
A New Diversity Guided Particle Swarm Optimization with Mutation

Radha Thangaraj1, Millie Pant1 and Ajith Abraham2
1Indian Institute of Technology Roorkee, India

2Norwegian University of Science and Technology, Norway
t.radha@ieee.org, millifpt@iitr.ernet.in, ajith.abraham@ieee.org

Abstract— This paper presents a new diversity guided Particle
Swarm Optimization algorithm (PSO) named Beta Mutation
PSO or BMPSO for solving global optimization problems. The
BMPSO algorithm makes use of an evolutionary programming
based mutation operator to maintain the level of diversity in
the swarm population, thereby maintaining a good balance
between the exploration and exploitation phenomena and
preventing premature convergence. Beta distribution is used to
perform the mutation in the proposed BMPSO algorithm. The
performance of the BMPSO algorithm is investigated on a set
of ten standard benchmark problems and the results are
compared with the original PSO algorithm. The numerical
results show that the proposed algorithm outperforms the
basic PSO algorithm in all the test cases taken in this study.

Keywords-Particle Swarm Optimization; Diversity; Mutation;
global optimization.

I. INTRODUCTION
The concept of Particle Swarm Optimization (PSO) was

first suggested by Kennedy and Eberhart [1]. Since its
development is 1995, PSO has become one of the most
promising optimizing techniques for solving global
optimization problems. It has been shown empirically in
many studies to work well, outperforming other optimization
techniques such as evolutionary algorithms. Although the
rate of convergence of PSO is good due to fast information
flow among the solution vectors, its diversity decreases very
quickly in the successive iterations resulting in a suboptimal
solution. One of the simplest methods to overcome the
problem of diversity loss is to capitalize the strengths of EA
and PSO together in an algorithm. A variety of methods
combining the aspects of EA and PSO are available in
literature [2] – [7] etc. Out of the EA operators, mutation is
the most widely used EA tool applied in PSO [8], [9]. The
concept of mutation is quite common to Evolutionary
Programming (EP), Genetic Algorithms and Differential
Evolution. Mutation has been introduced into the PSO as a
mechanism to increase the diversity of PSO, and by doing so
improving the exploration abilities of the algorithm.
Mutation can be applied to different elements of a particle
swarm. The effect of mutation depends on which elements of
the swarm are mutated. If only the neighbourhood best
position vectors are mutated, then effect is minimal,
compared to mutation of particle position vectors. Velocity
vector mutation is equivalent to particle’s position vector
mutation, under the condition that the same mutation
operator is considered [10].

There are several instances in PSO where mutation is
introduced in the swarm. Some mutation operators that have
been applied to mutate the position vector in PSO include
Gaussian Mutation [11] - [15], Cauchy [15], [16], Chaos
mutation [17] – [19] etc. However, in our knowledge none of
the above mentioned techniques uses diversity as a measure
to guide the swarm. This paper presents a new PSO
algorithm based on EP Mutation with the help of Beta
distribution; also it uses a diversity enhancing mechanism to
improve the performance of the swarm. The proposed Beta
Mutation PSO algorithm is named as BMPSO. The BMPSO
algorithm uses diversity threshold values dlow and dhigh to
guide the movement of the swarm. The threshold values are
predefined by the user.

The rest of the paper is organized as follows: Section II
describes the original Particle Swarm Optimization
algorithm. In section III, the proposed BMPSO algorithm is
discussed; section IV deals with the results and discussion.
Finally, this paper concludes with section V.

II. PARTICLE SWARM OPTIMIZATION
PSO is a multi-agent parallel search technique developed

by Eberhart and Kennedy in 1995, inspired by social
behavior of bird flocking or fish schooling. The particles or
members of the swarm fly through a multidimensional
search space looking for a potential solution. Each particle
adjusts its position in the search space from time to time
according to the flying experience of its own and of its
neighbors (or colleagues).

For a D-dimensional search space, the position of the ith
particle is represented as),...,,...,,(21 iDidiii xxxxX = . Each
particle maintains a memory of its previous best
position),...,,...,,(21 iDidiii ppppP = . The best one among
all the particles in the population is represented
as),...,,...,,(21 gDgdggg ppppP = . The velocity of each
particle is represented as),...,,...,,(21 iDidiii vvvvV = .

