
Discrete Comput Geom 5:243-254 (1990) 

© 1990 Springer-Verlas New York~Inc.ry 

A New Duality Result Concerning Voronoi Diagrams* 

Franz Aurenhammer  

Institutes for Information Processing, Technical University of Graz and 
Austrian Computer Society, Schiesstattgasse 4a, A-8010 Graz, Austria 

Abstract. A new duality between order-k Voronoi diagrams in E d and convex 
hulls in E d+t is established. It implies a reasonably simple algorithm for computing 
the order-k diagram for n points in the plane in O(k2n log n) time and optimal 
O(k(n - k)) space. 

1. Introduction 

Given a set P o f  n points in Euclidean d-space E d, d >-1, and an integer k, 
1 --- k--- n - 1, the order-k Voronoi diagram, k -  V ( P ) ,  of  P subdivides E d into 
maximal  regions (called cells), such that any point  within a fixed cell has the 
same k nearest  points in P. More  formally, k -  V ( P )  contains, for each k-subset 
S o f  P (i.e., S ~ P and Is l  = k ) ,  the cell 

cell(S) = {x ~ EdlS(x ,  s) <-- ~(x, p),  ¥ s  ~ S, Yp ~ P - S}, 

where 8 denotes  the Eucl idean distance function. Since {x ~ Ea[8(x ,  s) = 8(x, p)} 
is the symmetry-hyperplane  o f  s and p, cell(S) is the intersection o f  k ( n - k )  
closed halfspaces o f  E a and thus a (possibly degenerate) closed and convex 
polyhedron  in E d. The  interiors o f  two distinct cells, by definition, do  not intersect, 
and  the cells o f  k - V ( P )  cover E d; see Fig. 1 for an illustration. For  0 -<j - d - 1, 
the j -d imensional  polyhedra  bounding  the cells are called j-faces of  k - V ( P )  or, 
synonymously ,  facets for j = d - 1, edges for j = 1, and vertices for j = 0. 

Voronoi  diagrams have been independent ly  discovered and used in various 
areas o f  science. Once in t roduced in computer  science by Shamos and Hoey  [ 11 ], 
they have received a considerable deal o f  attention in computa t ional  geometry 
within the last decade. The construct ion o f  1 - V ( P )  in E a was opt imally solved 
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Fig. L 1 - V(P) (dashed line) and 2 - V(P) (solid line) for P = {1, 2, 3, 4}. The cells of 2 - V(P) 
have their sets associated. 

in [11] for d = l , 2  and in [3] and [9] for d->3, d odd. The latter approach is 
based on a duality between 1 - V(P)s and convex hulls in E a+l and, by a recent 
result in [10], is optimal to within a time factor of  log n for d > 3, d even. While 
[6] succeeded in devising an algorithm which computes all k -  V(P)s in E d, for 
k = 1 , . . . ,  n - 1, in optimal time and space O(n a+~) exploiting a geometric corre- 
spondence to arrangements of  hyperplanes in E a+~, several attempts have been 
made to compute the particular diagram k - V ( P )  efficiently. In E 2 the first 
method is due to Lee [7] who also showed that the number of  cells, edges, and 
vertices is bounded by O ( k ( n -  k)) in this case. The method iteratively derives 
k -  V(P) from ( k - l ) -  V(P) and takes O(k2n log n) time and O(k2(n-k ) )  
storage. Using the geometric background in [6], this result was improved to 
O(k(n - k)x/n log n) time and O(k(n - k)) space [5] and recently to O(n 2 log n + 
k ( n - k )  log 2 n) time, O ( k ( n - k ) )  space or O ( n 2 + k ( n - k ) l o g  2 n) time, O(n 2) 
space, respectively [4]. Nevertheless, Lee's method is most time-efficient for 
k < x/-n/log n. 

The main contribution of  this paper is a tailor-made algorithm for constructing 
low-order Voronoi diagrams in E 2. It resembles Lee's algorithm in that it works 
iteratively and results in the same time complexity, but differs in that it is 
conceptually simpler, has optimal space requirement, and generalizes to higher 
dimensions. The new construction method (outlined in Section 3) relies on a 
duality between k -  V(P)s in E d and convex hulls in E d+! that is described in 
Section 2 and is of  interest in its own right. Section 4 offers a discussion of the 
results and mentions some extensions. 

