
 
 

University of Birmingham

A new dominance relation-based evolutionary
algorithm for many-objective optimization
Yuan, Yuan; Xu, Hua; Wang, Bo; Yao, Xin

DOI:
10.1109/TEVC.2015.2420112

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Yuan, Y, Xu, H, Wang, B & Yao, X 2016, 'A new dominance relation-based evolutionary algorithm for many-
objective optimization', IEEE Transactions on Evolutionary Computation, vol. 20, no. 1, pp. 16-37.
https://doi.org/10.1109/TEVC.2015.2420112

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 20. Aug. 2022

https://doi.org/10.1109/TEVC.2015.2420112
https://doi.org/10.1109/TEVC.2015.2420112
https://birmingham.elsevierpure.com/en/publications/3c6deb74-0ec6-43ce-af09-a0b576136641


16 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 20, NO. 1, FEBRUARY 2016

A New Dominance Relation-Based Evolutionary

Algorithm for Many-Objective Optimization
Yuan Yuan, Hua Xu, Bo Wang, and Xin Yao, Fellow, IEEE

Abstract—Many-objective optimization has posed a great chal-
lenge to the classical Pareto dominance-based multiobjective
evolutionary algorithms (MOEAs). In this paper, an evolution-
ary algorithm based on a new dominance relation is proposed
for many-objective optimization. The proposed evolutionary algo-
rithm aims to enhance the convergence of the recently suggested
nondominated sorting genetic algorithm III by exploiting the fit-
ness evaluation scheme in the MOEA based on decomposition, but
still inherit the strength of the former in diversity maintenance. In
the proposed algorithm, the nondominated sorting scheme based
on the introduced new dominance relation is employed to rank
solutions in the environmental selection phase, ensuring both con-
vergence and diversity. The proposed algorithm is evaluated on a
number of well-known benchmark problems having 3–15 objec-
tives and compared against eight state-of-the-art algorithms. The
extensive experimental results show that the proposed algorithm
can work well on almost all the test functions considered in this
paper, and it is compared favorably with the other many-objective
optimizers. Additionally, a parametric study is provided to inves-
tigate the influence of a key parameter in the proposed algorithm.

Index Terms—Convergence, diversity, dominance relation,
many-objective optimization, nondominated sorting.

I. INTRODUCTION

R
ECENTLY, many-objective optimization, typically refer-

ring to the optimization of problems having four or more

objectives, has attracted increasing attention in evolutionary

multiobjective optimization (EMO) community [1], [2]. The

boom of the research on evolutionary many-objective opti-

mization is mainly inspired from two aspects. On the one

hand, the optimization problems involving a high number
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of objectives indeed appear widely in many real-world

applications, e.g., control system design [3], [4], industrial

scheduling [5], [6], and software engineering [7], [8]. Hence,

the practitioners are in need of an effective optimizer to

solve these problems at hand. On the other hand, the

popular Pareto dominance-based multiobjective evolution-

ary algorithms (MOEAs), such as nondominated sorting

genetic algorithm II (NSGA-II) [9], strength Pareto evolu-

tionary algorithm 2 (SPEA2) [10], and Pareto envelope-based

selection algorithm II (PESA-II) [11], have encountered great

difficulties in many-objective optimization, although they have

shown excellent performance on problems with two or three

objectives. The primary reason is that almost all the solutions

in the population become nondominated with the number of

objectives increasing, which would lead to the severe loss of

Pareto-based selection pressure toward the Pareto front (PF).

This difficulty has been pointed out both analytically and

experimentally in the early studies [12]–[14] on evolutionary

many-objective optimization.

To overcome the drawback of Pareto dominance-based

MOEAs, some efforts have been made in this paper. In sum-

mary, the developing techniques can be roughly classified into

the following three types.

1) Adoption of New Preference Relations: Since the Pareto-

dominance relation scales poorly in many-objective opti-

mization, it is natural to use other preference relations,

including modified Pareto dominance and different rank-

ing schemes, so as to produce fine selection pressure

toward PF. Up to now, many alternative preference rela-

tions, such as favor relation [15], ǫ dominance [16], [17],

fuzzy Pareto dominance [18], [19], preference order

ranking [20], and so on [21]–[25], have been proposed.

2) Adoption of New Diversity Promotion Mechanisms:

In many-objective optimization, the Pareto domi-

nance could not provide sufficient selection pres-

sure to make progress in a given population, so the

diversity selection mechanism begins to play a key

role in such cases. This phenomenon is so called

active diversity promotion [26]. Some experimental

observations [1], [2], [26], [27] have indicated that it

has the potential detrimental effect on the conver-

gence of MOEAs because most of the existing diversity

criteria, e.g., crowding distance [9], tend to favor dom-

inance resistant solutions [12] (i.e., the solutions with

high performance in at least one of the objectives, but

with especially poor performance in the rest of the

objectives). Consequently, the final obtained solutions

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/
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may present a good diversity over the objective space

but with the poor proximity to the global PF. To weaken

or avoid such effect, new mechanisms promoting the

diversity are thus needed. In contrast to the first type,

there has not been much research in this respect yet.

Adra and Fleming [28] presented two mechanisms for

managing diversity and investigated their impact on

the overall convergence in many-objective optimization.

Deb and Jain [29] proposed an improved NSGA-II pro-

cedure, i.e., NSGA-III, which replaces the crowding

distance operator in NSGA-II with a clustering oper-

ator aided by a set of well-distributed reference points.

Li et al. [30] developed a general modification of the

diversity criterion for Pareto dominance-based MOEAs,

i.e., the shift-based density estimation (SDE) strategy,

covering both distribution and convergence information

of individuals.

3) Adoption of two separate archives for convergence

and diversity: This kind of approach separates the

nondominated solutions into two archives, which pro-

mote convergence and diversity during the evolutionary

process, respectively. The Two-Archive algorithm [31]

is the first MOEA based on this idea. Recently,

Wang et al. [32] suggested an improved one for

many-objective optimization.

It is worth noting that, unlike Pareto dominance-based

MOEAs, decomposition- and indicator-based MOEAs, have

been found to be very promising in many-objective

optimization, although they also have their own draw-

backs [25]. The former decomposes a problem with multiple

objectives into a set of single-objective subproblems through

aggregation functions, and then solves these subproblems

simultaneously by evolving a population of solutions. MOEA

based on decomposition (MOEA/D) [33], [34] is the most typ-

ical implementation of this class. So far, lots of studies based

on MOEA/D have been conducted from various aspects, e.g.,

combing it with the swarm intelligence [35], [36], hybridiz-

ing it with local search [37], [38], and incorporating self-

adaptation mechanisms [39]–[41].

The indicator-based approach employs a single perfor-

mance indicator to optimize a desired property of evolu-

tionary population. Among the current indicators available,

the hypervolume [42] is probably the most popular one

that is ever used in multiobjective search. This is mainly

due to its good theoretical properties. It has been indi-

cated that maximizing the hypervolume indicator is equivalent

to finding the PF [43]. Nowadays, some hypervolume-based

MOEAs have been well-established, such as indicator-based

evolutionary algorithm [44], S metric selection evolutionary

algorithm [45], and multiobjective covariance matrix adap-

tation evolution strategy [46]. Nevertheless, the computation

cost of the hypevolume grows exponentially with the number

of objectives [47], generally inhibiting the use of these algo-

rithms for problems having more than five objectives [48].

To relieve this issue, researchers have been trying to calcu-

late exactly the hypervolume in more efficient ways [49]–[51].

But these ways are still not efficient enough to satisfy the

requirement of hypervolume-based MOEAs when solving

many-objective problems. Bader and Zitzler [52] suggested

the hypervolume estimation (HypE) algorithm for multiob-

jective optimization, where the exact hypervolume values

are approximated by using Monte Carlo simulation. Since

the exact calculation of hypervolume is avoided in HypE,

it renders the hypervolume-based search possible in high-

dimensional objective space to some extent. Very recently,

several other performance indicators, such as R2 [53]–[55]

and the additive approximation [56], [57], have also shown

potentials in guiding the many-objective search.

The reference point-based MOEAs are another class of

approaches that deserve to be highlighted in many-objective

optimization. Slightly different from decomposition-based

MOEAs, they perform the predefined multiple targeted search

by means of multiple predefined reference points instead

of multiple search directions, which can effectively alle-

viate several difficulties in handling many objectives [29].

Figueira et al. [58] proposed a multiple reference point

approach that can be divided into two consecutive phases. The

first phase is the preparation phase and it is devoted to estimate

the bounds of the PF, generate multiple reference points, and

design a version of the solver for each reference point. The

second phase is the running phase and it launches a solver

for every reference point in every processor. Moen et al. [59]

presented a taxi-cab surface evolutionary algorithm, where the

Manhattan distance is adopted as the basis for generating the

attraction points and as the single metric for selecting solu-

tions for the next generation. Some other studies with this

regard can be referred in [29] and [60]–[62]. In particular, the

recently proposed NSGA-III also falls into this class.

Despite a number of recent achievements in this field,

the research on evolutionary many-objective optimization is

far from being fully explored. For the algorithm design, the

existing state-of-the-art MOEAs specially for many-objective

problems are still not powerful enough [23], [63], and the

need for more effective algorithms is pressing. Moreover,

although various evolutionary many-objective approaches have

been proposed, there are few comparative studies of different

methods available to date. In [63], eight evolutionary algo-

rithms were compared for many-objective optimization, but

the comparison was restricted to problems with only two

kinds of objective space dimensions, and the latest algo-

rithms, such as NSGA-III [29], were not investigated in

their work.