During each generation each particle is accelerated
toward the particles previous best position and the global
best position. At each iteration a new velocity value for each
particle is calculated based on its current velocity, the
distance from the global best position. The new velocity
value is then used to calculate the next position of the
particle in the search space. This process is then iterated a
number of times or until a minimum error is achieved. The
two basic equations which govern the working of PSO are
that of velocity vector and position vector given by:

)()(* 2211 idgdidididid xprcxprcvv −+−+= ω (1)

ididid vxx += (2)

Here ω is inertia weight, predefined by the user. c1 and c2
are acceleration constants. They represent the weighting of
the stochastic acceleration terms that pull each particle
toward personal best and global best positions. Therefore,
adjustment of these constants changes the amount of tension
in the system. Low value of these constants allow particles to
roam far from the target regions before tugged back, while
high values result in abrupt movement toward, or past, target
regions [20]. The constants r1, r2 are the uniformly generated
random numbers in the range of [0, 1]. The first part of
equation (1) represents the inertia of the previous velocity,
the second part tells us about the personal thinking of the
particle and the third part represents the cooperation among
particles and is therefore named as the social component
[21].

III. PROPOSED BMPSO ALGORITHM
The Beta Mutation Particle Swarm Optimization is

simple and modified version of Particle Swarm Optimization
algorithm; it uses Beta distribution to mutate the particle.
The BMPSO algorithm has two phases namely attraction
phase and mutation phase. The attraction phase is same as
that of the classical PSO, while in the mutation phase the
swarm particles position vectors are mutated using Beta
Distributed Mutation (BDM) operator. The BDM operator is
EP based mutation operator and is defined as:

()*1
ji

t
i

t
i Betarandxx σ ′+=+ (3)

where, τσσ exp(*ii =′ τ ′+)1,0(N))1,0(jN
)1,0(N denotes a normally distributed random number

with mean zero and standard deviation one.)1,0(jN
indicates that a different random number is generated for
each value of j. τ and τ′ are set as n2/1 and

n2/1 respectively. Betarandj () is a random number
generated by beta distribution with parameters less than 1.

The BMPSO starts like the classical PSO i.e. it uses
attraction phase (Eqn. (1)) for updating velocity vector and
uses (2) for updating position vector. In this phase, the
swarm contracts rapidly due to the fast information flow
among the particles, as a result, the diversity also decreases
consequently the chances of the swarm particles to get
trapped in some local region or some suboptimal solution
also increases. In BMPSO algorithm, we keep a check on the
decreasing value of diversity with the help of a user-defined
parameter called dlow. When the diversity of population drops
below, dlow, it switches over to the mutation phase, with the
hope of increasing the diversity of the swarm population and
thereby helping the swarm to escape the possible local
regions. This process is repeated until a maximum number
iteration is reached or the stopping criterion is reached.

The Beta distribution used in this study has the
probability density function,

11)1(
),(

1)(−− −= βα
βα

xx
B

xf , 0>α , 0>β (4)

with parameters less than 1.
The computational steps of BMPSO are given below:

Step 1 Initialize PSO parameters
Step 2 Initialize the positions and

velocities of all particles
using uniformly distributed
random numbers

Step 3 Evaluate the objective function
values of all particles in the
swarm

Step 4 Update particles personal best
position and global best
position (i.e. Pi and Pg)

Step 5 Calculate the diversity of
swarm

Step 6 If (diversity < dlow)
Update particles position
using Eqn. (3)

 Else
Update particles velocity
and position vectors
according to equations (1)
and (2) respectively

 End if
Step 7 Evaluate particle’s fitness

values
Step 8 Update Pi and Pg
Step 9 If (Stopping criteria is

reached) then go to step 10
 Else go to step 5
Step 10 Print the global best particle

and the corresponding fitness
function value

IV. EXOERIMENTAL SETTINGS AND NUMERICAL RESULTS
For comparison of PSO and BMPSO algorithms, a

collection of 10 standard benchmark problems with box
constraints is considered. Mathematical models of the
problems along with the true optimum value are given in
Table I. The entire set of test problems taken for the present
study is scalable i.e. the problems can be tested for any
number of variables. However, for the present study we have
tested the problems for dimensions 10, 30 and 50.