2. The Duality to Convex Hulls 

Let C and C '  be two convex polyhedra in E d+~ and let the j-dimensional 
polyhedra bounding them be their j-faces, for 0 <-j -< d. C and C'  are said to be 
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dual if  there is a one-to-one correspondence qt between the j-faces of C and the 
(d - j ) - f ace s  of  C'  such that f ~  g, for any two faces f and g of  C, iff q / ( f )  ~ gt(g). 
Various polyhedral partitions of  E d can be viewed as the affine degeneracies of  
the boundaries of  convex polyhedra in E d+~, see, e.g., [2]. Thus the notion of  
duality remains meaningful if C is replaced by such a partition. This section 
demonstrates that, given a finite point-set P in E d, it is possible to construct a 
point-set Qk in E d+~ such that the diagram k -  V(P) is dual to certain parts of  
the convex hull of  Qk, for 1-< k-< I P I - t .  This was known for the special case 
k = 1, see, e.g., [3]. Our result is a direct, but by no means trivial, generalization. 

We start by clarifyi,~, a~hat is meant by "certain parts" of  the convex hull, 
conv Q, of a finite point-set Q in E d÷~. Conv Q is the convex polyhedron that 
represents the intersection of all closed halfspaces of  E d+~ containing Q. The 
lower part, low Q, of conv Q is the collection of  all faces f of conv Q such that 
there exists a hyperplane h with f=_ h, h nonvertical (i.e., not parallel to the 
Xd+1"axis of E d÷ ~), and conv Q above h (i.e., conv Q lies in the closed halfspace 
that is bounded by h and that contains the point on the Xd÷~-axis at +~ ) .  

Let a set P of n points in E d be given. For each k, l<-k<-n -1 ,  P can be 
associated with a dual point-set Qk in E a+~ as follows: 

(i) We identify E d with the hyperplane h0: Xd+~ = 0 in E d+~. 
(ii) We define Qk ={q(S)=(~' l , . . . ,~:d+~)[S is a k-subset of  P}, where 

(El,  " - ' ,  ~d)=EpesP and ~d+l =Y.p~sP 2. 

Qk has the following obvious property. For two k-subsets S and S' of P with 
S'= ( S w  {pj}) -{p,} and q(S') = ( r / l , . . . ,  ~Td+l), 

(7/1 . . . . .  7 /d)=(~: l , . . . ,~d)+p~--pl  and ~d+l=~d÷~+p}--pEholds. 

By means of  the terminology introduced, the main assertion of this section 
can be stated as below. 

Theorem 1. k -  V(P) is dual to low Qk. 

For explanatory reasons we shall assume that P is in general position, i.e., 
IP1 -> d + 1 and no d + 1 (d + 2) points in P lie on a common hyperplane (sphere) 
in ho. In this nondegenerate case, conv Ok contains no vertical facet and each 
of  its j-faces is a j-simplex (contains exactlyj  + 1 vertices). Moreover, the following 
auxiliary lemma holds, the proof  of  which is left to the interested reader. 

Lemma 1. 

(i) v~ho is a vertex of k - V ( P )  iff there is a sphere cr centered at v which 
partitions P into P_, Po, and P+ such that 

Po~cr and [Pol=d+l, 

P÷ ~ ext o-, 
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where int tr and ext ~r denote the open ball bounded by ~ and its open 
complement, respectively. 

(ii) For any two distinct k-subsets S and S' of P with ve ce l l (S)nce l l (S ' )  we 
have S' = (S u {pj}) - {Pi} for some distinct pj, Pl~ Po. 

Proof of Theorem 1. Observe first that k -  V(P) and low Ok are dual iff, for 
each vertex v of  k - V ( P ) ,  f=conv{q(S)[vecell(S)} is a d-face of  low Ok. By 
definition of  low Qk, f is a d-face of  low Qk iff q(S') lies above the hyperplane 
h containing f for all k-subsets S' of  P with v~cel l(S ' ) ,  or by Lemma 1 
equivalently, iff q(S+) lies above h for all S+ = (S u {p+}) - {p} with p c  P0 and 
p+~P+. 