Our main contribution is twofold. First of all, a simple but

effective θ dominance-based evolutionary algorithm (θ -DEA),

is proposed for many-objective optimization. This algorithm is

motivated by the strength and weakness of two recently sug-

gested many-objective optimizers (NSGA-III and MOEA/D).

NSGA-III emphasizes population members that are Pareto

nondominated but are close to the reference line of each ref-

erence point. Nevertheless, when the number of objectives

is high, the Pareto-dominance relied on by NSGA-III lacks

enough selection pressure to pull the population toward PF,

therefore, NSGA-III indeed stresses diversity more than con-

vergence in such cases. MOEA/D implicitly maintains the

diversity via the diverse weight vectors, and it could gener-

ally approach the PF very well by means of the aggregation
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function-based selection operator, even in high-dimensional

objective space. However, in MOEA/D, whether a new solu-

tion replaces an old solution or not is completely determined

by their aggregation function values. In many-objective opti-

mization, such replacement may lead to the severe loss of

diversity in MOEA/D. The major reason is that, in high-

dimensional objective space, it is highly possible that a

solution achieves a good aggregation function value but is far

away from the corresponding weight vector. Thus, MOEA/D

is at high risk of missing some search regions if aggrega-

tion function values are emphasized too much. The issue

on the loss of diversity in MOEA/D has been experimen-

tally observed in several recent studies on many-objective

optimization [23], [29], [62], [63].

We aim to improve the convergence of NSGA-III in many-

objective optimization by exploiting the fitness evaluation

scheme in MOEA/D, but still inherit the strength of NSGA-III

in preserving the diversity. To this end, a new dominance rela-

tion, referred to as θ dominance, is introduced in this paper.

In θ dominance, solutions are allocated into different clus-

ters represented by well-distributed reference points. Only the

solutions within the same cluster have the competitive rela-

tionship, where a fitness function similar to penalty-based

boundary intersection (PBI) function [33] is carefully defined.

When conducting the environmental selection in θ -DEA, the

nondominated sorting scheme [64] based on θ dominance not

only prefers solutions with better fitness values in each cluster,

but also ensures that the selected solutions distribute as evenly

as possible between these clusters.

The second contribution of this paper lies in the experi-

mental aspect. We provide an extensive comparison between

the proposed θ -DEA with eight state-of-the-art algorithms on

80 instances of 16 test problems taken from two well-known

test suites. The results indicate that θ -DEA is a very promising

algorithm for many-objective optimization.

The remainder of this paper is organized as follows.

Section II introduces the background knowledge of this paper.

The proposed θ -DEA is described in detail in Section III.

Section IV presents the test problems, quality indicators,

and algorithm settings used for performance comparison.

Section V provides the extensive experimental results and

discussion. Finally, the conclusion is drawn in Section VI.

II. PRELIMINARIES

In this section, some basic definitions in multiobjective opti-

mization are first given. Then, we will briefly introduce the

original MOEA/D and NSGA-III, which are the basis of our

proposed algorithm.

A. Basic Definitions

The multiobjective optimization problem (MOP) can be

mathematically defined as

min f(x) = ( f1(x), f2(x), . . . , fm(x))T

subject to x ∈ � ⊆ Rn (1)

where x = (x1, x2, . . . , xn)
T is a n-dimensional decision vari-

able vector from the decision space �; f : � → � ⊆ Rm

consists a set of m objective functions, and is a mapping from

n-dimensional decision space � to m-dimensional objective

space �.

Definition 1: Given two decision vectors x, y ∈ �, x is said

to Pareto dominate y, denoted by x ≺ y, iff fi(x) ≤ fi(y), for

every i ∈ {1, 2, . . . , m}, and fj(x) < fj(y), for at least one index

j ∈ {1, 2, . . . , m}.

Definition 2: A decision vector x∗ ∈ � is Pareto optimal

iff there is no x ∈ � such that x ≺ x∗.

Definition 3: The Pareto set (PS) is defined as

PS = {x ∈ �|x is Pareto optimal}. (2)

Definition 4: The PF is defined as

PF =
{

f(x) ∈ Rm|x ∈ PS
}

. (3)

Definition 5: The ideal point z∗ is a vector z∗ =

(z∗
1, z∗

2, . . . , z∗
m)T, where z∗

i is the infimum of fi for each

i ∈ {1, 2, . . . , m}.

Definition 6: The nadir point znad is a vector znad =

(znad
1 , znad

2 , . . . , znad
m )T, where znad

i is the supremum of fi over

the PS for each i ∈ {1, 2, . . . , m}.

The goal of MOEAs is to move the nondominated objective

vectors toward PF (convergence), and also generate a good

distribution of these vectors over the PF (diversity).

B. MOEA/D

The key idea of MOEA/D is to decompose an MOP into a

number of single-objective optimization subproblems through

aggregation functions. It aims to optimize these subproblems

in parallel instead of trying to directly approximate the true PF.

This mechanism works since the optimal solution to each sub-

problem is indeed a Pareto optimal solution to the given MOP.

And the collection of these optimal solutions can be viewed as

an approximation of the true PF. Generally, three aggregation

functions, weighted sum, Chebyshev, and PBI function can

well serve the purpose in MOEA/D. Just take the Chebyshev

as an example, let λ1,λ2, . . . ,λN be a set of evenly spread

weight vectors, then an MOP can be decomposed into N

single-objective subproblems represented as

gte
j

(

x|λj, z∗
)

=
m

max
k=1

{

λj,k

∣

∣ fk(x) − z∗
k

∣

∣

}

(4)

where j = 1, 2, . . . , N and λj = (λj,1, λj,2, . . . , λj,m)T.

In MOEA/D, for each vector λj, a set B( j) =

{ j1, j2, . . . , jT} is computed in the initialization phase, where

{λj1 ,λj2 , . . . ,λjT } is a set of T closest weight vectors to λj

according to the Euclidean distance and is also called the

neighborhood of λj. The neighborhood of the jth subproblem

contains all the subproblems with weight vectors from the

neighborhood of λj. At each generation of MOEA/D, a popu-

lation of N solutions x1, x2, . . . , xN are maintained, where xj is

the current solution to the jth subproblem. One of the feature of

MOEA/D is that the mating restriction is adopted in the repro-

duction phase. When producing the jth offspring, two indexes

k and l are randomly selected from B( j), and a new solution

y is generated from xk and xl by using genetic operators. The

local replacement is another feature of MOEA/D. That is once
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y is obtained, it will be compared with each neighboring solu-

tion xu, u ∈ B( j), and xu is to be replaced by y, if and only

if gte(y|λu, z∗) < gte(xu|λu, z∗). After all the N offsprings are

produced in this manner one after another, a new population is

formed, and the above procedure is repeated until the stopping

criterion is met. Further details of MOEA/D can be referred

in [33] and [34].

C. NSGA-III

The basic framework of NSGA-III remains similar to the

established NSGA-II [9] with significant changes in its selec-

tion mechanism. The main procedure of NSGA-III can be

briefly described below.

NSGA-III starts with the definition of a set of reference

points. Then an initial population with N members is randomly

generated, where N is the population size. The next steps are

iterated until the termination criterion is satisfied. At the tth

generation, the current parent population Pt is used to pro-

duce an offspring population Qt by using random selection,

simulated binary crossover (SBX) operator and polynomial

mutation [65]. The size of Pt and Qt are both N. Thereafter,

the two populations Pt and Qt are merged together to form a

new population Rt = Pt ∪ Qt (of size 2N). To choose the best

N members from Rt for the next generation, the nondominated

sorting based on Pareto dominance is first used, which classi-

fies Rt into different nondomination levels (F1, F2, and so on).

Then, a new population St is constructed by filling members of

different nondomination levels one at a time, starting from F1,

until the size of St is equal to N or for the first time becomes

greater than N. Let us suppose that the last level included is

the lth level. Hence, the solutions from the level l + 1 onward

are simply rejected. Members in St \Fl are already chosen for

Pt+1, and the remaining population slots are chosen from Fl

such that a desired diversity is maintained in the population.

In the original NSGA-II, the solutions in Fl with the largest

crowding distance values are selected. However, the crowding

distance measure does not perform well on many-objective

problems [66]. Thus, NSGA-III uses a new selection mecha-

nism that conducts a more systematic analysis of members in

St with respect to the supplied reference points.

To achieve this, objective values and supplied reference

points are first normalized so that they have an identical range.

After normalization, the ideal point of the set St is the zero

vector. Thereafter, the perpendicular distance between a mem-

ber in St and each of the reference lines ( joining the ideal

point with a reference point) is calculated. Each member in St

is then associated with a reference point having the minimum

perpendicular distance. Next, the niche count ρj for the jth

reference point, defined as the number of members in St \Fl

that are associated with the jth reference point, is computed

for further processing. Now, a niche-preservation operation is

executed to select members from Fl, and it works as follows.

First, the reference point set Jmin = { j : argminjρj} having

the minimum ρj value is identified. In case of |Jmin| > 1, one

j̄ ∈ Jmin is randomly chosen. If the level Fl does not have any

member associated with the j̄th reference point, the reference

point is excluded from further consideration for the current

generation, meanwhile, Jmin is recomputed and j̄ is reselected.

