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Fully resolved simulations of flow past fixed assemblies of monodisperse spheres in face-centered-cubic array or random
configurations, are performed using an iterative immersed boundary method. A methodology has been applied such that
the computed gas–solid force is almost independent of the grid resolution. Simulations extend the previously similar
studies to a wider range of solids volume fraction (/ 2[0.1, 0.6]) and Reynolds number (Re2 [50, 1000]). A new drag
correlation combining the existed drag correlations for low-Re flows and single-sphere flows is proposed, which fits the
entire dataset with an average relative deviation of 4%. This correlation is so far the best possible expression for the
drag force in monodisperse static arrays of spheres, and is the most accurate basis to introduce the particle mobility for
dynamic gas–solid systems, such as in fluidized beds. VC 2014 American Institute of Chemical Engineers AIChE J, 61:

688–698, 2015
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Introduction

Flows involving solid particles are encountered in a vari-
ety of industrial processes, where the gas and solid phases
need to be brought into intimate contact. More specifically,
these flows exist in gas-fluidized beds that are frequently
applied in the chemical, environmental, petrochemical, met-
allurgical, and energy industries in large-scale operations
involving physical (coating, drying, and granulation) and
chemical transformation.1 Traditionally, the design of fluid-
ized beds (or other gas–solid contacting devices) is based
primarily on empiricism, due to the lack of understanding of
the hydrodynamics and the absence of quantitative prediction
tools. To improve on this state-of-the-art, development and
validation of computational models based on first principles
is rapidly gaining attention to meet the needs for efficient
future design, safe operation, and optimal control of fluidized
beds. The prediction of dense gas–solid flows in engineering
scale equipments can, in practice, only be achieved with
continuum models. During the past decades, simulations
based on either the Euler–Euler (two-fluid model2) or Euler–
Lagrange (discrete element method DEM3) model have con-
tributed to enhance our understanding of complex particulate

flows. In these models, the flow between the particles is not
resolved. Thus, the fluid-particle interactions are taken into
account via effective transfer coefficients described by clo-
sure models. The accuracy of these closures determines the
reliability of the results, hence the predictive capability of
these models. This leads to an essential requirement on
developing accurate closures accounting for those unresolved
interactions.

One of the key inputs for numerical models of large-scale
two-phase flows, such as in fluidized beds, is the closure for
the momentum exchange between the particles and the gas.
This is referred to as the drag law or drag correlation. In the
past years, many closures for drag law have been proposed
from theoretical, experimental, and computational studies.
Closures from theoretical studies4–6 are limited to small solids
volume fractions (/) and/or low Reynolds number (Re). For
Re> 1 and / > 0:1, there are a large number of empirical cor-
relations, which are obtained from analysis of experimental
data.7,8 Crucial is that (1) the parameters in these correlations
have been obtained empirically for idealized conditions, and
do not apply for all situations that may occur in gas–solid sys-
tems; and (2) these experimental data only provide indirect
information on the drag force through measurement of either
the pressure drop or the terminal velocity of sedimenting par-
ticles. By contrast, direct numerical simulations (DNS, also
called fully resolved simulations) have become a promising
alternative tool, in which the interphase exchange is not
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modeled via empirical assumptions but follows from boundary
conditions at the surface of the particles. The advantage is that
not only the force can be “measured” directly, but also arbi-
trary material and flow conditions can be defined and perfectly
controlled in simulations, which is not the case in experiments.
DNS models can hereby provide the insight and data to formu-
late improved correlations for large-scale predictive models. A
few drag correlations have been proposed on the basis of DNS
results, covering a wide range of Re and / (using Lattice-
Boltzmann Method (LBM)9–11 or Immersed Boundary Method
(IBM)12). Most of the currently available closures were
obtained for monodisperse systems of spherical particles, con-
sidering the average / and mean Re. Importantly, they are
considered as the basis to introduce more complexity in fluid-
ized bed studies. For instance, the models for polydisperse sus-
pensions11,13,14 rest upon a drag law for an equivalent
monodisperse suspension, by modification accounting for the
polydispersity. Besides, a common approach in the so far
reported studies of nonsphericity effect on fluidization and
sedimentation15–17 is to introduce the particles’ sphericity into
a drag correlation derived from spherical particles. Therefore,
an accurate drag correlation for monodisperse systems of
spheres is essential to improve the predictive capabilities of
computational fluid dynamics (CFD) models for dense gas–
solid flows.

As mentioned before, DNS provides an unprecedented
capability to explore the fundamental mechanisms in gas–
solid flows, for which most experimental and theoretical
analysis are so far very limited. It has also been demon-
strated that the incorporation of some DNS techniques into
coupled DEM-CFD18–20 can enhance the capacity of the con-
ventional CFD model, on handling large objects or arbitrary
shaped boundaries in problems such as gas fluidization with
immersed tubes or dense solids with large size difference. In
the past decades, several methods have been developed for
DNS of gas–solid flows, such as the overset grid methods,21

the Arbitrary Lagrangian–Eulerian Method,22 PHYSALIS,23

the LBM, and the IBM, and so on. We briefly discuss the
LBM and IBM later, because of their relevance for the
results reported in this article.