Without loss of  generality, let v be such that q(S) coincides with the origin. 
Then the vertical projection of q(S+) onto ho is given by p + - p ,  and its Xd+l- 
coordinate by p2+_p2. Lemma 1 implies 8(p+, v ) > 8 ( p ,  v), that is, p2_p2> 
2v(p+ - p )  holds. In conjunction with the fact below, this is equivalent to q(S+) 
lying above h, and thus implies the theorem. [] 

Fact. 2v(p+-p) is the xd+~-coordinate of the vertical projection of q(S+) 
onto h. 

Proof By Lemma l(ii) and the definition of  h, the assertion is true iff there is 
some A e E d such that 

( . . . ( p j - p i ) . . . ) A = p + - p  and (p~ip~)A=2v(p+-p), 

for d pairs (pj, p~) with pj, p~ e Po and pj # Pi. Elimination of  (p+ - p )  and A yields 
d identities 2 2 2v(p~ -Pi) = P) -Pi. 

In geometric terms this means that v is the intersection of the d symmetry- 
hyperplanes defined in ho by (pj, p~), that is, Po lies on a sphere cr centered at v. 
Since v was a vertex of k -  V(P), Lemma l(i) proves the fact. [] 

We only mention that the proof  of Theorem 1 can be extended to the case 
where no restrictions on P are drawn. However, in the sequel we adopt the 
convention that P is in a general position and refer to [5] for algorithmic methods 
which remove degeneracies. 

Figure 2 illustrates how cony 02 is obtained from the point-set P shown in 
Fig. 1. The reader may examine the duality between the j-faces of  low Q2 and 
the ( 2 - j ) - f a c e s  of  2 -  V(P). 

3. An Iterative Construction Method 

This section puts the geometric investigations of  Section 2 to use by developing 
a new algorithm for constructing order-k Voronoi diagrams. 
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3.1. The Overall Structure 

According to Theorem 1, the construction of  k - V ( P )  in E d is essentially 
equivalent to determining the lower part of a convex hull conv Qk in E a+t. Since 
Qk can be calculated directly from P and algorithms for determining the convex 
hull of  a finite point-set in E d÷t are well established, this implies a direct method 

for computing k - V ( P )  in arbitrary dimensions. However, P realizes ( k  ) k- 

subsets for [PI = n, not each of  which may give rise to a nonempty cell in k - V(P). 

In the dual environment this means that only a few of  the ( k ) p o i n t s  of  Qkmay 

define vertices of  low Qk so that, in general, a very inefficient algorithm would 
result. 

To remedy this shortcoming, we apply a strategy (also used for the case d = 2 
and in different terms in [7]) which exploits the information inherent in low Qk-1 
to compute exactly those points of  Qk that lie on low Qk. It relies on the following 
lemma. 

l-~mma 2. For an edge e of  low Qk-1, let pair(e)=(pj, pi) i f  e is considered as 
directed from q( Si) to q( Sj) and i f  Sj = ( Si u {pj})-  {p~}. Furthermore, let set(e) = 
siusj. 
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For i = 1, 2, 3, the edges e~ bound a 2-face (triangle) t of low Qk-l iff 7(t) = 
conv{q(S)lS=set(e~)} either is a vertex or a triangle of low Qk. Moreover, 
pair(ei) = pair(e~) holds for the edges e~ of ~'( t). 

Proof. t is dual to a ( d - 2 ) - f a c e  g=cell(S~)ncell(S2)c~cell(S3) of  ( k - 1 ) -  
V(P).  Now the following two situations may occur. 

(i) 

(ii) 

g is no ( d - 2 ) - f a c e  of  k - V ( P )  iff Si =S'u{p2,P3},  S2=S'kd{pl,p3}, 
$3 = S ' u  {Pl, P2} holds for some ( k - 3 ) - s u b s e t  S ' ~  P and distinct Pl, P2, 
P3 ~ P - S'. (The interested reader may verify this equivalence using Lemma 
1.) Thus set(e~) = S 'u{pl ,p2 ,P3}  = S, for i = 1, 2, 3, such that ¢(t) = q(S). 
Observe that pair(el) = (P2, P3), pair(e2) = (P3, Pi), and pair(e3) = (Pl, P2) 
holds if the e{s are directed as shown in Fig. 3(a). 
g is a (d - 2 ) - f a c e  of  k -  V(P) iff we have Sl = S"w{pl} ,  S2=S"u{p2},  
and $3 = S " u  {p3} for some ( k - 2 ) - s u b s e t  S"~  P and distinct pl,p2,PaC 
P - S " .  (Again the easy proof  is left to the reader.) Moreover,  g= 
f'~=~.2.3cell(set(e~)) and se t (e~)=(S"u{p~,p2,p3})-{p~} holds. This 
means that T(t) is a triangle of  low Qk with vertices q~ = q(set(e~)), for 
i = 1, 2, 3. In addition, if e~ is directed from q(Sj) to q(Sr), we have 
pair(ei) =(Pr, Pj) = pair(e~) for e~ directed from q~ to q, (1 -< i,j, r - 3 ) ;  see 
Fig. 3(b). [] 