Otherwise, the value of ρj̄ is further considered. If ρj̄ = 0, we

choose the one having the shortest perpendicular distance to

the j̄th reference line among members associated with the j̄th

reference point in Fl, and add it to Pt+1. The count of ρj̄ is then

increased by one. In the event of ρj̄ ≥ 1, a randomly chosen

member from level Fl that is associated with the j̄th reference

point is added to Pt+1, and the count of ρj̄ also needs to be

increased by one. The above niche operation is repeated until

the remaining population slots of Pt+1 are filled. For more

details of NSGA-III, please refer to [29].

III. PROPOSED ALGORITHM: θ -DEA

A. Overview

The framework of the proposed θ -DEA is described in

Algorithm 1. First, a set of N reference points are gen-

erated, which can be denoted as � = {λ1,λ2, . . . ,λN}.

For a m-objective problem, λj ( j ∈ {1, 2, . . . , N}) is a m-

dimensional vector represented by λj = (λj,1, λj,2, . . . , λj,m)T,

where λj,k ≥ 0, k = 1, 2, . . . , m, and
∑m

k=1 λj,k = 1. Next,

the initial population P0 with N members is randomly pro-

duced. The ideal point z∗ is initialized in step 3. Since it is

often very time consuming to compute exact z∗
i , it is indeed

estimated by the minimum value found so far for objective

fi, and is updated during the search. The nadir point znad is

initialized in step 4, where znad
i is assigned to the largest value

of fi found in P0, and it is updated in the normalization pro-

cedure. Steps 6–23 are iterated until the termination criterion

is satisfied. In step 7, the offspring population Qt is produced

by using the recombination operator. Then Qt is combined

with the current population Pt, and form a new population Rt.

The population St = ∪τ
i=1Fi, where Fi is the ith Pareto non-

domination level of Rt and τ satisfies
∑τ−1

i=1 |Fi| < N and
∑τ

i=1 |Fi| ≥ N. In fact, for problems having high number of

objectives, St is almost always equal to F1 since there is a

large fraction of Pareto nondominated solutions in the pop-

ulation. In step 11, the normalization procedure is executed

to St assisted by z∗ and znad. After normalization, the clus-

tering operator is used to split the members in St into a set

of N clusters C = {C1, C2, . . . , CN}, where the cluster Cj

is represented by the reference point λj. Then, the nondomi-

nated sorting based on θ dominance (not Pareto dominance) is

employed to classify St into different θ -nondomination levels

(F′
1, F′

2, and so on). θ dominance, which is the key concept

in θ -DEA, would be introduced later. Once θ -nondominated

sorting has been finished, the remaining steps fill the popula-

tion slots in Pt+1 using one level at a time, starting from F′
1.

Different from both NSGA-II and NSGA-III, we just ran-

domly select solutions in the last accepted level Fl in θ -DEA,

because θ dominance has stressed both convergence and diver-

sity. Certainly, some strategies to enhance the diversity could

also be used as well in step 20. In the following sections, the

important procedures of θ -DEA are to be described in detail.

B. Reference Points Generation

To promote diversity in the obtained solutions,

Das and Dennis’s [67] systematic approach is adopted

to generate structured reference points in θ -DEA. The same
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Algorithm 1 Framework of the Proposed θ -DEA

1: � ← GenerateReferencePoints()

2: P0 ← InitializePopulation()

3: z∗ ← InitializeIdealPoint()

4: znad ← InitializeNadirPoint()

5: t ← 0

6: while the termination criterion is not met do

7: Qt ← CreateOffspringPopulation(Pt)

8: Rt ← Pt ∪ Qt

9: St ← GetParetoNondominationLevels(Rt)

10: UpdateIdealPoint(St)

11: Normalize(St, z∗, znad)

12: C ← Clustering(St, �)

13: {F′
1, F′

2, . . .} ← θ -Nondominated-sort(St, C)

14: Pt+1 ← ∅

15: i ← 1

16: while |Pt+1| + |F′
i| < N do

17: Pt+1 ← Pt+1 ∪ F′
i

18: i ← i + 1

19: end while

20: RandomSort(F′
i)

21: Pt+1 ← Pt+1 ∪ F′
i[1 : (N − |Pt+1|)]

22: t ← t + 1

23: end while

mechanism is also used in MOEA/D, NSGA-III, and some

earlier algorithms [68]. The number of reference points

produced in this way depends on the dimension of objective

space m and another positive integer H. Let us consider

m
∑

i=1

xi = H, xi ∈ N, i = 1, 2, . . . , m. (5)

The number of solutions to (5) can be calculated as

N =

(

H + m − 1

m − 1

)

. (6)

Suppose that (xj,1, xj,2, . . . , xj,m)T is the jth solution. Then, the

reference point λj is obtained, where

λj,k =
xj,k

H
, k = 1, 2, . . . , m. (7)

Geometrically, λ1,λ2, . . . ,λN are all located at the hyperplane
∑m

i=1 fi = 1, and H is the divisions considered along each

objective axis.

Note that, if H < m, no intermediate reference point is cre-

ated by this approach. However, when m is relatively larger,

e.g., m = 8, H ≥ m would lead to a huge number of reference

points, and hence a huge population size. To address this issue,

in the proposed θ -DEA, we use two-layered reference points

with small values of H as suggested in [29]. Suppose the divi-

sions of boundary and inner layers is H1 and H2, respectively,

then the population size

N =

(

H1 + m − 1

m − 1

)

+

(

H2 + m − 1

m − 1

)

. (8)

Fig. 1 illustrates the distribution of two-layered reference

points using a three-objective problem with H1 = 2 and

H2 = 1.

Fig. 1. Distribution of two-layered reference points in the 3-D objective
space. Six points on the boundary layer (H1 = 2) and three points on the
inner layer (H2 = 1).

C. Recombination Operator

The recombination operator may be ineffective in many-

objective optimization. This is mainly because, in high-

dimensional objective space, there is a greater probability that

solutions widely distant from each other will be selected to

recombine and generate poorer performance offspring solu-

tions, known as lethals [26], [28]. There are normally two

ways to address this issue. One is to use the mating restriction

scheme [69], in which two neighboring solutions are involved

in the recombination operator, such as in MOEA/D. The other

is to use a special recombination scheme (e.g., SBX opera-

tor with a large distribution index) [29], where near-parent

solutions are emphasized, such as in NSGA-III.

θ -DEA employs the latter since it has a similar algorithm

structure to NSGA-III. When performing the recombination,

two parent solutions are randomly selected from the current

population Pt, then the child solution is created by using the

SBX operator with a large distribution index and polynomial

mutation.

D. Adaptive Normalization

The normalization procedure is incorporated into θ -DEA

for solving problems having the PF whose objective values

may be disparately scaled. In normalization, the objective fi(x),

i = 1, 2, . . . , m, can be replaced by

f̃i(x) =
fi(x) − z∗

i

znad
i − z∗

i

. (9)

As mentioned before, z∗
i can be estimated by the best value

found so far for objective fi. However, the estimation of znad
i

is a much more difficult task since it requires information

about the whole PF [70], [71]. The procedure of estimating

znad
i in θ -DEA is similar to that in NSGA-III but different in

the identification of extreme points.

First, in the population to be normalized, i.e., St, the extreme

point ej in the objective axis fj is identified by finding the

solution x ∈ St that minimizes the following achievement



YUAN et al.: NEW DOMINANCE RELATION-BASED EVOLUTIONARY ALGORITHM FOR MANY-OBJECTIVE OPTIMIZATION 21

Fig. 2. Illustration of constructing linear hyperplane by extreme points and
computing intercepts in 3-D objective space.

scalarizing function:

ASF
(

x, wj

)

=
m

max
i=1

{

1

wj,i

∣

∣

∣

∣

∣

fi(x) − z∗
i

znad
i − z∗

i

∣

∣

∣

∣

∣

}

. (10)

In (10), wj = (wj,1, wj,2, . . . , wj,m)T is the axis direction of

the objective axis fj and satisfies that if i 
= j wj,i = 0, else

wj,i = 1; for wj,i = 0, we replace it with a small number 10−6;

znad
i is the ith dimension of nadir point estimated in the previ-

ous one generation. The extreme point ej is eventually assigned

the objective vector of the found solution x, i.e., ej = f(x).

After all the m objective axes have been considered, we can

obtain m extreme points e1, e2, . . . , em. The m extreme points

are then used to construct a m-dimensional linear hyperplane.

Let a1, a2, . . . , am denote the intercepts of the hyperplane

with the directions (1, z∗
2, . . . , z∗

m)T, (z∗
1, 1, . . . , z∗

m)T, . . . ,

(z∗
1, . . . , z∗

m−1, 1)T, respectively. Supposing the matrix E =

(e1 − z∗, e2 − z∗, . . . , em − z∗)T and u = (1, 1, . . . , 1)T, the

intercepts can be computed by
⎛

⎜

⎜

⎝

(a1 − z∗
1)

−1

(a2 − z∗
2)

−1

. . .

(am − z∗
m)−1

⎞

⎟

⎟

⎠

= E−1u. (11)

Thereafter, the value of znad
i is updated as ai, where

i = 1, 2, . . . , m, and the population St can be normalized

using (9). In Fig. 2, we demonstrate the hyperplane construc-

tion and the intercepts formation in 3-D objective space.

Note that, if the rank of matrix E is less than m, the

m extreme points will fail to constitute a m-dimensional hyper-

plane. And even with the hyperplane built, it is also likely to

obtain no intercepts in certain directions or some intercepts ai

do not satisfy ai > z∗
i . In all the above cases, znad

i is assigned

to the largest value of fi in the nondominated solutions of St,

for each i ∈ {1, 2, . . . , m}.