The LBM can be viewed as a special discretization of the
Boltzmann equation on a lattice to mimic gas collisions.
Hydrodynamic behavior emerges on longer length scales as a
consequence of the momentum conversation of the collisions.
The fluid-particle interactions are modeled using the so-called
bounce back collision rules for the fluid. This method has
been extensively used to study particle laden flows. It is par-
ticularly suitable when multiple moving objects are consid-
ered.24 Although a calibration of the particle diameter is
always required, LBM has been considered an outstanding
method to investigate the drag law by detailed simulations of
gas–solid flows. Ladd25,26 first computed the drag force on
particles in monodispersed suspensions of spheres using this
method. Based on such LBM simulations for low-Reynolds-
number flows, a drag correlation was derived by Hill et al.9,27

Later on, the simulations were extended to monodisperse and
bidisperse random arrays of spheres at moderate Reynolds
number by van der Hoef et al.13 and Beetstra et al.11 In addi-
tion, studies have been reported on the clusters’ effect on the
drag force using this method.28–30 For a recent overview on
LBM for particulate flows, see Aidun and Clausen.31

The IBM is another widely used approach to model fluid-
structure interactions. It was originally introduced by Peskin32

for flows around flexible membranes, especially the flow in

the human heart. The major advantage of IBM33,34 is the effi-
cient implementation of the no-slip condition for stationary
and moving bodies with complex geometries. Specifically, the
continuous phase is resolved by solving the Navier–Stokes
(NS) equations on a fixed and typically structured Eulerian
grid. The interaction between the phases is taken into account
by adding a body force to the momentum equations, such that
a no-slip boundary condition is fulfilled on the surface of the
solid particles. Based on the traditional IBM concept, a direct-
forcing immersed boundary (IB) approach was later on intro-
duced,35,36 in which the body force is computed from the dis-
cretized transport equations, accounting for the boundary
conditions at the (Lagrangian) marker points distributed over
the surface of the particles. This approach was further
improved by Uhlmann,37 and became the “so-called” Uhl-
mann method. In this method, a regularized delta function is
used to distribute the force density from the Lagrangian point
positions to the Eulerian grid points. Since then, the Uhlman
method has been applied and proven suitable to problems such
as flows over stationary and oscillating spheres/cylinders, sedi-
mentation of discs and spheres, and so forth.1,38–40 One of the
downsides of using such a delta function is that the force den-
sity is distributed in a diffusive manner to a volume that is
slightly larger than the solid particle size. As a result, the flow
“feels” a bigger particle and the calculated interfacial transport
mechanisms might not be completely correct. Many strategies
have been proposed to overcome this issue. For instance, one
idea is to retract the marker points slightly inward to the inte-
rior of the particles to yield the correct particle size.41–43 We
developed a methodology to obtain the effective retraction dis-
tance regarding to this approach.44 Another approach proposed
by Garg et al.45 is to apply the force density only to the nodes
located interior of a particle. Using this method, Tenneti
et al.12 calculated the drag force in dense arrays of spheres and
obtained a drag correlation. Besides, Deen et al.1 reported a
method in which the treatment of the boundary conditions on
particle surfaces is imposed by an interpolation method.

DNS models have largely contributed to the development

of the fluid-particle momentum exchange closure, both by

LBM and IBM as well. Such correlations are crucial for a

correct understanding and quantitative description of the

fluid-solid hydrodynamics. However, the studied parameter

spaces do not cover all the situations encountered in gas–

solid systems. To improve this, we carry out this work, aim-

ing to derive a drag correlation for a wide range of Reynolds

numbers and solids volume fractions, by DNS simulations

using an iterative IBM. We have developed a methodology

to obtain highly accurate (essentially grid-independent)

results for the gas–solid force from IBM simulations at low

computational cost. With this methodology, simulations are

performed for the flow past fixed random arrays of monodis-

perse spheres, considering Re from 50 to 1000 and / from

0.1 to 0.6. Besides, we utilize the existing drag correlations

for low Re and small / flows, which are not studied in our

simulations. On the basis of all these results, a new correla-

tion is developed, which describes the general drag law for

the monodisperse static particulate flows.
This article is organized as the following: we first describe

the drag correlations for monodisperse systems in literature;
then, the iterative IB method and the modeling methodology
is briefly introduced; subsequently, we report the simulation
results of both face-centered-cubic (FCC) array and random
configurations, based on which a new drag correlation is
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proposed; this is followed by the conclusions as well as dis-
cussions on the future work.