The overall structure of  the iterative algorithm that constructs k -  V(P) can 
now be described: 

Step 1. Compute  Vl = Ql from P and construct conv I/i. 

Step 2. For  m running from 2 to k, derive the set Vs c_ Qs of vertices of low Qs 
from the triangles of  low V s - .  and construct cony Vs. 

Step 3. Dualize low Vk to k -  V(P). 

The difference between Lee's [7] approach and ours should be observed. To 
obtain m - V(P)  from (m - 1) - V(P) he constructs a particular order-1 diagram 

Fig. 3. 

q(S.O q2 . ~ e3 A q~ 

q($1) e~ q~ S2l q3 

(a) (b) 

(a) Triangle t of low V,._ 1 and (b), if existent, its corresponding triangle ¢(t) of low Vm. 
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for each cell of  ( m - 1 ) - V ( P ) .  In the dual environment, this would mean 
constructing (the lower part of) a particular convex hull for each vertex of  
low Vm-~ and then putting these parts together to obtain low I'm. Step 2 above 
obtains low Vm directly by constructing only one convex hull, cony Vm, thus 
simplifying the main part of  the algorithm. 

3.2. Detailing the Steps 

Before detailing and formalizing the particular steps taken by the algorithm, a 
suitable scheme for storing conv Vm, i.e., a convex polyhedron C in E d+~, has 
to be specified. Two faces f and g of C are said to be incident iff their dimensions 
differ by one and either f ~  g or g ~ f .  For technical reasons, C and the empty 
set O are considered as a (d + 1)-face and a (-1)-face,  respectively, so that C is 
incident upon its facets and O is incident upon the vertices of C. Now the 
combinatorial structure of C is reflected by the incidence lattice I(C) of C. This 
involves storing a node for each j-face of C, for -1  <--j-< d + 1, and associating 
nodes of incident faces of  C via pointers. Storing the coordinates of  C's vertices 
determines the position of  C in E d÷t. The representation of  C by I(C) is 
appropriate for our purposes since I(C) can be computed from the output 
produced by the convex-hull algorithms in [8]-[10] in time proportional to the 
number of  faces of  C. Note that I(C) allows us to determine for each j-face f 
of  C the n' (j - 1)-faces and the n" (j + 1)-faces of C incident u p o n f  in O(n'+ n") 
time. 

According to Lemma 2 and the definition of  q(S), Step 2 of  the previously 
sketched algorithm requires the m-subsets set(e) for the edges e of  low Vm_~ for 
the computation of the vertices q(set(e)) E V,,. Space can be saved by employing 
the following implicit storing scheme rather than storing set (e) for each e 
explicitly. 

For one vertex I;o of  low Vm_,, its corresponding (m - 1)-subset So is stored 
explicitly. 

Each edge e of low Vm_l, incident upon vertices q(S) and q(S') say, is 
considered as directed from q(S) to q(S'). Together with e's direction we store 
the ordered pair pair(e)=(p',p) which is uniquely defined by S'= 
(S u {p'}) - {p}, p'  # p, according to Lemma l(ii). 

The algorithm now visits each triangle t of  low V,,-I. If  the sets set(ej) are 
not identical for the edges ei incident upon t then the vertices q(set(e~)) of the 
triangle z(t)  of  low V,, are computed and the edges ei of  ~'(t) get assigned pair(e~) 
as indicated in Lemma 2. 