E. Clustering Operator

In θ -DEA, the clustering operator is applied to population

St at each generation. The clustering works in the normalized

Fig. 3. Illustration of distances dj,1(x) and dj,2(x).

Algorithm 2 Clustering (St, �)

1: {C1, C2, . . . , CN} ← {∅,∅, . . . ,∅}

2: for each solution x in St do

3: n ← 1

4: min ← d1,2(x)

5: for j ← 2 to N do

6: if dj,2(x) < min then

7: min ← dj,2(x)

8: n ← j

9: end if

10: end for

11: Cn ← Cn ∪ {x}

12: end for

objective space, where the ideal point is the origin. Suppose

that f̃(x) = ( f̃1(x), f̃2(x), . . . , f̃m(x))T is the normalized objec-

tive vector for the solution x, L is a line passing through the

origin with the direction λj, and u is the projection of f̃(x)

on L. Let dj,1(x) be the distance between the origin and u,

and dj,2(x) be the perpendicular distance between f̃(x) and L.

They can be computed, respectively, as

dj,1(x) =
∥

∥f̃(x)T
λj

∥

∥/
∥

∥λj

∥

∥ (12)

dj,2(x) =
∥

∥f̃(x) − dj,1(x)(λj/
∥

∥λj

∥

∥)
∥

∥. (13)

In Fig. 3, the distances dj,1(x) and dj,2(x) are illustrated in the

2-D objective space.

For the clustering operator, only dj,2 will be considered,

dj,1 will be involved later in the definition of θ dominance.

We assign a solution x to the cluster Cj with the minimum

dj,2(x) value. The details of the clustering process are shown

in Algorithm 2.

F. θ Dominance

The proposed θ dominance is defined on population St with

the supply of a set of reference points �. And each solution

in St is associated with a cluster among a set of clusters C
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by the clustering operator. Let Fj(x) = dj,1(x) + θdj,2(x),

j ∈ {1, 2, . . . , N}, where θ is a predefined penalty parameter.

The form of Fj(x) is the same as that of the PBI function [33].

But here, the distances dj,1 and dj,2 are both computed in the

normalized objective space. Generally, dj,2(x) = 0 ensures that

f(x) is always in L, resulting in perfect diversity, and smaller

dj,1(x) value under the condition dj,2(x) = 0 means better

convergence. With the definition of Fj and C, several concepts

related to θ dominance can be defined as follows.

Definition 7: Given two solutions x, y ∈ St, x is said to

θ -dominate y, denoted by x ≺θ y, iff x ∈ Cj, y ∈ Cj, and

Fj(x) < Fj(y), where j ∈ {1, 2, . . . , N}.

Definition 8: A solution x∗ ∈ St is θ -optimal iff there is no

other solution x ∈ St such that x ≺θ x∗.

Definition 9: All solutions that are θ -optimal in St form

the θ -optimal set (θ -OS), and the corresponding mappings of

θ -OS in the objective space form the θ -optimal front.

Based on the definition of θ dominance, we have the fol-

lowing three properties, which respectively illustrate that the

relation ≺θ is irreflexive, asymmetric, and transitive.

Property 1: If a solution x ∈ St, then x ⊀θ x.

Proof: Suppose x ≺θ x, then ∃j ∈ {1, 2, . . . , N}, x ∈ Cj, and

Fj(x) < Fj(x). However, Fj(x) = Fj(x). Thus, x ⊀θ x.

Property 2: If two solutions x, y ∈ St satisfy x ≺θ y, then

y ⊀θ x.

Proof: Suppose y ≺θ x, then ∃j ∈ {1, 2, . . . , N}, y ∈ Cj,

x ∈ Cj, and Fj(y) < Fj(x). However, according to x ≺θ y,

Fj(x) < Fj(y). So, the supposition is invalid, and the

proposition is true.

Property 3: If three solutions x, y, z ∈ St satisfy x ≺θ y

and y ≺θ z, then x ≺θ z.

Proof: By x ≺θ y, we have that ∃j ∈ {1, 2, . . . , N}, x ∈ Cj,

y ∈ Cj, and Fj(x) < Fj(y). Then according to y ≺θ z, we

have that z ∈ Cj and Fj(y) < Fj(z). Overall, x ∈ Cj, z ∈ Cj,

and Fj(x) < Fj(z). Thus, x ≺θ z.

Due to the above three properties, the θ dominance defines

a strict partial order on St. Hence, the fast nondominated sort-

ing approach [9] can be immediately adopted in θ -dominance

sense, and the population St would be partitioned into different

θ -nondomination levels.

Note that, there is no competitive relationship between clus-

ters in θ dominance, and thus it can indeed use different θ

values in different clusters. To explore this characteristic, we

do a bit more work on the proposed θ -DEA. In the normal-

ized objective space, if λj is the axis direction, then we assign

a large θ value (θ = 106 is used) in the cluster Cj, other-

wise assign a normal θ value. This is just to cooperate with

the normalization procedure presented in Section III-D, and

if normalization is disabled, it may be unnecessary. The large

θ values in the clusters represented by axis directions would

make θ -DEA more likely to capture the nadir point in high-

dimensional objective space, and thus conduct a more stable

normalization.

G. Computational Complexity of θ -DEA

The computational complexity of θ -DEA in one genera-

tion is dominated by the clustering operator that is described

in Algorithm 2 under the general condition. In Algorithm 2,

TABLE I
SCALING FACTORS FOR SDTLZ1 AND

SDTLZ2 PROBLEMS

N distances d1,2(x), d2,2(x), . . . , dN,2(x) need to be calculated

for each solution x in St, and each distance is computed in

O(m) computations. Thus, totally O(mN|St|) computations are

required. Since |St| ≤ 2N, the overall worst complexity of one

generation of θ -DEA is approximately O(mN2).

IV. EXPERIMENTAL DESIGN

This section is devoted to the experimental design for inves-

tigating the performance of the proposed θ -DEA. First, the test

problems and the quality indicators used in our experiments

are given. Then, we briefly introduce eight state-of-the-art

algorithms that are employed for comparison. Finally, the

experimental settings adopted in this paper are provided.

A. Test Problems

As a basis for the comparisons, two well-known test suites

for many-objective optimization, Deb–Thiele–Laumanns–

Zitzler (DTLZ) [72] and Walking Fish Group (WFG) [73], are

involved in the experiments. To compute the quality indicators

reliably, we only consider DTLZ1–4 and DTLZ7 problems for

DTLZ test suite, since the nature of DTLZ5 and DTLZ6s PFs

is unclear beyond three objectives [73]. Moreover, we also

use two scaled test problems, i.e., scaled DTLZ1 and DTLZ2

problems [29], which are the modifications of DTLZ1 and

DTLZ2 problems, respectively. To illustrate, if the scaling fac-

tor is 10i, the objectives f1, f2, and f3 for three-objective scaled

DTLZ1 problem are multiplied by 100, 101, and 102, respec-

tively. In our experiments, we call scaled DTLZ1 and DTLZ2

problems SDTLZ1 and SDTLZ2 for short, respectively.

All these problems can be scaled to any number of objec-

tives and decision variables. We consider the number of objec-

tives m ∈ {3, 5, 8, 10, 15}. For DTLZ1–4, DTLZ7, SDTLZ1,

and SDTLZ2 problems, the total number of decision variables

is given by n = m + k − 1, unless otherwise specified, k is set

to 5 for DTLZ1 and SDTLZ1, 10 for DTLZ2–4 and SDTLZ2,

and 20 for DLTZ7 as recommended in [29] and [72]. As for

all WFG problems, unless otherwise stated, the number of

decision variables is set to 24 and the position-related param-

eter is set to m − 1 according to [54] and [73]. The scaling

factors for SDTLZ1 and SDTZL2 problems with different

number of objectives are shown in Table I.

These test problems have a variety of characteristics, such

as having linear, mixed (convex/concave), multimodal, dis-

connected, degenerate, and disparately scaled PFs, which
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TABLE II
FEATURES OF THE TEST PROBLEMS

challenge different abilities of an algorithm. In Table II, we

summarize the main features of all the adopted test problems.

B. Quality Indicators

The quality indicators are needed to evaluate the perfor-

mance of the concerned algorithms. In the EMO literature,

the inverted generational distance (IGD) [74] is one of the

most widely used indicators, which could provide a combined

information about convergence and diversity of a solution set.

The calculation of IGD requires a set of uniformly distributed

points along the known PF. Surely, the true PFs of most

benchmark problems are known, and it is relatively easy to

uniformly sample the points on the 2- or 3-D PF. However,

for a high-dimensional PF, how to make sure the sampled

points are uniformly distributed and how many points are

enough for representing the true PF, are themselves difficult

questions. In fact, numerous studies [23], [30], [63] relating to

many-objective optimization, where IGD is used as the qual-

ity indicator, failed to indicate how they sampled those points

along the PF.

Recently, Deb and Jain [29] suggested a way to compute

IGD for MOEAs in which the reference points or refer-

ence directions are supplied, e.g., MOEA/D and NSGA-III.