Description of Drag Law for Monodisperse
Systems

Before presenting the literature drag correlations, it is
essential to make clear how the drag force is defined. When
a fluid percolates through assemblies of particles, each parti-
cle experiences two forces from the fluid, namely a
buoyancy-type force Fb due to the average pressure gradient
and a force Fd resulting from the local frictional losses. The
sum of these two forces is the total force Fg!s that the fluid
exerts on a solid particle. The reaction force from the par-
ticles on the fluid manifests itself in a pressure drop. The
forces are related to the pressure drop over the system as
follow

2rP5
Np

Vsys

Fg!s5
Np

Vsys

ðFd1FbÞ5
Np

Vsys

ðFd2VprPÞ (1)

where Np is the number of particles, Vsys the total system
volume, and Vp the volume of a single particle. Equation 1
can be written as

2rP5
/

12/
Fd

Vp
(2)

From Eqs. 1 and 2, it follows that

Fg!s5
1

12/
Fd (3)

In literature both forces, the total gas–solid force4,27 and
the local frictional force,13,46 are sometimes referred to as
the drag force. As can be seen from Eq. 3, these two defini-
tions of drag force13 differ by a factor of ð12/Þ. To be
clear, we report the friction-caused force as the drag force
throughout this article, by a dimensionless force that is
defined by normalizing the drag force Fd with the Stokes
solution as Fd5Fd=ð3pldpUÞ, with U the superficial veloc-
ity. Note that the IBM simulation program calculates the
force exerted on individual particles, which refers to Fg!s in
above equations. This force is converted to the drag force
according to Eq. 3.

A detailed overview of drag force relations for monodis-
perse systems was given by Beetstra et al.11 We now briefly
describe the mostly applied drag correlations in literature.
Correlations for the drag force of flow past static monodis-
perse arrays are usually of the form

Fdð/;ReÞ5Fdð/; 0Þ1aRe (4)

It is based on the drag force in the limit of Stokes flow
Fdð/; 0Þ, to which a term linear in Re is added accounting
for the inertial effects.

For the functional form of Fdð/; 0Þ and a, the following
expressions were suggested in the 1920s:

Fdð/; 0Þ5
a/

18ð12/Þ2
; að/Þ5 b

18ð12/Þ2
(5)

Ergun7 obtained the values of a 5 150 and b 5 1.75 on the
basis of data for the pressure drop over packed beds of vari-
ous materials from a large number of experiments. The com-
bination of Eqs. 4 and 5 with these values of a and b is
known as the Ergun equation, which is one of the most

widely used correlations in engineering. Later on, more
accurate experimental and simulation data were obtained for
the drag force. It was then concluded that for dense fixed
beds at low Reynolds numbers, Eq. 5 for Fdð/; 0Þ becomes
more accurate with a 5 180, which corresponds to Carman6

equation. Finally, van der Hoef et al.13 proposed the best fit
(Eq. 6) to all simulation data for arbitrary solids volume
fraction, which is a simple modification of the Carman
equation

Fdð/; 0Þ5
180/

18ð12/Þ2
1ð12/Þ2ð111:5

ffiffiffiffi
/

p
Þ (6)

Conversely, the coefficient term a was later on found to
be dependent on not only the solids volume fraction as in
Eq. 5, but also the Reynolds number. Hill, Koch, and Ladd9

carried out LBM simulations for intermediate-Re flows
(40<Re< 120), and proposed the following expression
(referred as HKL) for an extended Re range

að/Þ50:03365ð12/Þ10:106/ð12/Þ1 0:0116

ð12/Þ4
1

dF

Re
(7)

where the term dF=Re was added by Beetstra et al.11 for a
better prediction at Re< 200, with a rough estimate for dF
according to the original data

dF5
6/210/2

ð12/Þ2
(8)

Note that the drag relations proposed in Hill et al.9 do
not cover the full range of solids volume fraction or Reyn-
olds number encountered in fluidized beds. To this end,
Benyahia et al.47 modified the HKL correlation to some
blended functions that are continuous with respect to Re
and /.

Furthermore, extensive LBM simulations were performed
by Beetstra et al.11 for Reynolds number up to 1000. On the
basis of their simulation data, a more complex functional
form (referred as BVK) was proposed, instead of a linear
scaling with Re assumed by the Ergun-type correlation

að/;ReÞ5 0:413

24ð12/Þ2
3
ð12/Þ21

13/ð12/Þ18:4Re20:343

11103/Re2ð114/Þ=2

" #

(9)

Another widely used correlation in engineering (usually
combined with Ergun equation) is Wen and Yu equation,
which is of the form

Fdð/;ReÞ5Fdð0;ReÞð12/Þ2b
(10)

where Fd(0, Re) is the expression for the drag force acting
on a single particle, and b53:7. However, Felice46 found

that b is actually independent of other system variables
except for the Reynolds number. An expression of b was
proposed

b53:720:65 exp
2ð1:52log ReÞ2

2

( )
(11)

Recently, Tenneti et al.12 proposed a correlation of the
average fluid-particle force, based on the DNS results for Re
� 300. The correlation is converted to the function of drag
force as following (referred as TGS)
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Fdð/;ReÞ5 Fdð0;ReÞ
ð12/Þ2

1
5:81/

ð12/Þ2
10:48

/1=3

ð12/Þ3

1ð12/Þ/3Re 0:951
0:61/3

ð12/Þ2

" # (12)

in which, the single sphere drag correlation proposed by
Schiller and Naumann48 is used

Fdð0;ReÞ5
110:15 Re0:687 Re < 1000

0:44

24
Re Re > 1000

8<
: (13)

Method and Model

An iterative IBM is adopted in this work, which basically
follows the Uhlmann method. Implementation details can be
found in Kriebitzsch,40 where extensive standard validations
are given, such as the hydrodynamic force in low-Re flows
past single sphere, regular and random arrays of spheres, as
well as the interaction force between two-approaching
spheres. We now give a brief description of this method
below.