In order to make a fair comparison of basic PSO and the
proposed BMPSO algorithm, we fixed the same seed for
random number generation so that the initial population is
same for both the algorithms. The population size is taken as
20 for all the test problems. A linearly decreasing inertia
weight is used which starts at 0.9 and ends at 0.4, with the
user defined parameters c1=2.0 and c2=2.0. For each
algorithm, the maximum number of generations is set as
1000, 2000 and 3000 generations for dimensions 10, 30 and
50 respectively. . A total of 30 runs for each experimental
setting were conducted.

The diversity measure of the swarm can be calculated as
[10]:

∑
=

∑
=

−=
s xn

i

n

j
tjxtijx

sn
tSDiversity

1 1

2))()((
1

))(((5)

where S is the swarm, ns = ⎜S ⎜is the swarm size, nx is the
dimensionality of the problem, xij is the j’th value of the i’th
particle and)(tx j is the average of the j-th dimension over

all particles, i.e.
sn

sn

i
tijx

tjx
∑

== 1
)(

)(

The results of the given benchmark problems for
dimension 30 are shown in Table II in terms of mean best
fitness, standard deviation, diversity, the improvement (%),
and t-values of proposed BMPSO algorithm in comparison
with original PSO. In addition, we have tested the
benchmark problems f1 – f6 with the two more different
dimensions 10 and 50; the corresponding results are given in
Table III. Figures 1 - 6 shows the performance curves of
PSO and BMPSO algorithms. From the numerical results of
Table II, we can see that the proposed algorithm perform
better than the original PSO algorithm by a significant
difference. The first test function f1 is Rastringin function,
which is a multimodal function. For this function, BMPSO
gave a remarkable percentage of improvement of
approximately 72% in comparison with PSO. For the
function f2, which is also a multimodal function, the
proposed BMPSO algorithm performs much better than the
original PSO algorithm. For the functions f4 and f10, the
proposed BMPSO algorithm performs little better than PSO,
in these test cases BMPSO algorithm gave approximately
4% improvement in comparison to original PSO. Likewise
all the other test cases also we can see that there is a
noticeable percentage of improvement in average mean value
by using the proposed diversity based mutation algorithm.
From the numerical results of Table III also, we can see that
the proposed algorithm gave better results than PSO.

Figure 1. Performance curves of PSO and BMPSO for function f1

Figure 2. Performance curves of PSO and BMPSO for function f4

Figure 3. Performance curves of PSO and BMPSO for function f5

Figure 4. Performance curves of PSO and BMPSO for function f6

TABLE I. NUMERICAL BENCHMARK PROBLEMS

Function Function Definition Range Optimum
Rastringin
Function

)10)2cos(10()(
1

2
1 +∑ −=

=
i

n

i
i xxxf π [-5.12,5.12] 0

Griewank
Function

1)
1

cos(
4000

1)(
1

0

1

0

2
2 +∑

+
+∑=

−

=

−

=

n

i

in

i
i

i
x

xxf [-600,600] 0

Rosenbrock
Function

21

0

22
13)1()(100)(−+∑ −=

−

=
+ i

n

i
ii xxxxf [-30,30] 0

Schwefel
Function

)||sin()(
1

4 ∑−=
=

n

i
ii xxxf [-500,500] -12569.5

Noisy Function ∑ ++=
−

=

1

0

4
5]1,0[))1(()(

n

i
i randxixf [-1.28,1.28] 0

Ackley Function)12.0exp(2020)(
1

2
6 ∑−−+=

=

n

i
ix

n
exf

∑−
=

n

i
ix

n 1
))2cos(1exp(π [-32,32] 0

Schwefel
function 1.2

∑ ∑=
−

= =

1

0 0

2
7)()(

n

i

i

j
ixxf [-100, 100] 0

Schwefel
function 2.21

||max)(8 ixxf = , ni <≤0 [-100, 100] 0

Schwefel
function 2.22

||||)(
1

0

1

0
9 ∑ ∏+=

−

=

−

=

n

i

n

i
ii xxxf [-10, 10] 0

Shaffer’s
function 7

]0.1))(50([sin)()(10/1

1

224/1

1

2
10 +∑∑=

==

n

i
i

n

i
i xxxf [-32.767, 32.767] 0

TABLE II. COMPARISON RESULTS OF PSO AND BMPSO IN TERMS OF AVERAGE FITNESS FUNCTION VALUE, STANDARD DEVIATION AND DIVERSITY