This way works as follows. For each reference direction λj,

j = 1, 2, . . . , N, we can exactly locate its targeted point vj

on the known PF in the normalized objective space. All N

targeted points constitute the set V = {v1, v2, . . . , vN}. For

any algorithm, let A be the set of final nondominated points

obtained in the objective space. Then IGD is computed as

IGD(A, V) =
1

|V|

|V|
∑

i=1

min
f∈A

d(vi, f) (14)

where d(vi, f) is the Euclidean distance between the points

vi and f. Note that, for the scaled problems, the objective val-

ues in the set A should be first normalized using the ideal and

nadir points of the exact PF before computing IGD. The set A

with smaller IGD values is better.

It makes sense to compute IGD using the above method

for reference point/direction-based MOEAs. This is mainly

because that the many-objective optimization task for these

algorithms can be seen as finding the Pareto-optimal points

close to the supplied reference points to some extent. Since

the proposed θ -DEA is also based on reference points, we

will evaluate and compare its performance using IGD defined

by (14) in the experiments.

However, such IGD is not applicable to MOEAs with-

out using reference points/directions, e.g., HypE [52] and

SDE [30]. For these algorithms, the many-objective optimiza-

tion task is to search for sparsely distributed Pareto-optimal

points over the entire PF [75]. In this scenario, another popu-

lar indicator, i.e., hypervolume [42], is adopted to evaluate the

performance. The hypervolume is strict Pareto-compliant [74],

whose nice theoretical qualities make it a rather fair indicator.

Let A be the set of final nondominated points obtained in the

objective space by an algorithm, and r = (r1, r2, . . . , rm)T be

a reference point in the objective space which is dominated by

any point in the set A. Then the hypervolume indicator value

of A with regard to r is the volume of the region dominated

by A and bounded by r, and can be described as

HV(A, r) = volume

(

⋃

f∈A

[ f1, r1] × . . . [ fm, rm]

)

. (15)

HV can measure both convergence and diversity of a solu-

tion set in a sense. Given a reference point r, larger HV value

means better quality. In the calculation of HV, the choice of

reference point is a crucial issue. It has been found that choos-

ing ri that is slightly larger than znad
i is suitable since the

balance between convergence and diversity of the solution set

is well emphasized [76], [77]. In our experiments, we set r

to 1.1znad, where znad can be analytically obtained for all the

adopted test problems. Following the practice in [2] and [22],

the points that do not dominate reference point are discarded

for the HV calculation. Considering the problems that have

PFs with differently scaled objective values, we first normal-

ize the objective values of points in A and the reference point

r using znad and z∗ (z∗ is 0 for all the adopted test prob-

lems) prior to computing HV by (15). Thus, the presented

HV value for a m-objective instance in the experiments is

between 0 and 1.1m −Vm, where Vm is the hypervolume of the

region enclosed by the exact normalized PF and the coordinate

axes. In addition, for problems with no more than ten objec-

tives, we calculate HV exactly using the recently proposed

WFG algorithm [50]. As for problems having 15 objectives,

we approximate the HV by the Monte Carlo simulation pro-

posed in [52], and 10 000 000 sampling points are used to

ensure the accuracy.

C. Other Algorithms in Comparison

To verify the proposed θ -DEA, the following eight

state-of-the-art algorithms are considered as the peer algorithms.

1) Grid based evolutionary algorithm (GrEA) [23]: It

exploits the potential of a grid to strengthen the selection

pressure toward the PF while maintaining an extensive

and uniform distribution of solutions. To this end, two
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concepts (i.e., grid dominance and grid difference), three

grid-based criteria, (i.e., grid ranking, grid crowding dis-

tance, and grid coordinate point distance), and a fitness

adjustment strategy are incorporated into GrEA.

2) Preference ordering genetic algorithm (POGA) [20]: It

uses the preference order-based approach as an opti-

mality criterion in the ranking stage of MOEAs. By

exploiting the definition of efficiency of order in the

subsets of objectives, a ranking procedure is employed

within the framework of NSGA-II, which exerts the

higher selection pressure over objective spaces of differ-

ent dimensionality compared with the traditional Pareto

dominance-based ranking scheme.

3) NSGA-III [29]: It is a reference point-based evolution-

ary algorithm for many-objective optimization, whose

framework is still similar to the original NSGA-II. But

unlike NSGA-II, the maintenance of diversity among

population members is aided by providing and adap-

tively updating a number of well-distributed reference

points. Overall, NSGA-III emphasizes population mem-

bers which are nondominated yet close to a set of

supplied reference points.

4) SDE [30]: It is a general modification of the den-

sity estimation strategies that could make the Pareto

dominance-based MOEAs suitable for many-objective

optimization. Its basic idea is that, given the pref-

erence of density estimators for solutions in sparse

regions, the solutions with poor convergence are put

into crowded regions by SDE, so that they will be

assigned a high density value and then be eliminated

easily during the evolutionary process. SDE is simple in

implementation and can be applied to any specific den-

sity estimator with negligible computational cost and no

additional parameters. In this paper, the version that inte-

grates SDE into SPEA2 (SPEA2+SDE) is used, since it

shows the best overall performance among all the three

considered versions (NSGA-II+SDE, SPEA2+SDE, and

PESA-II+SDE) in [30].

5) MOEA/D [33]: It is a representative algorithm that

belongs to the decomposition-based approach. In [34],

a new version of MOEA/D (MOEA/D-DE) based on

differential evolution (DE) [78] was proposed to deal

with problems with complicated PSs. In this paper, the

original MOEA/D with the PBI function is selected,

since it has been reported in [29] that MOEA/D-DE

shows poor performance on many-objective problems

and PBI is more suitable for solving problems having a

high-dimensional objective space.

6) Decomposition-based multiobjective particle swarm

optimizer (dMOPSO) [35]: It is an MOEA that extends

the particle swarm optimization [79] technique to the

decomposition-based multiobjective approach. It updates

the position of each particle using a set of solu-

tions considered as the global best according to the

decomposition-based approach. And it is mainly charac-

terized by the use of a memory reinitialization process

aiming to provide diversity to the swarm. Similar to

MOEA/D, the PBI function is also chosen in dMOPSO.

TABLE III
SUMMARY OF THE ALGORITHMS EMPLOYED IN COMPARISON

7) HypE [52]: It is a hypervolume-based evolutionary algo-

rithm for many-objective optimization, which adopts

Monte Carlo simulation to approximate the exact hyper-

volume values. Its core idea is that only the rankings

of the solutions induced by the hypervolume indicator

are important, while the actual indicator values are not.

HypE makes a tradeoff between the accuracy of the esti-

mates and the available computing resources, making

the hypervolume-based search more easily applied to

many-objective problems.

8) Many-objective metaheuristic based on the R2 indica-

tor (MOMBI) [54]: It is a many-objective metaheuristic

based on the R2 indicator. To use R2 in the selec-

tion mechanism, a nondominated scheme based on the

adopted utility functions is designed for that purpose. Its

main idea is that the solutions which achieve the best

values on any of the chosen utility functions are given

the first rank. Such solutions are then removed and a

second rank will be identified in the same manner. The

process will continue until all the solutions have been

ranked.

These eight algorithms have covered most categories of

techniques mentioned in Section I for many-objective opti-

mization. Table III summarizes the list of selected algo-

rithms for comparison. All the concerned algorithms, includ-

ing the proposed θ -DEA are implemented in the jMetal

framework [80], and run on an Intel 2.83 GHz Xeon processor

with 15.9 Gb of RAM. For all the algorithms except SDE,

the obtained final population is used for computing quality

indicators, whereas for SDE, the final archive is used.

D. Experimental Settings

The experimental settings include general settings and

parameter settings. The general settings are listed as follows.

1) Number of Runs: Each algorithm is run 20 times inde-

pendently for each test instance.

2) Termination Criterion: The termination criterion of an

algorithm for each run is specified in the form of the

maximum number of generations (MaxGen). Since the

used test problems are of varying computational com-

plexity, we use different MaxGen for different problems.
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TABLE IV
SETTING OF THE POPULATION SIZE

3) Significance Test: To test the difference for statistical

significance in some cases, the Wilcoxon signed-rank

test [81] at a 5% significance level is carried out

on the assessment results obtained by two competing

algorithms.

As for the parameter settings, several common settings for

algorithms are first given as follows.

1) Population Size: The setting of population size N for

NSGA-III, MOEA/D, and θ -DEA cannot be arbitrar-

ily specified, where N is controlled by a parame-

ter H [see (6)]. Moreover, as presented in Section III-B,

we use two-layered reference points for problems having

8, 10, and 15 objectives to create intermediate refer-

ence points. For the other algorithms, the population

size can be set to any positive integer, but for ensuring

a fair comparison, the same population size is adopted.

Table IV lists the population sizes used in this paper for

the problem with different number of objectives. Noting

that, POGA, HypE, MOMBI, and θ -DEA have similar

framework to that of NSGA-III, we slightly adjust the

population size of these algorithms to the multiple of

four just as in the original NSGA-III study [29], i.e., 92,

212, 276, and 136 for 3-, 5-, 10-, and 15-objective

problems.

2) Penalty Parameter θ : Since PBI function is involved in

MOEA/D, dMOPSO, and θ -DEA, the penalty parameter

θ needs to be set for them. In this paper, θ is just set to

5 for both MOEA/D and dMOPSO as suggested in [33],

whereas some studies [75], [82] have indicated that the

good specification of θ for MOEA/D may depend on

the problem to be solved and its number of objectives.

For the proposed θ -DEA, θ is also set to 5, but we will

investigate the influence of θ on the performance of the

proposed θ -DEA in Section V-C.