Numerical method

We model a system of static rigid spheres immersed in
the flow of an incompressible Newtonian fluid. All physical
properties are considered to be constant. The numerical
model consists of the solution to the gas phase equations, the
particle motion, and the gas–solid coupling.

The gas phase is governed by the NS equations, which are
solved on a fixed and structured Eulerian grid with its grid
size h much smaller than the particle diameter dp. These
equations are solved using state-of-the-art CFD methods,
where second-order schemes are used for space and time dis-
cretization of the momentum equations, in which the convec-
tive, viscous, and pressure terms are treated in an explicit,
semi-implicit, and implicit manner, respectively. For the
solid phase, each particle is represented by a set of marker
points that are specified in terms of a spherical diameter dm.
Traditionally, the marker points are uniformly distributed
over the particle’s surface, which means dm 5 dp. The motion
(if there is) of particle i follows Newton’s second law, from
which the translational vi and rotational wi velocities are
updated every CFD time step

mp;i
d

dt
vi5ðqp;i2qgÞVp;ig1Fg!s;i1

X
j 6¼i

Fc;j!i (14)

Hp;i
dwi

dt
5Tg!s;i1

X
j 6¼i

Tc;j!i (15)

with mp;i; qp;i;Vp;i the mass, density, and volume of the parti-

cle i, respectively. The terms on the right-hand side of Eq.
14 are the gravity reduced by buoyancy, the hydrodynamic
gas–solid force Fg!s;i, and the total collision force Fc;j!i

with other particles or the wall. While, for Eq. 15 they are
the gas-particle torque Tg!s;i and the total collisional torque.
The particle–particle or particle-wall collisions are modeled

by a hard-sphere method,49 in which the particles interact
via binary, instantaneous collisions. In addition, the moment
of inertia for spheres is equal to Hp;i5ð1=10Þmp;id

2
p;i. The

hydrodynamic interactions the gas exerts on a particle are
obtained by

Fg!s;i52

þ
Ci

ðPn1S � nÞdr (16)

Tg!s;i52

þ
Ci

ððx2riÞ3ðS � nÞÞdr (17)

where x2ri is the vector from the mass center ri of particle
i to a marker point x on its surface Ci; S represents the vis-
cous stress tensor

S52lg½ru1ðruÞT � (18)

Additionally, the gas–solid coupling is enforced by adding
a force term to the NS equations of the fluid phase. This
force term is computed at each marker point such that the
no-slip condition is enforced on the surface of the particles,
which means that the local velocity of the gas has to be
equal to the velocity at that position at the particle surface.
The sum of this force term from the marker points of one
particle is equal to the total force that the particle applies to
the fluid. A function is required to couple the data on the
Lagrangian markers with the corresponding variables defined
on the Eulerian grids, or to be more specific for the velocity
interpolation and the force distribution between the marker
points and the adjacent grid points. To this end, a regularized
delta function suggested by Deen et al.50 is employed, which
is a cheap clipped fourth-order polynomial function with a
finite support of three times the grid size. Besides, an
additional iteration procedure is adopted to achieve a more
accurate enforcement of the no-slip boundary condition in
an efficient way. The numerical scheme of our iterative IBM
is illustrated in Figure 1, with each step explained as
follows.

1. First, the preliminary fluid velocity field û0 is calcu-
lated, assuming no presence of particles. In Figure 1, we
introduce: gas density qg, gas velocity u, modified pressure
P5p2qgg � x, the stress tensor S, the convective term C,
time step Dt; and the subscript n as the current time step.

2. Velocity interpolation from the surrounding grid points xi;j;k

to the position Xm of marker point m, via the regularized delta
function Dðx2XÞ. The subscript ns represents the iteration num-
ber, whereas h is the grid size.

3. IB force FIB calculation at each marker point, based on
the slip velocity between the local fluid velocity Um and the
particle velocity vm.

4. Distribution of the force density at the marker point
over the surrounding grid points, with the volume of each
marker point DVm.

5. Calculation of intermediate velocity field û, with the
presence of particles considered by adding the IB force den-
sity. L is the operator of the spatial discretization of the
Laplacian r, and I is the unit tensor.

6. Determine if the no-slip boundary condition is fulfilled
up to the specific level of accuracy E, or the maximum itera-
tion number ns;max is reached. If true, the computation goes
on to the next step; otherwise, it goes back to the iteration
loop.

7. Solve Poisson equation for pressure correction.
8. Update to the new velocity field un11 and pressure field

Pn11.