Function
Fitness Value Standard Deviation Diversity

Improvement (%) and
t-value of BMPSO

with PSO
PSO BMPSO PSO BMPSO PSO BMPSO Improvement t-value

f1 47.29223 13.34445 11.06489 4.690 3.70371 3.01e-05 71.78 15.47

f2 0.0182 0.002525 0.244025 0.001589 33.1326 0.009598 86.12 0.35

f3 316.4468 74.76106 80.001 24.37858 4.15842 3.14e-05 76.37 15.82

f4 -6466.19 -6718.49 643.4821 666.7723 0.42845 0.01666 3.9 1.49

f5 0.617222 0.072433 0.492993 0.21498 0.547031 0.071049 88.26 5.54

f6 1.70 0.077461 0.4530 0.06742 1.56783 0.60276 95.43 19.36

f7 271.793 28.938 208.325 98.7083 4.7239 0.10343 89.35 5.77

f8 15.2228 9.96414 3.652739 2.00684 63.3639 6.60096 34.54 6.91

f9 0.209776 0.169551 0.072407 0.625909 0.239009 0.02924 19.17 0.34

f10 4.22028 4.10447 0.416 0.460416 14.4341 0.806342 2.74 1.02

TABLE III. COMPARISON RESULTS OF PSO AND BMPSO FOR FUNCTIONS F1 – F6 WITH DIMENSION 10 AND 50

Function Dimension PSO BMPSO Improvement (%) of BMPSO:
comparison with PSO

f1
10 5.5572 0.012055 99.78307
50 104.03725 27.889415 73.19286

f2
10 0.0919 3.726e-06 99.99595
50 0.014701 0.00415 71.77063

f3
10 96.1715 7.864022 91.82292
50 533.64808 178.32484 66.58381

f4
10 -2389.365 -2764.422 15.6969
50 -10473.09 -10605.52 1.26448

f5
10 0.502671 0.405912 19.24897
50 0.788322 0.409282 48.08188

f6
10 6.965e-12 0.004697 -
50 3.43866 0.313801 90.87432

Figure 5. Performance curves of PSO and BMPSO for function f7

Figure 6. Performance curves of PSO and BMPSO for function f10

V. CONCLUSION
In this paper, a simple and modified version of Particle

Swarm Optimization named BMPSO has been proposed.
The novelty of the present work is the use of diversity for
activating the mutation. Another new feature is the use of a
beta distributed mutation operator. The performance of
BMPSO algorithm is tested with ten standard benchmark
functions with various dimensions 10, 30 and 50. The
empirical results show that the proposed BMPSO algorithm
is efficient than the original PSO algorithm and is quite
competent for solving problems of dimensions up to 50.
Thus, from the numerical results it is concluded that the
BMPSO algorithm is simple and yet effective algorithm for
solving different kind of optimization problems.

REFERENCES
[1] Kennedy, J. and Eberhart, R. C., “Particle Swarm Optimization”,

IEEE International Conference on Neural Networks (Perth,
Australia), IEEE Service Center, Piscataway, NJ, Vol. IV, 1995, pp.
1942-1948.

[2] Robinson, J., Sinton, S. and Rahmat-Samii, Y., “Particle Swarm,
Genetic Algorithm, and Their Hybrids: Optimization of a Profiled
Corrugated Horn Antenna”, In Proc. of the IEEE Antennas and
Propagation Society International Symposium and URSI national
radio Science meeting, Vol. 1, 2002, pp. 314 – 317.

[3] Shi, Y. and Krohling, R. A., “Co-Evolutionary Particle Swarm
Optimization to Solve Min-Max Problems”, In Proc. of the IEEE
Congress on Evolutionary Computation, Vol.2, 2002, pp. 1682 –
1687.

[4] Shi, X., Hao, J., Zhou, J. and Liang, Y., “Hybrid Evolutionary
Algorithms Based on PSO and GA”, In Proc. of the IEEE Congrss on
Evolutionary Computation, Vol. 4, 2003, pp. 2393 – 2399.