3) Parameters for Crossover and Mutation: The SBX and

polynomial mutation [65] are used in all the consid-

ered algorithms except dMOPSO. For GrEA, POGA,

SDE, MOEA/D, HypE, MOMBI, the parameter values

for crossover and mutation are presented in Table V. As

for NSGA-III and θ -DEA, the settings are only a bit

different according to [29], where ηc is set to 30.

Besides the parameters mentioned above, GrEA, SDE,

MOEA/D, dMOPSO, and HypE have their specific parameters.

These parameters are set mainly according to the suggestions

given by their developers, which are shown below.

1) Parameter Setting in GrEA: The grid division (div)

needs to be set. Since the population size and the

TABLE V
PARAMETER SETTINGS FOR CROSSOVER AND MUTATION

TABLE VI
SETTING OF GRID DIVISION IN GREA

termination criterion are quite different from the orig-

inal GrEA study [23], we adjust div according to the

guidelines provided in [23] for each problem instance

as shown in Table VI, aiming to well balance the

convergence and diversity.

2) Parameter Setting in SDE: The archive size is just set

as the same as the population size.

3) Parameter Setting in MOEA/D: The neighborhood size

T is set to 20.

4) Parameter Setting in dMOPSO: The age threshold Ta is

set to 2.

5) Parameter Setting in HypE: The bound of the reference

point is set to 200, and the number of sampling points

M is set to 10 000.

V. EXPERIMENTAL RESULTS

In this section, the performance of θ -DEA is to be validated

according to the experimental design described in Section IV.

Our experiments can be divided into three parts. The first one

is to compare θ -DEA with the other two MOEAs with ref-

erence points/directions, i.e., NSGA-III and MOEA/D. The

aim is to demonstrate the superiority of θ -DEA in achiev-

ing the desired convergence and diversity as a reference

point-based algorithm. The second one is to compare θ -DEA

with various types of many-objective techniques. The aim

is to show the great ability of θ -DEA in searching for the

sparsely distributed nondominated points over the entire PF

as a general many-objective optimizer. The third one is to

investigate the influence of parameter θ on the performance
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of the proposed algorithm. Moreover, we will also make

some further comments on our experimental results in

Section V-D.

A. Comparison With NSGA-III and MOEA/D

In this section, IGD is used to evaluate the algorithms.

Since all the experimental settings including the way to com-

pute IGD are consistent with those in the original NSGA-III

study [29], we compare the IGD results of θ -DEA with those

of NSGA-III and MOEA/D-PBI taken from [29].

First, the normalized test problems, DTLZ1–4, which have

an identical range of values for each objective over the PF, are

employed for comparison. The DTLZ1 problem has a simple,

linear PF (
∑m

i=1 fi = 0.5) but with 115 − 1 local optima in

the search space. The difficulty in this problem is to converge

to the hyperplane. The PFs of DTLZ 2–4 problems have the

same geometrical shape (
∑m

i=1 f 2
i = 1), but they are designed

to challenge different capacities of an algorithm. The DTLZ2

problem is a relatively easy problem with a spherical PF. The

DTLZ3 problem introduces a huge number of local PFs par-

alleling to the global PF based on DTLZ2, which poses a

stiff challenge for algorithms to converge to the global PF.

The DTLZ4 problem challenges the ability of an algorithm to

maintain the diversity in the objective space by introducing a

variable density of solutions along the PF.

Table VII shows the results of θ -DEA and NSGA-III on

the four problems, where the best, median, and worst IGD

values are reported. From Table VII, θ -DEA performs con-

sistently better than NSGA-III on all the instances except 3,

15-objective DTLZ1 and 3-objective DTLZ2. For 15-objective

DTLZ1 and DTLZ3, θ -DEA is unable to get close to the PF

in some runs, as evident from the large worst IGD value. We

suspect that the reason is that θ -DEA sometimes fails to cap-

ture the nadir point in high-dimensional objective space and

does a wrong normalization. But for 15-objective DTLZ4,

θ -DEA performs very well in all runs, whereas NSGA-III

sometimes struggles to maintain good convergence and diver-

sity on DTLZ4 problems having more than five objectives. It

is interesting to note that, for three-objective DTLZ4, neither

of θ -DEA and NSGA-III could achieve good performance all

the time.

MOEA/D-PBI does not incorporate the normalization tech-

nique. To compare against it more reasonably, we remove

the normalization procedure from θ -DEA, and refer this ver-

sion as θ -DEA∗. Table VIII shows the comparison results

between θ -DEA and MOEA/D-PBI. It can be seen that

θ -DEA∗ outperforms MOEA/D-PBI on DTLZ1, DTLZ3, and

DTLZ4 problems, whereas MOEA/D-PBI wins on DTLZ2

problem. The advantage of θ -DEA∗ is particularly obvious on

DTLZ4 problem. We also notice that the results of θ -DEA∗

are generally better than those of θ -DEA shown in Table VII,

which indicates that the normalization is not quite necessary

for the normalized problems. In addition, unlike θ -DEA, for

15-objective DTLZ1 and DTLZ3, θ -DEA∗ works well in all

runs. This illustrates that the normalization is the bottleneck

of the performance of θ -DEA on these two instances to some

extent.

TABLE VII
BEST, MEDIAN, AND WORST IGD VALUES FOR θ -DEA AND

NSGA-III ON m-OBJECTIVE DTLZ1–4 PROBLEMS.
BEST PERFORMANCE IS SHOWN IN BOLD

Next, two WFG problems, WFG6 and WFG7, are used to

test the performance of θ -DEA, NSGA-III, and MOEA/D-PBI.

The two problems have the same PF shape, which is part of
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TABLE VIII
BEST, MEDIAN, AND WORST IGD VALUES FOR θ -DEA∗

AND

MOEA/D-PBI ON m-OBJECTIVE DTLZ1–4 PROBLEMS.
BEST PERFORMANCE IS SHOWN IN BOLD

a hyperbolises with radii ri = 2i, i = 1, 2, . . . , m. WFG6

problem is nonseparable, while WFG7 problem is biased.

Table IX presents the comparison results. As can be seen,

TABLE IX
BEST, MEDIAN, AND WORST IGD VALUES FOR θ -DEA, NSGA-III, AND

MOEA/D-PBI ON m-OBJECTIVE WFG6 AND WFG7 PROBLEMS.
BEST PERFORMANCE IS SHOWN IN BOLD

NSGA-III performs best on WFG6 problems and three-

objective WFG7, whereas the proposed θ -DEA performs best

on WFG7 with more than three objectives. MOEA/D-PBI is

outperformed by θ -DEA on both WFG6 and WFG7 problems.

To further investigate the performance of θ -DEA on prob-

lems with disparately scaled objective values, SDTLZ1 and

SDTLZ2 problems are considered. The comparison results are

shown in Table X. For SDTLZ1 problem, the situation is sim-

ilar to DTLZ1 problem. That is, NSGA-III performs better on

3- and 15-objective instances, whereas θ -DEA performs better

on the remaining instances. As for SDTLZ2 problem, θ -DEA

clearly outperforms NSGA-III.

Based on the above comparisons, it can be concluded that

the proposed θ -DEA can generally maintain a good balance

between convergence and diversity assisted by structured refer-

ence points. Indeed, through the test on problems with varying

features, θ -DEA outperforms NSGA-III and MOEA/D-PBI on

most of them in terms of IGD values.

B. Comparison With State-of-the-Art Algorithms

In this section, we compare the proposed θ -DEA with all

the eight algorithms mentioned in Section IV-C. The ver-

sion of θ -DEA without normalization, i.e., θ -DEA∗, will also

be involved in the comparison. The HV indicator is used to

evaluate the concerned algorithms.
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TABLE X
BEST, MEDIAN, AND WORST IGD VALUES FOR θ -DEA AND NSGA-III

ON SCALED m-OBJECTIVE DTLZ1 AND DTLZ2 PROBLEMS.
BEST PERFORMANCE IS SHOWN IN BOLD

Table XI presents the average HV results on DTLZ1–4,

DTLZ7, SDTLZ1, and SDTLZ2 problems, and Table XII

on WFG problems. Table XIII gives a summary of the

significance test on HV results between the proposed

θ -DEA (θ -DEA∗) and the other algorithms. In this table,

Alg1 versus Alg2, “B” (“W”) means that the number of

instances on which the results of Alg1 are significantly better

(worse) than those of Alg2, and “E” indicates the number of

instances where there exists no statistical significance between

the results of Alg1 and Alg2.

To describe the distribution of obtained solutions in high-

dimensional objective space, we use 15-objective WFG7

instance as an illustration. Fig. 4 plots the final solutions of

four competitive algorithms, i.e., θ -DEA, GrEA, NSGA-III,

and SDE, in a single run by parallel coordinates. This particu-

lar run is associated with the result closest to the average HV

value. It is clear from Fig. 1 that θ -DEA and NSGA-III are

able to find a good approximation and coverage of the PF,

whereas GrEA and SDE can only converge to a portion

of the PF.

To quantify how well each algorithm performs overall, the

performance score [52] is introduced to rank the algorithms.

For a specific problem instance, suppose there are l algorithms

Alg1, Alg2, . . . , Algl involved in the comparison, let δi,j be 1,

if Algj is significantly better than Algi in terms of HV, and

0 otherwise. Then, for each algorithm Algi, the performance

score P(Algi) is determined as

P(Algi) =

l
∑

j=1
j 
=i

δi,j. (16)

This value reveals how many other algorithms significantly

outperform the corresponding algorithm on the considered test

instance. So, the smaller the value, the better the algorithm.