Corrections for grid-size effects

For this type of IBM, the results have been shown to pos-
sess a strong grid dependence, which means that a high
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resolution (particle diameter/grid size ratio) is usually
required especially for problems involving high solids vol-
ume fraction and/or high Reynolds number flows.33,34,51 In
fact, even for low Reynolds numbers, Kriebitzsch40 observed
a departure of the finite-resolution simulation results from
the exact values for the drag force on a particle in regular
arrays given by Hasimoto.4 It was also indicated that this
departure can be eliminated by modifying the diameter dm

for the marker points, which exactly follows the concept of
“effective hydrodynamic diameter” proposed by Ladd26 for
the lattice Boltzmann method. This modified diameter was
chosen such that the simulation data at a finite grid resolu-
tion matches the theoretical solution for the drag force. How-
ever, the theoretical/exact solution for the drag force is
limited to very low Reynolds number and small solids vol-
ume fraction. Therefore, for high-Re flows, which are the
target problems studied in this work, we have developed a
methodology to deal with the issue of grid-size effects.
Details and verifications have been reported in Tang et al.,44

while only a brief outline of this methodology is given here.
First, IBM simulations are performed at different resolu-

tions to calculate the gas–solid interaction force of flows past
FCC arrays of spheres at certain values of / and Re. Such a
simulation can be carried out at a very high resolution due to
the low computational cost as only four particles are needed

for the adopted periodic boundary conditions. Subsequently, a
“resolution-free” drag force FFCC

d is obtained by extrapolating
these simulation data to an infinite resolution. By doing this
for various solids volume fractions, one can formulate a func-
tion of FFCC

d versus / at a certain Re. This function is then
used to evaluate how much the value of / should be modified
such that the data for a particular resolution exactly matches
FFCC

d . The modification of / can be easily converted to the
calibration of diameter dm for the marker points’ distribution.
Finally, prediction of the interaction force in random arrays of
spheres is carried out with simulations at a low resolution,
with the dm modified correspondingly.

IBM Simulations of Flow Past Static Arrays

The methodology described earlier has been applied in our
IBM simulations to predict the drag force in gas flows past
fixed random arrays of monodisperse spheres. Different com-
binations of Reynolds number (Re2[50, 1000]) and solids
volume fraction (/ 2[0.1, 0.6]) have been studied.

Simulation set-up

The problem considered in this work is fluid flow through
spherical particles arranged in regular or random arrays in a
periodic 3-D box, seen in Figure 2 as an example of the

Figure 1. Calculation of the velocity and the force term during one time step in the iterative IBM.
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particle configurations. In the simulations, all the particles
are given the same constant velocity v so that the entire
array moves as a static configuration through the domain. A
uniform body force is applied to the fluid phase, such that
the superficial velocity U of the fluid relative to the uni-
formly moving particles is equal to the negative particle
velocity (–v), resulting in the Reynolds number
Re5qgdpjvj=lg. The physical properties of the fluid and the
solids are listed in Table 1. The computational domain size
is set by the solids volume fraction /, the particle diameter
dp, and the number of particles Np.

For the simulations of FCC arrays, only a unit cell of four
particles is modeled, as periodic boundary conditions are
employed. The resolutions that for use range from 12 up to
64 cells per particle diameter (80 for Re 5 {800, 1000}). The
maximum iteration number is set to ns;max55, which is suffi-
cient for accurate enforcement of the no-slip condition. Simu-
lations of periodic random arrays are carried out with
Np 5 108 spheres positioned in 10–20 different configurations.
The maximum iteration number is then set to ns;max53, which
is high enough to achieve the required accuracy while
avoiding unnecessary increase in computational costs.43 The
grid resolution is chosen as dp=h � 16 for Re 5 {50, 100}
and dp=h � 12 for Re 5 {200, 500, 800, 1000}, with individ-
ual modified dm according to different combinations of
(Re, dp=h;/).44 The random configurations are generated as
follows. For / � 0:45, a standard hard sphere Monte-Carlo
(MC) method52 is applied: all the particles are initially placed
in an ordered FCC configuration; then each particle is ran-

domly moved, with the displacement accepted only if no
overlap occurred at the new position with any other particle.
Unfortunately, such a standard MC method is not suited to
provide sufficient randomization for highly dense packings.53

Therefore, the random configurations at / > 0:45 are created
in this work using an event-driven method combined with par-
ticle swelling procedure,54 which drastically improves the ran-
domness as being seen from the radial pair distribution
function that we have examined.

Simulation results

In Figure 3, we present the obtained drag force FFCC
d

(symbols) for FCC arrays as a function of / at different
Reynolds numbers, together with the corresponding fit (lines)
formulated in Eq. 19 with parameter values listed in Table 2.
A very good agreement between the fit and data is achieved
and shown in this figure. We stress that this function has no
physical origin but is chosen such as to provide the best pos-
sible fit to each set of data at specific Reynolds number.

Figure 2. Particle configuration at / 5 0.4 of FCC (left) and random (right) arrays in a periodic 3-D box.

The particles are scaled by 50% for visualization.

Table 1. Data Used for the Simulations of Static Sphere

Arrays

Parameter Value

Particle number Np FCC: 4, random: 108
Particle diameter dp 1.6 3 1023 m
Particle density qp 500 kg/m3

Fluid density qg 1.0 kg/m3

Fluid viscosity mg 131025 kg/(m s)
Solids fraction / 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4,

0.45, 0.5, 0.55, 0.6
Reynolds number Re 50, 100, 200, 500, 800, 1000

Figure 3. The dimensionless drag force in FCC arrays
of spheres at different Reynolds numbers
(see legend).