After the construction of  cony Vm, we are left with the problem of  associating 
the remaining edges e' of  low Vm with pair(e'). To this end, let us study the 
similarities in the facial structure of (m - 1 ) -  V(P) and m - V(P). Observe that 
a cell cell(S) of  (m - 1) - V(P) in E d splits into parts of  cells cell(St) . . . .  , cell(St) 
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of m -  V(P) .  For each facet f incident upon cell(Si) (1-< i -  < r) whose relative 
interior intersects cell(S) there is a ( d - 2 ) - f a c e  g of cell(S) with gGf .  In the 
dual environment this is equivalent to vertex q(S)  of low Vm_t mapping to vertices 
q(S~) , . . . ,  q(S,)  of low Vm, and edges e dual to facets f being incident upon 
vertices q(Si) (I -< i -  < r) and defining the relative boundary A(S) of  a simplicial 
surface "~(S) on low Vm. By Lemma 2, pair(e) for each e in A(S) has already 
been computed since the (d -2 ) - f aces  g G cell(S)c~f occur in both diagrams 
(m - 1) - V(P)  and m - V(P) .  

To compute pair(e') for each edge e' in X'(S) = X(S) -  A(S) we observe that, 
if e' exists, it is incident upon two vertices q(Si), q(Sj) in A(S) (1-< i < j  < - r), 
since f ' =  cell(Si) n cell(Sj) is its dual facet. (Note that f ' ~  cell(S) is equivalent 
to e' in E'(S).) This implies that no vertex of X(S) is in X'(S), such that X(S) 
always contains some triangle incident upon edges el, e2 in A(S) and edge e' in 
X'(S). Therefore we can use the following. 

Observation. Let pair (e l )=(p~ ,p)  and pair(eE)=(p, p2). Then pa i r (d )=  
(P~,/)2) holds if et, e2, e' are considered as directed edges with e ' =  e~ + e 2. 

Splitting off X(S) all simplices for which e' was the only edge whose pair was 
not computed yields again a simplicial surface whose boundary edges have their 
pairs computed. This finally shows that all remaining edges e' of low Vm can be 
assigned pair(e') by means of  the observation above. 

3.3. The Algorithm 

Our investigations so far result in the more formal description below of the 
algorithm that computes the order-k Voronoi diagram k -  V(P)  of a finite set P 
of points in E d, for d -> 1. To aid the intuition, an edge e of low V,,_~ is referred 
to as a green (white, red) edge if pair(e) and q(set(e)) (only pair(e), neither 
pair(e) nor q(set(e))) have been computed. 

Algorithm. 

Step 1. 

1.1. 

1.2. 

1.3. 

CONSTRUCT DIAGRAM 

Compute V~ and construct low V1. 

Assign t/1 = {q({P})IP ~ P}, taking q({p}) = ( ~ , .  • •, ~d+~), for 
(~l . . . . .  ~d)=p and ~d+l =P: .  
Construct conv I/1 in E ~+~, using the algorithms in [8]-[10] for d = 1, 2, 
d -  3 and odd, d > 3 and even, respectively, such that conv VI is stored 
in I(conv VI). 
For each edge e of  low V~, set pair(e) = (p', p) if e is assigned the direction 
from q({p}) to q({p'}), and color e white, e belongs to low V1 iff e is 
contained in a facet of  conv V~ whose hyperplane bounds cony V~ below. 
For a particular vertex Oo = q({p}) of low V~, set So = {p} for its 1-subset 
So. In addition, let S T  be an initially empty stack. 
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Step 2. For m running from 2 to k do: Construct low V,.. 

2.1. Compute  V,,. Initially, V,, = O. Observe that each edge e of low Vm-t is 
white. Let eo be an edge incident upon (and directed toward) Vo and let 
to be a triangle incident upon eo. For pair(eo)= (p ' ,  p) we have set(eo)= 
Sou{p}.  Assign So=set(eo), q(So)=(~l , . . . ,~d,O) with (~:l . . . . .  ~d) = 
vo+p, Vo = q(So), and Vm = V,, u {Vo}. Color eo green and push to onto ST. 

While ST is nonempty do: Remove the first triangle t from ST. If  
necessary, reverse the order of  the pairs o f  t 's edges el,  e2, e3 such that 
they are directed as shown in Fig. 3(a). At least one edge, el say, is green 
so that q(set(et)) = (~:~ . . . . .  ~d+~) has been computed. 