In Fig. 5, the average performance score is summarized for

different number of objectives and different test problems.

Fig. 6 shows the average performance score over all 80 prob-

lem instances for the selected ten algorithms, and the overall

rank of each algorithm according to the score is also given in

the corresponding bracket.

Based on the above results, we can obtain some obser-

vations for each algorithm. The proposed θ -DEA works

well on nearly all the considered instances. In particular, it

shows the best overall performance on DTLZ4, SDTLZ1,

SDTLZ2, and WFG4–9 problems. Relatively speaking, θ -DEA

does not show such outstanding performance on WFG1–3

problems. For WFG2 problem, θ -DEA exhibits an interest-

ing search behavior, it remains competitive on 3-, 5-, 8-, and

10-objective instances, but performs worst on 15-objective

instance. θ -DEA∗ shows the advantage on the normalized test

problems, i.e., DTLZ1–4 problems. But it cannot be compared

to θ -DEA when handling scaled problems. Indeed, θ -DEA∗

is significantly outperformed by θ -DEA on 53 out of 60

scaled problem instances, verifying the effectiveness of the

normalization procedure in θ -DEA.

GrEA can effectively deal with scaled problems in gen-

eral, which is verified by its competitive results on DTLZ7,

SDTLZ1, SDTLZ2, and most of WFG problem instances. This

is mainly because that GrEA divides each dimension of the

objective space into the same number of divisions. So, GrEA

indeed does the objective normalization implicitly during the

evolutionary process. In addition, it is worth mentioning that

the performance of GrEA is sensitive to the parameter div,

the overall excellent performance of GrEA in our experi-

ments is obtained by suitably setting div for each test instance.

In this regard, GrEA takes advantage of the other compared

algorithms.

POGA shows overall competitive performance on WFG2

and WFG3 problems, and it even achieves the best per-

formance on ten-objective WFG2 instance and 5-, 8-, and

10-objective WFG3 instances. But it generally cannot obtain

very satisfying results on the other problems. It is interesting to

note that, for DTLZ1, DTLZ3, and SDTLZ1 problems, POGA

obtains zero HV values on 5-, 8-, and 10-objective instances,

but nonzero values for 15-objective instance. Since the PFs

of the three problems have a huge number of local PFs, it is

not surprising that POGA always fails to converge to the PFs

and obtains zero HV values. But the reason for nonzero HV

values (especially poor) for 15-objective instances is waiting

to be explored.

NSGA-III shows the closest overall performance to the pro-

posed θ -DEA, and it can perform very well over a wide range

of test problems. There is no significant difference between
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TABLE XI
PERFORMANCE COMPARISON OF θ -DEA TO DIFFERENT ALGORITHMS WITH RESPECT TO THE AVERAGE

HV VALUES ON DTLZ1–4, DTLZ7, SDTLZ1, AND SDTLZ2 PROBLEMS. THE BEST AVERAGE

HV VALUE AMONG THE TEN ALGORITHMS FOR EACH INSTANCE IS HIGHLIGHTED IN BOLD

the results of NSGA-III and θ -DEA in 27 out of 80 instances.

It is interesting to find that, for WFG1 problem, NSGA-III

performs poorly on 3-, 5-, 8-, and 10-objective instances, but

it takes the second place on 15-objective instance.

SDE generally has the medium-high performance on most

of the considered problems among the compared algorithms,

leading to its fourth rank in the average performance score

over all the instances as shown in Fig. 6. It is worth not-

ing, for DTLZ7 problem, SDE performs best on three- and

five-objective instances, but its performance scales poorly in

instances with a higher number of objectives.

MOEA/D achieves good performance on the normalized

test problems except DTLZ4, but it cannot produce satisfac-

tory results on almost all the scaled test problems. This is

why it ranks poorly in Fig. 6. Nevertheless, from this, we do

not claim that MOEA/D is a poor many-objective optimizer,

since a naive normalization procedure may even enhance its

ability to deal with scaled problems [33]. dMOPSO is a rel-

atively poor algorithm, and it does not perform well even on

the normalized problems.

HypE is very competitive on three-objective instances,

which is reflected in Fig. 5(a). Indeed, it performs best on 12

out of the 16 three-objective instances. However, it does not

show advantage over the other algorithms on problems having

more than three objectives except on WFG3, where it performs

very well on 8-, 10-, and 15-objective instances. Note that,

HypE computes exactly the hypervolume-based fitness values

when m ≤ 3, otherwise it estimates the fitness values using

Monte Carlo simulation. Thus, we suspect that its relatively

poor performance on problems with high number of objectives

is mainly due to its inaccurate fitness estimation. Increasing

the number of sampling points may improve the situation,

but the computational effort will soon become unacceptable.

Although, HypE is a popular many-objective optimizer, our
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TABLE XII
PERFORMANCE COMPARISON OF θ -DEA TO DIFFERENT ALGORITHMS WITH RESPECT TO THE AVERAGE HV VALUES ON WFG PROBLEMS.

THE BEST AVERAGE HV VALUE AMONG THE TEN ALGORITHMS FOR EACH INSTANCE IS HIGHLIGHTED IN BOLD

experimental results indicate that it is not compared favor-

ably with some newly proposed many-objective algorithms.

The similar observation can also be found in several recent

studies [23], [30], [63].

MOMBI performs well on most of WFG1–3 problem

instances, especially on WFG1, where it attains the best results

on 5-, 8-, 10-, and 15-objective instances. But it does not

behave quite well on the other problems.

Since, we have allocated more computational efforts for

problems having higher number of objectives, it is not possible

to analyze performance scalability. In fact, it is not clear from

our experimental results that the performance of each algo-

rithm decays as the number of objectives is increased. For the

proposed θ -DEA, it performs as well even on 15-objective

instances, which can be seen from the results on the problems

whose PFs have regular geometrical shapes, i.e., DTLZ1–4,

SDTLZ1, SDTLZ2, and WFG4–9 problems. The average HV

values of θ -DEA on these instances are close to 1.115 ≈ 4.177,

indicating that it can achieve a good approximation of PF even

in high-dimensional objective space.
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TABLE XIII
SUMMARY OF THE SIGNIFICANCE TEST BETWEEN θ -DEA (θ -DEA∗) AND THE OTHER ALGORITHM

Fig. 4. Final solution set of the (a) θ -DEA, (b) GrEA, (c) NSGA-III, and (d) SDE on the 15-objective WFG7 instance, shown by parallel coordinates.

Fig. 5. (a) Average performance score over all test problems for different number of objectives. (b) Average performance score over all objective dimensions
for different test problems, namely DTLZ (Dx), SDTLZ (Sx), and WFG (Wx). The smaller the score, the better the PF approximation in terms of HV.
The values of θ -DEA are connected by a solid line to easier assess the score.

Next, we would like to briefly investigate what will hap-

pen if we set a larger number of decision variables (n) for

test problems, although this is not the focus of this paper.

As an illustration, we select a normalized problem DTLZ2

and a scaled problem WFG7. For DTLZ2, k is reset to 98,

thus n = m + 97. For WFG7, n is reset to 100, and the
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Fig. 6. Ranking in the average performance score over all test problem instances for the selected ten algorithms. The smaller the score, the better the overall
performance in terms of HV.

TABLE XIV
AVERAGE HV VALUES FOR θ -DEA, NSGA-III, AND SDE ON

LARGE-SCALE DTLZ2 AND WFG7 PROBLEMS. BEST

PERFORMANCE IS SHOWN IN BOLD

position-related parameter is still set to m − 1. We run three

competitive algorithms θ -DEA, NSGA-III, and SDE on the

two problems, and the algorithm parameters and the termi-

nation criterion are kept unchanged. Table XIV shows the

average HV results. It can be seen that all the three algo-

rithms obtain smaller HV values than on the original problem

instances, which indicates that larger n would pose greater

difficulty to all of them. However, the comparison situation

changes to some extent. For example, θ -DEA performs signif-

icantly better than SDE on the original 3-, 5-, and 10-objective

DTLZ2 instances, but it is significantly outperformed by SDE

on these instances with larger n. It seems that, for DTLZ2

problem, SDE is less influenced by the increasing of n than

θ -DEA. In addition, it is worth mentioning that a cooperative

coevolution technique [83] has been developed specially for

solving MOPs with large number of decision variables.

In the end, we intend to gain some insights based on the

extensive experimental results provided in this section. First,

it should be pointed out that the performance of an algo-

rithm not only depends on its ability to cope with specific

problem features but also depends on its ability to handle

high number of objectives (e.g., θ -DEA on WFG2 and SDE

on DTLZ7). Second, for certain problems, the increasing

of the number of objectives would exert different levels of

impact on different algorithms (e.g., NSGA-III on WFG1).

Third, θ -DEA, NSGA-III, and GrEA show strong competi-

tiveness on most of the problem instances considered in this

paper. θ -DEA may have difficulty in handling problems with

high-dimensional convex disconnected PFs (e.g., 15-objective

WFG2); NSGA-III may struggle on relatively low-dimensional

biased problems having mixed PFs (e.g., 3-, 5-, 8-, and

10-objective WFG1); GrEA may not be good at solving prob-

lems with a huge number of local PFs (e.g., DTLZ1 and

DTLZ3). The other concerned algorithms show advantage on

specific problem instances, and their main characteristics can

be summarized as follows.

1) θ -DEA∗ performs very well on normalized test problems

(e.g., DTLZ1–4).