The symbols represent the obtained data and the lines

are from Eq. 19. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]

AIChE Journal February 2015 Vol. 61, No. 2 Published on behalf of the AIChE DOI 10.1002/aic 693

http://wileyonlinelibrary.com


FFCC
d 5

1

ð12/Þ2
� 1

a1b/1=31c/1=21d/1e/2
; specified Re

(19)

For the completeness, we have also fitted those results of

drag force in FCC array to a general function of Re and /
as Eq. 20, with an average relative deviation of 6.0%. This

correlation is slightly less accurate than expression Eq. 19,

but has the advantage of providing an estimate of FFCC
d at

arbitrary Re (� 1000) and /. To our knowledge, this type of

expression for the drag force in FCC array, which is based

on DNS simulation results over a wide range of Reynolds

number (Re � 1000), has not been reported in literature

before.

20FFCC
d ð/;ReÞ5 10/

ð12/Þ2
1ð12/Þ2ð111:5

ffiffiffiffi
/

p
Þ

1

"
0:043/ð11/Þ10:028ð12/Þ

1
0:0545Re20:34320:00257

ð12/Þ4

#
Re

(20)

As indicated earlier, in this work, we use the highly accu-
rate data of drag force obtained for FCC array to calibrate
the diameter dm. This modified dm is used for the distribution
of the marker points, which allows for a more accurate eval-
uation of the gas–solid interaction force and an improved
flow field computed from IBM simulations while using a rel-
atively coarse computational grid.44 It is calculated from Eq.
19 along with parameter values in Table 2 by an iterative
procedure using Newton’s method, together with the simula-
tion force data for FCC arrays at different combination of
(Re, /; dp=h). The results of modified dm are found to be
dependent on Reynolds number, grid resolution, and solids
volume fraction as well. These results are then applied for
the simulations of random arrays, with which the prediction

of the drag force can be implemented at a relatively low
resolution.

Finally, the results of dimensionless drag force Fd for ran-
dom arrays are given in Table 3 for different Reynolds num-
bers and solids volume fractions. Fd is the average over 10–
20 different random configurations, whereas DF is the stand-
ard deviation.

A new drag correlation

We have computed the average gas–solid drag force in

random arrays for several values of Re and over a wide

range of /, with the data reported in Table 3. To acquire a

single drag relation for the entire parameter space of Re and

/, we also included results from existing relations for low-

Re flows and single-sphere flows. On basis of all these data,

we develop a drag correlation with the form of Eq. 4, which

gives a good fit with an average relative deviation of

jFsim
d 2Fdj=Fsim

d 54%:

Fdð/;ReÞ5 10/

ð12/Þ2
1ð12/Þ2ð111:5

ffiffiffiffi
/

p
Þ

1

"
0:11/ð11/Þ2 0:00456

ð12/Þ4

1 0:169ð12/Þ1 0:0644

ð12/Þ4

 !
Re20:343

#
Re

(21)

Note that this correlation has been combined with Eq. 6,

which has been considered the most accurate description for

the drag force in low-Re flows. Furthermore, the drag on an

isolated sphere resulting from the correlations (Eq. 13) pro-

posed by Schiller and Naumann48 is also taken into account,

and shown in Figure 4 with symbols at /50. In this figure,

Fdð/;ReÞ � ð12/Þ2 calculated from Eq. 21 is shown by solid

lines, together with the IBM data (symbols) from Table 3.

We also include some existing drag correlations for

Table 2. Parameters in Eq. 19 for Different Reynolds Numbers

Re a b c d e

50 0.4765 20.2694 20.6410 0.9255 20.5904
100 0.2829 1.6162 23.3701 2.4318 21.1539
200 0.3619 0.8975 22.783 2.645 21.332
500 0.01395 1.546 22.618 1.714 20.7608
800 0.0425 0.5563 21.055 0.797 20.3879
1000 0.4309 22.958 3.385 20.9059 0.04115

Table 3. Average Dimensionless Drag Force in Flows Through Random Arrays

Re / 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

50 Fd 5.7202 7.1808 8.8008 11.143 13.067 17.033 21.402 27.139 35.261 47.462 67.920
DF 0.1000 0.10426 0.1371 0.159 0.170 0.191 0.266 0.239 0.453 0.714 0.789

100 Fd 8.6390 10.124 12.288 14.869 18.206 22.169 27.512 34.368 46.144 65.304 87.868
DF 0.2002 0.253 0.266 0.290 0.318 0.411 0.552 0.655 0.768 1.234 1.232

200 Fd 10.671 13.285 18.205 19.801 24.149 28.261 33.951 42.528 54.425 71.253 99.360
DF 0.221 0.275 0.301 0.464 0.327 0.351 0.600 0.912 0.895 1.389 1.178

500 Fd 18.402 23.143 27.179 37.235 39.750 49.447 58.502 77.414 89.040 112.76 155.12
DF 0.148 0.261 0.299 0.307 0.887 0.492 0.604 0.609 0.754 1.15 1.79