For each white edge e~ of t do: I f  t's pairs are of  the form as in part 
(i) of  the proof  of  Lemma 2 then assign q(set(ei)) = q(set(e~)). Else we 
have pa i r (e l )=  (P3,P2) ,  pair(e2)= (p~ ,P3), and pair(e3)= (P2, P0.  Com- 
pute q(set(ei)) = (rh . . . .  , r/d+l) using ( r h , . . . ,  r/a) = (srl . . . . .  ~a)+pl -p ,  
and r/d+l = ~:a+l +P~--P~ (for r = 3 if i = 2 and r = 2, otherwise). Color e~ 
green and set Vm = I , ,  u {q(set(ei))}. For the edges ei of  low Vm directed 
from q(set(ej)) to q(set(e,)) do pair(e~)= (Pr, Pj) for 1-< i,j, r<-3. 

Push all triangles of  low V,,-1 which are incident upon el, e2, or e3 
and some white edge onto ST. 

2.2. Construct conv V,, (see Step 1.2). 
2.3. Calculate pair(e)  for each edge e of  low V,,. For each e do: I f  pair(e) 

has been assigned to e in Step 2.1 then color e white else color e red. 
Push all triangles of  low Vm which are incident upon exactly one red edge 
onto ST. 

While ST is nonempty do: Remove the first triangle z from ST. ~" is 
incident upon two white edges el,  e2 and one red edge e3. I f  necessary, 
change the pairs of  the e :s  such that their associated directions imply 
e 3 = e 1 + e 2 ,  For pair(el)  = (P l ,P )  and pair(e2) = (p, P2), set pair(e3) = 
(Pl ,  P2) and color e~ white. Push all triangles incident upon e3 and upon 
exactly one red edge onto ST. 

Step 3. Dualize low Vk to k -  V(P) in E d. 

3.1. Replace each j - face  in / ( low Vk) by a (d - j ) - f a c e ,  for j = - 1 , . . . ,  d + 1, 
which yields I ( k -  V(P)).  

3.2. For each vertex v of  k -  V(P) which arises from a d - f a c e f  of  low Vk do: 
Compute  the union Po of  all pair(e) over all edges e o f f  that are incident 
upon a fixed vertex. (Observe that IPol = d + 1.) v gets assigned the co- 
ordinates of  the center of  the unique sphere or in E d with P o e  tr. This 
completes the construction of k -  V(P). 

Theorem 2. Let size(d, k) and reg(d, k) denote the maximal number of faces and 
of cells o fk  - V(P) in E d, respectively, and let Td (r) be the time needed to construct 
the convex hull of r points in E d. Algorithm CONSTRUCT D I A G R A M  requires 

0 Te+l(reg(d, m)) time and O(size(d, k)) space. 
I 
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Proof. According to Theorem 1, the maximal number of faces of low V,, equals 
size(d, m) and, in particular, IV,.] = reg(d, m). Thus the individual steps of the 
algorithm have the following time complexity (d is considered as a constant): 

Step 1.1. O(reg(d, 1)). Obvious. 
Step 1.2. O( Td+l(reg( d, 1))). By definition. 
Step 1.3. O(size(d, 1)). Due to the properties of an incidence lattice. 
Step 2.1. O(size(d, m - 1)). Each triangle t of low Vm_l is pushed onto the 

stack at most once, and constant time suffices for finding and 
processing t. 

Step 2.2. O( Td÷~(reg(d, m))). By definition. 
Step 2.3. O(size(d, m)). By similar arguments as for Step 2.1. 
Step 3.1. O(size(d, k)). Obvious. 
Step 3.2. O(size(d, k)). Each vertex is calculated in O(d) time. 

Note that size(d, m) is a natural lower bound on Td+~(reg(d, m)). Hence the 
time complexity of the algorithm is dominated by Steps 1.2 and 2.2 which yields 
the above formula. 

The storage needed remains in O(size(d,k)), since the convex hull 
algorithms in [8]-[10] are space-optimal, the number of faces of cony Vk is in 
O(size(d, k)), and each face of cony Vk only is augmented with a constant 
amount of data. [] 

In the case d =2, where reg(2, k)<size(2, k) = O(k(]P]-k)) and T3(r)= 
O(r log r) hold (see [7] and [8], respectively), we obtain: 

Corollary. Algorithm CONSTRUCT DIAGRAM constructs the order-k 
Voronoi diagram k -  V(P) of a set P of n points in the plane in O(k2n log n) time 
and O(k(n - k)) space. 