[5] Zhang, W - J. and Xie, X - F., “DEPSO: Hybrid Particle Swarm with
Differential Evolution Operator”, In Proc. of IEEE Int. Conf. on
Systems, Man & Cybernetics, 2003, pp. 3816 – 3821.

[6] Hao, Z-F., Guo, G-H. and Huang, H., “A Particle Swarm
Optimization Algorithm with Differential Evolution”, In Proc. of the
6th Int. Conf. on Machine Learning and Cybernetics, 2007, pp. 1031 –
1035.

[7] Yang, B., Chen, Y. and Zhao, Z., “A Hybrid Evolutionary Algorithm
by Combination of PSO and GA for Unconstrained and Constrained
optimization Problems”, In Proc. of the IEEE Int. Conf. on Control
and Automation, 2007, pp. 166 – 170.

[8] Hu, X., Eberhart, R. C. and Shi, Y., “Swarm Intelligence for
Permutation Optimization: A Case Study on n-Queens problem”, In
Proc. of IEEE Swarm Intelligence Symposium, 2003, pp. 243 – 246.

[9] Juang, C - F., “A hybrid of genetic Algorithm and Particle Swarm
Optimization for Recurrent Network Design”, IEEE Trans. On
Systems, Man, and Cybernetics – Part B: Cybernetics, Vol. 34(2),
2003, pp. 997 – 1006.

[10] Engelbrecht, A. P., “Fundamentals of Computational Swarm
Intelligence”, England: John Wiley & Sons Ltd, 2005.

[11] Wei, C., He, Z., Zheng, Y. and Pi, W., “Swarm Directions Embedded
in Past Evolutionary Programming”, In Proc. of IEEE Congress on
Evolutionary Computation, Vol. 2, 2002, pp. 1278 – 1283.

[12] Higashi, H. and Iba, H., “Particle Swarm Optimization with Gaussian
Mutation”, In Proc. of the IEEE Swarm Intelligence Symposium,
2003, pp. 72 – 79.

[13] Secrest, B. R. and Lamont, G. B., “Visualizing Particle Swarm
Optimization – Gaussian Particle Swarm Optimization”, In
Proceedings of the IEEE Swarm Intelligence Symposium, 2003, pp.
198 – 204.

[14] Sriyanyong, P., “Solving Economic Dispatch Using Particle Swarm
Optimization Combined with Gaussian Mutation”, In Proc. of ECTI-
CON, 2008, pp. 885 – 888.

[15] Krohling, R. A., “Gaussian Particle Swarm with Jumps”, In. Proc. of
the IEEE Congress on Evolutionary Computation, Edinburgh, UK,
2005, pp. 1226-1231.

[16] Stacey, A., Jancic, M. and Grundy, I., “Particle Swarm Optimization
with Mutation”, In Proc. of the IEEE Congress on Evolutionary
Computation, 2003, pp. 1425 – 1430.

[17] Dong, D., Jie, J., Zeng, J. and Wang, M., “Chaos-Mutation-Based
Particle Swarm Optimizer for Dynamic Environment”, In Proc. of the
3rd Int. Conf. on Intelligent System and Knowledge Engineering,
2008, pp. 1032 – 1037.

[18] Yang, M., Huang, H. and Xiao, G., “A Novel Dynamic Particle
Swarm Optimization Algorithm Based on Chaotic Mutation”, Int.
Workshop on Knowledge Discovery and Data Mining, 2009, pp. 656
– 659.

[19] Yue-lin, G., Xiao-hui, A. and Jun-min, L., “A Particle Swarm
optimization Algorithm with Logarithm Decreasing Inertia Weight
and Chaos Mutation, In Proc. of Int. Conference on Computational
Intelligence and Security, 2008, pp. 61 – 65.

[20] Eberhart, R. C. and Shi, Y., “Particle Swarm Optimization:
Developments, Applications and Resources”, In Proc. of IEEE
Congress of Evolutionary Computation, Vol. 1, 2001, pp. 27 - 30.

[21] Kennedy, J., “The Particle Swarm: Social Adaptation of Knowledge”,
In Proc. of the IEEE Int. Conf. on Evolutionary Computation, 1997,
pp. 303 – 308.