800 Fd 28.619 35.147 39.270 48.597 59.533 72.449 83.016 97.685 122.55 157.17 197.51
DF 0.420 0.302 1.101 0.662 0.457 0.580 0.971 1.054 1.04 1.55 2.22

1000 Fd 31.633 39.196 45.516 62.684 68.719 82.245 102.70 111.42 140.22 172.19 208.50
DF 0.389 0.480 0.383 0.595 0.480 1.010 1.27 1.20 1.12 1.62 2.23
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comparison: HKL (dash-dot lines), BVK (dotted lines),
and TGS (dashed lines). It can be seen that our new corre-
lation provides quite a good fit to the data of IBM
simulations.

In general, the HKL and the BVK correlations are in a
reasonable agreement with the results at lower Reynolds
number of 50 and 100, but markedly differ from those at
higher Re. This observation is consistent with the results

reported by Tenneti et al.,12 who concluded that the HKL
correlation was valid only up to Re 5 100 and BVK correla-
tion was with more than 30% difference from their simula-
tion data up to Re 5 300. In Figure 4, we see that the
differences between HKL drag law and our new correlation
increase with Reynolds number when Re beyond 100. How-
ever, as HKL drag law was extended from LBM simulation
results of Re< 120, such discrepancy is not surprising.

Figure 4. Fd (/, Re) � (1 2 /)2 as a function of the solids volume fraction /, for Reynolds number Re 5 {50, 100, 200,
500, 800, 1000} in sequence.

Fd (/, Re) used in figures are: (symbols) the simulation data in Table 3 and the single-sphere drag correlation results (at / fi0)

with the error bars for the standard errors; (solid lines) Eq. 21; (dash-dot lines) the HKL; (dotted lines) the BVK; (dashed lines)

the TGS.
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Differences between the BVK and our IBM correlation
increase significantly with increasing Reynolds number and
are noticed more pronounced for larger solids volume frac-
tions. In BVK, a constant resolution of 17.5 lattice units
across a particle diameter was used for / � 0:2, and for
higher solids volume fractions they obtained average results
over two resolutions of 17.5 and 25.5 lattice units. As we
know for denser packings, there are more narrow gaps
between particles, which require higher resolution for DNS
simulations. Therefore, using a constant resolution for a
range of volume fractions from 0.2 up to 0.6, BVK drag law
is under resolved and the grid size effects on the results are
enhanced with increasing /. This is consistent with our
observation from Figure 4. Comparing to both HKL and
BVK, our IBM simulations are consistently better resolved
in terms of grid resolution effects, especially for high Reyn-
olds numbers and dense packings. However, in Figure 4,
there is another observation specially from the HKL corre-
lation, that is, it can qualitatively capture the changing of
Fdð/;ReÞ � ð12/Þ2 with increasing /, regardless of the
Reynolds number. In fact, this observation became the
rationale for adopting a similar functional form of að/;ReÞ
from the HKL correlation to our new correlation Eq. 21.
Consequently, as is seen in Figure 4, our new correlation
not only gives the best possible estimate of the data, but
also describes the detailed dependency.

Besides, it is shown that the TGS correlation predicts drag
forces in the same order of magnitude as our simulation data
for most of the Reynolds numbers studied. However, it does
not describe changing shape of Fdð/;ReÞ � ð12/Þ2 with
increasing /, as the HKL correlation and Eq. 21 do. Based
on their simulation results, TGS12 correlation is a fitting
function applying the drag force FisolðReÞ acting on an iso-
lated sphere moving in an unbounded medium, for which
they used the single sphere drag correlation proposed by
Schiller and Naumann.48 We can see from Figure 4 that the
TGS meets all the data points at /! 0, which represent the
force values from single sphere drag laws. However, finding
accurate estimation for FisolðReÞ or Fð0;ReÞ has challenged
the scientific community for a large number of years. Our
current knowledge is mainly based on experimental data as
the correlation by Schiller and Naumann.48 Numerical simu-
lations of such systems challenge the computational cost due
to the required unbounded domain. Conversely, the develop-
ment of drag laws for Stokes flows Fð/; 0Þ is more mature
from DNS. For instance, we apply the correlation proposed
by van der Hoef et al.13 that is a simple modification of the
Carman6 equation based on LBM simulations of low-
Reynolds-number flow past spheres for an entire range of /.
As a starting point for deriving a defined drag correlation,
taking FisolðReÞ as in TGS or Fð/; 0Þ as in our new correla-
tion Eq. 21 might lead to such discrepancies in Figure 4 for
predicting the drag force in general flow conditions. Finally,
the current IBM simulations are better considered in terms

of the number of particles (Np 5 108 vs. TGS: Np � 41 for
Re> 100) as well as Reynolds numbers (Re � 1000 vs.
TGS: Re � 300).