2) POGA is effective on relatively high-dimensional prob-

lems having disconnected or degenerated PFs (e.g.,

8-, 10-, and 15-objective WFG2, and 5-, 8-, and

10-objective WFG3).

3) SDE is not bad on majority of problems, and it

achieves superior performance on low-dimensional prob-

lems having disconnected and mixed PFs (e.g., three-

and five-objective DTLZ7).

4) MOEA/D generally shows good performance on nor-

malized test problems (e.g., DTLZ1–3), but it can-

not effectively deal with problems with strong bias

(e.g., DTLZ4).

5) HypE shows superior performance in solving three-

objective problems, and it also does well in high-

dimensional problems with linear and degenerated PFs

(e.g., 8-, 10-, and 15-objective WFG3).

6) MOMBI is better at tackling PFs with irregular geomet-

rical shapes (e.g., WFG1–3), and it performs particularly

well on biased problems with mixed PFs (e.g., WFG1).

C. Influence of Parameter θ

In this section, we investigate the effect of parameter θ

on the performance of the proposed algorithm. The vari-

ation of θ would influence the normalization process pre-

sented in Section III-D, and hence influence the search



YUAN et al.: NEW DOMINANCE RELATION-BASED EVOLUTIONARY ALGORITHM FOR MANY-OBJECTIVE OPTIMIZATION 33

Fig. 7. Examination of the influence of θ on IGD of θ -DEA∗ for DTLZ1–4 problems with varying number of objectives m. The figures show the average
IGD of 20 independent runs each. (a) DTLZ1. (b) DTLZ2. (c) DTLZ3. (d) DTLZ4.

behavior of θ -DEA. To observe the pure effect of θ , we

hypothesize that the ideal and nadir points are known a priori

and the accurate normalization can be done. Therefore, here

we decide to show the influence of θ by running θ -DEA∗

on the normalized test problems, i.e., DTLZ1–4. Similar

observation can be obtained from the other test cases.

Figs. 7 and 8 present how the performance of θ -DEA∗ varies

with the change of θ on DTLZ1–4 problems in terms of average

IGD and average HV, respectively. We vary θ between 0 and

50 with a step size of 5, and θ = 0.1 is also examined. Based

on the two figures, we obtain the following observations.

1) θ = 0 almost always leads to the worst performance.

2) θ = 0.1 is also usually a bad choice, but it seems to be

the most suitable setting for three-objective DTLZ3.

3) The most appropriate setting of θ depends on the

problem instance to be solved.

4) The performance of θ -DEA∗ on most of the problem

instances is robust over a wide range of θ values, which is

beneficial to the practical use of the proposed algorithm.

Note that, for eight-objective DTLZ4, the IGD values fluc-

tuate with the increase in θ , but the corresponding HV values

remain stable. The way we compute IGD in our experiments

makes IGD a more sensitive indicator than HV. For exam-

ple, it may lead to much larger IGD even if there is only one

reference point that cannot be associated well with the found

solutions, but the corresponding HV may only get slightly

smaller in this case.

It is also interesting to understand how well θ -DEA∗ per-

forms when θ tends to positive infinity. In this case, only the

closeness to the corresponding reference points for each solu-

tion is emphasized in the environmental selection phase, which

makes the search behavior of θ -DEA∗ more like NSGA-III.

To investigate this extreme case, we set θ to a large value 106.

Table XV compares the average IGD and average HV values

of θ -DEA∗ (θ = 5) and θ -DEA∗ (θ = 106). It can be seen

clearly that θ = 5 generally achieves a better balance between

convergence and diversity than θ = 106 by means of reference

points.

D. Further Discussion

In this section, we further discuss three issues. The first

is about the quality indicators adopted in our experiments;
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Fig. 8. Examination of the influence of θ on HV of θ -DEA∗ for DTLZ1–4 problems with varying number of objectives m. The figures show the average
HV of 20 independent runs each. (a) DTLZ1. (b) DTLZ2. (c) DTLZ3. (d) DTLZ4.

the second is about the computational effort of the concerned

algorithms; and the third is about the comparison of our

experimental findings to the existing ones in this paper.

In our experiments, we adopt two quality indicators for the

purpose of comparison, i.e., IGD and HV, both of which can

provide a combined information about convergence and diver-

sity of a solution set. IGD used in this paper only applies

to MOEAs based on reference points/directions, whereas HV

applies to all MOEAs. We find that IGD and HV can usually

result in consistent conclusions, but there exist a few excep-

tions. For example, in Table XV, θ -DEA∗ (θ = 5) significantly

outperform θ -DEA∗ (θ = 106) on 8-, 10-, and 15-objective

DTLZ1 in terms of IGD, but the HV results show that θ -DEA∗

(θ = 106) performs significantly better. The main reason is

that the task to find Pareto-optimal points close to the sup-

plied reference points is not completely equivalent to the task

to maximize the hypervolume, which strongly depends on the

distribution of the reference points. But it is indeed desirable

to evaluate reference points/directions based MOEAs using

IGD indicator, since IGD can better measure the “closeness”

between the outcome and goal for these algorithms. In addi-

tion, IGD can also be used in the scenario that the user is

interested in only a preferred part of PF [29], where only a

few representative reference points are used. It is worth point-

ing out that if we use more uniformly spread reference points

in θ -DEA, it would be beneficial for the task to search for

sparsely distributed Pareto-optimal points over the entire PF,

and thus may enable θ -DEA to achieve better HV results.

Among the concerned algorithms, we find that MOEA/D

and dMOPSO require the least computational effort. θ -DEA,

MOMBI, and NSGA-III are also efficient enough to cope with

the problem instances under the parameter specifications in

this paper. GrEA, POGA, and SDE are generally much more

computation expensive than the above mentioned algorithms,

whose computational time increases sharply with increasing

number of objectives. We would like to specially mention

HypE. In the original HypE study [52], the authors used a

small population size, i.e., 50, and claimed that HypE is a

fast algorithm. However, we find that the computation time of

HypE would increase severely not only with the increase in the
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TABLE XV
PERFORMANCE COMPARISON BETWEEN θ -DEA∗ (θ = 5) AND θ -DEA∗

(θ = 106) IN TERMS OF AVERAGE IGD AND HV VALUES.
THE PERFORMANCE THAT IS SIGNIFICANTLY BETTER

THAN THE OTHER IS SHOWN IN BOLD

number of objectives but also with the increase in population

size. Hence, under the parameter settings in our experiments,

HypE is indeed the most time-consuming algorithm. The simi-

lar observation can be referred in [75], where the computation

time of HypE is reported. It should be mentioned that, not just

HypE, the efficiency of the other considered algorithms is also

influenced by the population size. However, HypE seems to

be more affected than the others based on our experimental

observations.

Although there have been a number of experimental studies

on the comparison of many-objective optimizers, the param-

eter settings, the adopted algorithm variants (e.g., MOEA/D

has several variants), the termination criterion, and the prob-

lem settings (e.g., the number of objectives and the number

of decision variables) usually vary from study to study,

making a rigorous comparison between the experimental find-

ings impractical. However, this paper represents one of the

most comprehensive experimental comparisons in the litera-

ture so far. A number of different research issues have been

investigated, as presented in Section V.

VI. CONCLUSION

In this paper, we have presented a new many-objective

evolutionary algorithm, called θ -DEA, whose environmen-

tal selection mechanism is based on θ dominance. Given

the complementary advantages of NSGA-III and MOEA/D,

θ -DEA is expected to enhance the convergence ability of

NSGA-III in high-dimensional objective space by utilizing

the aggregation function-based fitness evaluation scheme in

MOEA/D, thereby achieving a better compromise between

convergence and diversity in many-objective optimization. To

achieve the goal, a new dominance relation, θ dominance, is

introduced into the proposed algorithm, managing to empha-

size both convergence and diversity.

In the experimental investigation of θ -DEA, we have shown

the evidence of the robustness of the algorithm with respect

to the key parameter θ . We have experimentally verified that

the θ -DEA, in general, performs better than NSGA-III and

MOEA/D in searching for the Pareto-optimal points close to

the supplied reference points as a reference point-based algo-

rithm. It has also been found that the embedded normalization

procedure enables θ -DEA to handle scaled problems more

effectively.

To demonstrate the strong competitiveness, we have made

an extensive experimental comparison of θ -DEA with eight

state-of-the-art algorithms that belong to five different cate-

gories of technologies. A number of well-known benchmark

problems are chosen to challenge different abilities of the algo-

rithms. The comparison results reveal that the proposed θ -DEA

works well on almost all the problem instances considered in

this paper, and it is compared favorably with state-of-the-art

many-objective optimizers. However, we have also observed

that none of the algorithms is capable of beating any of the

other algorithms on all the instances, which indicates that a

careful choice of algorithms is sill needed at present when

solving a many-objective problem at hand.

In the future, we will have a deeper insight into the search

behavior of θ -DEA, so as to further improve its performance.

It is also necessary to evaluate θ -DEA further by compar-

ing it to the two most recent many-objective optimization

algorithms [25], [32], so that the strength and weakness of

different algorithms can be better understood. It would also

be interesting to extend our θ -DEA to solve constrained

many-objective problems by incorporating constraint han-

dling techniques [84]. Moreover, we would apply θ -DEA to

real-world problems in order to further verify its effectiveness.

APPENDIX

The source code of the proposed θ -DEA is available online:

http://learn.tsinghua.edu.cn:8080/2012310563/ManyEAs.rar
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