to step 5 
Step 10 Print the global best particle 

and the corresponding fitness 
function value 

IV. EXOERIMENTAL SETTINGS AND NUMERICAL RESULTS 
For comparison of PSO and BMPSO algorithms, a 

collection of 10 standard benchmark problems with box 
constraints is considered. Mathematical models of the 
problems along with the true optimum value are given in 
Table I. The entire set of test problems taken for the present 
study is scalable i.e. the problems can be tested for any 
number of variables. However, for the present study we have 
tested the problems for dimensions 10, 30 and 50.  

In order to make a fair comparison of basic PSO and the 
proposed BMPSO algorithm, we fixed the same seed for 
random number generation so that the initial population is 
same for both the algorithms. The population size is taken as 
20 for all the test problems. A linearly decreasing inertia 
weight is used which starts at 0.9 and ends at 0.4, with the 
user defined parameters c1=2.0 and c2=2.0. For each 
algorithm, the maximum number of generations is set as 
1000, 2000 and 3000 generations for dimensions 10, 30 and 
50 respectively. . A total of 30 runs for each experimental 
setting were conducted.   



The diversity measure of the swarm can be calculated as 
[10]: 
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where S is the swarm, ns = ⎜S ⎜is the swarm size, nx is the 
dimensionality of the problem, xij is the j’th value of the i’th 
particle and )(tx j  is the average of the j-th dimension over 

all particles, i.e.     
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The results of the given benchmark problems for 
dimension 30 are shown in Table II in terms of mean best 
fitness, standard deviation, diversity, the improvement (%), 
and t-values of proposed BMPSO algorithm in comparison 
with original PSO. In addition, we have tested the 
benchmark problems f1 – f6 with the two more different 
dimensions 10 and 50; the corresponding results are given in 
Table III. Figures 1 - 6 shows the performance curves of 
PSO and BMPSO algorithms. From the numerical results of 
Table II, we can see that the proposed algorithm perform 
better than the original PSO algorithm by a significant 
difference. The first test function f1 is Rastringin function, 
which is a multimodal function. For this function, BMPSO 
gave a remarkable percentage of improvement of 
approximately 72% in comparison with PSO. For the 
function f2, which is also a multimodal function, the 
proposed BMPSO algorithm performs much better than the 
original PSO algorithm. For the functions f4 and f10, the 
proposed BMPSO algorithm performs little better than PSO, 
in these test cases BMPSO algorithm gave approximately 
4% improvement in comparison to original PSO. Likewise 
all the other test cases also we can see that there is a 
noticeable percentage of improvement in average mean value 
by using the proposed diversity based mutation algorithm. 
From the numerical results of Table III also, we can see that 
the proposed algorithm gave better results than PSO. 

 

 
Figure 1.  Performance curves of PSO and BMPSO for function f1 

 

Figure 2.  Performance curves of PSO and BMPSO for function f4 

 

Figure 3.  Performance curves of PSO and BMPSO for function f5 

 

 
Figure 4.  Performance curves of PSO and BMPSO for function f6 

 



TABLE I.  NUMERICAL BENCHMARK PROBLEMS 

Function Function Definition Range Optimum 
Rastringin 
Function 
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TABLE II.  COMPARISON RESULTS OF PSO AND BMPSO IN TERMS OF AVERAGE FITNESS FUNCTION VALUE, STANDARD DEVIATION AND DIVERSITY 

Function 
Fitness Value Standard Deviation Diversity 

Improvement (%) and 
t-value of BMPSO 

with PSO 
PSO BMPSO PSO BMPSO PSO BMPSO Improvement t-value 

f1 47.29223 13.34445 11.06489 4.690 3.70371 3.01e-05 71.78 15.47 

f2 0.0182 0.002525 0.244025 0.001589 33.1326 0.009598 86.12 0.35 

f3 316.4468 74.76106 80.001 24.37858 4.15842 3.14e-05 76.37 15.82 

f4 -6466.19 -6718.49 643.4821 666.7723 0.42845 0.01666 3.9 1.49 

f5 0.617222 0.072433 0.492993 0.21498 0.547031 0.071049 88.26 5.54 

f6 1.70 0.077461 0.4530 0.06742 1.56783 0.60276 95.43 19.36 

f7 271.793 28.938 208.325 98.7083 4.7239 0.10343 89.35 5.77 

f8 15.2228 9.96414 3.652739 2.00684 63.3639 6.60096 34.54 6.91 

f9 0.209776 0.169551 0.072407 0.625909 0.239009 0.02924 19.17 0.34 

f10 4.22028 4.10447 0.416 0.460416 14.4341 0.806342 2.74 1.02 
 
 
 



TABLE III.  COMPARISON RESULTS OF PSO AND BMPSO FOR FUNCTIONS F1 – F6 WITH DIMENSION 10 AND 50 

Function Dimension PSO BMPSO Improvement (%) of BMPSO: 
comparison with PSO 

f1 
10 5.5572 0.012055 99.78307 
50 104.03725 27.889415 73.19286 

f2 
10 0.0919 3.726e-06 99.99595 
50 0.014701 0.00415 71.77063 

f3 
10 96.1715 7.864022 91.82292 
50 533.64808 178.32484 66.58381 

f4 
10 -2389.365 -2764.422 15.6969 
50 -10473.09 -10605.52 1.26448 

f5 
10 0.502671 0.405912 19.24897 
50 0.788322 0.409282 48.08188 

f6 
10 6.965e-12 0.004697 - 
50 3.43866 0.313801 90.87432 

 
 
 

 

 
Figure 5.  Performance curves of PSO and BMPSO for function f7 

 
Figure 6.  Performance curves of PSO and BMPSO for function f10 

V. CONCLUSION 
In this paper, a simple and modified version of Particle 

Swarm Optimization named BMPSO has been proposed. 
The novelty of the present work is the use of diversity for 
activating the mutation. Another new feature is the use of a 
beta distributed mutation operator. The performance of 
BMPSO algorithm is tested with ten standard benchmark 
functions with various dimensions 10, 30 and 50. The 
empirical results show that the proposed BMPSO algorithm 
is efficient than the original PSO algorithm and is quite 
competent for solving problems of dimensions up to 50. 
Thus, from the numerical results it is concluded that the 
BMPSO algorithm is simple and yet effective algorithm for 
solving different kind of optimization problems.  
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