Conclusions

In this work, we computed the drag force in flow past
static monodisperse arrays of spheres using an iterative IBM.
A methodology that improves the accuracy of the computed
gas–solid interaction force and the flow field is applied for
simulations at relatively low resolutions.44 A large number
of simulations have been performed for Reynolds number
ranging from 50 to 1000 and solids volume fraction from 0.1
up to 0.6, with the data reported in Table 3. In all the simu-
lations, the diameter dm for marker points’ distribution is
evaluated individually for the specific combination of (Re,
/; dp=h) in order to bring the IBM force results as close as
possible to be grid-size independent. Besides, we have care-
fully created particle configurations with a high degree of
randomness, especially for dense packings. Note that each
random configuration considered in this work consists of 108
particles, which is a larger number in comparison to the sim-
ilar type of simulations reported in literature.

Apart from the IBM data of the studied simulations, we
also considered the drag force from existing correlations for
low-Re flows and single-sphere flows. Finally, a new drag
correlation Eq. 21 for monodisperse suspensions was devel-
oped, which covers an entire range of solids volume frac-
tions and Reynolds numbers up to 1000. This expression has
a quite simple form, but gives a good estimate for the effec-
tive drag force with an average relative deviation of 4% with
respect to the basic data. It is then compared with some cor-
relations in literature. It turns out that both HKL and BVK
correlations agree well with the drag results for Re� 100,
but have a significant deviation at higher Reynolds numbers
regardless of /. Conversely, the TGS correlation gives force
results that are fairly close to our simulation data. However,
it does not describe the detailed change of the drag force
with the solids volume fraction. In the previous section, we
have analyzed the discrepancies between our new drag corre-
lation and the other referred correlations. In Table 4, we
would like to further compare the parameter space of the
number of particles Np, Re, /, and grid resolution for the
DNS simulations, based on which these drag correlations are
proposed. It is clear that our current IBM simulations have
considered a larger number of spheres than the others. The
HKL and TGS correlations are extended from simulation
results for Re< 120 and Re� 300, respectively. While, the
simulations for the BVK correlations are not as highly
resolved as the others using constant resolutions for the wide
range of studied Re and /. Moreover, the TGS correlation
does not involve simulation results for very dense system
([0.5, 0.6] is a very important range for fluidized bed stud-
ies). In contrast, all of these parameters have been studied

Table 4. Comparison of the Studied Parameters (Np, Re, /, and Grid Resolution) for DNS Simulations of Different Drag

Correlations

Correlation Np (Re> 100) Re / Resolution

HKL 16 40<Re <120 Up to 0.641 9.6–41.6
BVK 54 20<Re <1000 6 values in [0.1, 0.6] 17.5, 25.5
TGS � 41 Re� 300 5 values in [0.1, 0.5] 20–60
Equation 21 108 Re� 1000 11 values in [0.1, 0.6] Evaluated dm
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with a larger space in this work. Note that the dm, which is
used to correct for the resolution effect in this work, was
evaluated on the basis of simulation results of FCC array
with resolution up to 64 for low Re and 80 for high Re. We
believe that at present Eq. 21 provides more accurate drag
for flow past monodisperse static arrays of spheres for
Re� 1000.

Discussions

So far, we have reported the simulation results of station-
ary particle assemblies and correspondingly proposed a new
drag correlation. This correlation is considered so-far the
best possible prediction of the drag force in static monodis-
perse arrays, but it does not capture the effect of particle
mobility. In fact, none of the DNS-based correlations
referred in this article has considered this effect. However,
an increase of the dimensionless drag force with the particle
mobility characterized by the granular temperature has been
reported, for instance by Wylie et al.55 and Kriebitzsch
et al.56 as well. For this reason, we performed IBM simula-
tions of flows past freely moving spheres at solids volume
fraction of 0.5 for different flow Reynolds numbers (based
on the superficial velocity). The simulation setups are the
same as for static random arrays reported in this article,
except that the particles can freely move with respect to the
grid. Elastic collisions between particles are taken into con-
sideration in these simulations. We average the local solids
volume fraction and the velocity over the computational
domain and over a certain time period after a steady particle
granular temperature is reached. Figure 5 compares the
dimensionless drag force as a function of Re between sta-
tionary particles and moving particles. It is seen that the
mean gas–solid drag force in systems with freely moving
particles, such as fluidized beds, is higher than for the sys-
tems with the same porosity and superficial velocity but sta-
tionary particles. The relative deviation of Fd between
stationary and moving particles in this system case is about

20% for Re of about 800. Clearly, one can conclude that
accurate drag correlations for static monodisperse arrays of
spheres are not a priori applicable to large-scale modeling of
fluidized beds.

Conversely, the fixed bed approximation is still significant
for the study of high Stokes number particles that are charac-
teristic of the gas–solid flows, such as in fluidized beds. The
study of static systems can give the insights for the depend-
ence of the gas–solid interaction force on the mean flow
Reynolds number and mean solids volume fraction, which
also applies for the systems involving moving particles. The
increase of the gas–solid force resulting from particles’
motion can be subsequently described by introducing the
particle granular temperature into the basic drag correlation
for static systems. This indicates that a very accurate drag
correlation for static systems (like Eq. 21) is not sufficient,
but essential for understanding of gas–solid flows such as in
fluidization systems.
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