In several applications of k -  V(P), the k-subset S of the k closest points in 
P for each cell cell(S) of k -  V(P) has to be available. In order to meet this 
requirement, the cell cell(So) which corresponds to vertex Vo of low Vk is associ- 
ated with So. For each facet f of k -  V(P), incident upon cell(S) and cell(S') 
say, the pointer in l (k  - V(P)) between cell(S) a n d f  (cell(S') and f )  is associated 
with pair(+e) (pair(-e)), if the edge +e of low Vk is directed from q(S) to q(S'). 
Since S '=  ( S u  {p'})-{p}, for pair(+e)= (p', p), the desired k-subsets can be 
calculated and assigned to their cells in O(k) time each, by scanning through 
the cells of k -  V(P) starting at cell(So). 

4. Discussion and Extensions 

The contributions of this paper fall into two parts: the geometric part establishes 
a duality between order-k Voronoi diagrams and convex hulls. This result, which 
is of independent interest, can be considered as a refinement of a result obtained 
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by the author in [2] using quite different techniques, which concerns a more 
general class of Voronoi diagrams called power diagrams. Using this geometric 
background, a new algorithm for constructing k -  V(P) for a set P of  n points 
in E a is proposed and worked out in detail. The method is space-optimal for 
any d and (like Lee's [7] algorithm) provides the most time-efficient solution in 
E 2 for k < x/-n/log n. (This seems to include the most interesting values of k since 
k often is considered as a constant in practice.) However, our method is somewhat 
simpler than the one in [7] since each of its iterative steps computes only one 
convex hull rather than computing various particular order-1 Voronoi diagrams 
(using the divide-and-conquer scheme of [11]). Our algorithm is a direct, but 
nevertheless nontrivial, generalization to order k of  the algorithm in [3] which 
computes 1 - V(P) in E ~ via a convex hull in E d+l. Note that if the points in 
P are given in integer coordinates then only convex hulls of  points with integer 
coordinates have to be determined. 

Our duality result applies particularly well to the construction of k -  V(P) if 
k -< d. In this case the set Vk of  vertices of  low Qk can be derived directly from 
1 - V(P) using the lemma below rather than iteratively employing Lemma 2. 

Lemma 3. Let S be a k-subset of P for 1 <- k <- d. q( S) is in Vk iff f = f'-~p~S cell({p}) 
is a ( d - k + l ) - f a c e  of  1 -  V(P). 

Proof. By Theorem 1, q(S)~ Vk means that cell(S) in k -  V(P) has dimension 
d. That is, there exists a sphere a in E d with S ~ i n t  or and P - S ~ e x t t r  (by 
definition of k - V ( P ) ) .  Since ISl-< d, the latter is equivalent to the existence 
of a sphere or', centered at x say, with S ~ or' and P - S  ~ ext o~'. But this is 
necessary and sufficient for x to lie in the relative interior of  the (d - k ÷  1)-face 
f of  1 - V(P). [] 

Note that the k-subsets S and S' that correspond to two ( d -  k +  1)-faces of  
1 - V ( P )  incident upon a common ( d - k ) - f a c e  are of  the form S ' =  
( Su{p} ) - {p ' } .  Thus Vk, for 1--< k -  < d, can be calculated in a straightforward 
manner  by scanning through the ( d -  k +  1)-faces of  1 -  V(P). 

As an open problem we state the direct calculation of all k-subsets of  P with 
a nondegenerate cell in k -  V(P), for general k. (The problem is clearly settled 
for k - -  d by Lemma 3. However,  it is not likely that methods similar to the one 
used in its proof  carry over to the case k >  d.) By virtue of  the results in this 
paper,  a solution requiring O ( k ( n -  k)log n) time for P G  E 2 would imply the 
first known optimal algorithm for constructing k -  V(P) in E 2. 

It is worth mentioning that our construction strategies can be applied to the 
more general class of  order-k power diagrams for n spheres in E d (if each sphere 
has associated a nonempty cell in the order- 1 power diagram; see [ 1 ] for properties 
of  power diagrams). Moreover, each order-k power diagram is the order-(n - k) 
power diagram for some set of  spheres, so that we can efficiently construct the 
latter diagram for small k, starting with order n - 1. 
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