
A new dynamic approach for statistical optimization of GNSS radio

occultation bending angles for optimal climate monitoring utility

Y. Li,1 G. Kirchengast,2 B. Scherllin-Pirscher,2 S. Wu,1 M. Schwaerz,2 J. Fritzer,2

S. Zhang,1 B. A. Carter,1 and K. Zhang1

Received 18 August 2013; revised 30 October 2013; accepted 7 November 2013; published 10 December 2013.

[1] Global Navigation Satellite System (GNSS)-based radio occultation (RO) is a satellite
remote sensing technique providing accurate profiles of the Earth’s atmosphere for weather
and climate applications. Above about 30 km altitude, however, statistical optimization is a
critical process for initializing the RO bending angles in order to optimize the climate
monitoring utility of the retrieved atmospheric profiles. Here we introduce an advanced
dynamic statistical optimization algorithm, which uses bending angles from multiple days of
European Centre for Medium-range Weather Forecasts (ECMWF) short-range forecast and
analysis fields, together with averaged-observed bending angles, to obtain background
profiles and associated error covariance matrices with geographically varying background
uncertainty estimates on a daily updated basis. The new algorithm is evaluated against the
existing Wegener Center Occultation Processing System version 5.4 (OPSv5.4) algorithm,
using several days of simulated MetOp and observed CHAMP and COSMIC data, for
January and July conditions. We find the following for the new method’s performance
compared to OPSv5.4: 1.) it significantly reduces random errors (standard deviations), down
to about half their size, and leaves less or about equal residual systematic errors (biases) in the
optimized bending angles; 2.) the dynamic (daily) estimate of the background error
correlation matrix alone already improves the optimized bending angles; 3.) the subsequently
retrieved refractivity profiles and atmospheric (temperature) profiles benefit by improved error
characteristics, especially above about 30 km. Based on these encouraging results, we work to
employ similar dynamic error covariance estimation also for the observed bending angles and
to apply the method to full months and subsequently to entire climate data records.
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1. Introduction

[2] Global Navigation Satellite System (GNSS) radio occul-
tation (RO) is a satellite remote sensing technique to observe
the properties of the Earth’s atmosphere [Kursinski et al.,
1997; Steiner et al., 2001; Hajj et al., 2002]. This technique
uses specially designed GNSS receivers aboard Low Earth
Orbit (LEO) satellites to receive GNSS signals. So far, only
GNSS signals from the U.S. Global Positioning System
(GPS) have been used. Signals from other satellite navigation
systems like the European Galileo or the Russian Global

Navigation Satellite System (GLONASS) are proposed to be
used in near future. Due to the inhomogeneity of atmospheric
density, and hence of the refractive index, GPS signals are bent
during their propagation through the atmosphere. The bending
angles can be calculated and used to derive atmospheric pro-
files such as of refractivity and temperature.
[3] Since the 1990s, a number of LEOmissions have been car-

ried out to perform GPS RO measurements, such as GPS/MET
[Kursinski et al., 1996;Ware et al., 1996; Hocke, 1997; Rocken
et al., 1997; Steiner et al., 1999], CHAllenging Minisatellite
Payload (CHAMP) [Wickert et al., 2001, 2004], Constellation
Observing System for Meteorology, Ionosphere, and Climate
(COSMIC) [Anthes et al., 2008], and the Meteorological
Operational (MetOp) satellite program [Luntama et al., 2008;
von Engeln et al., 2009]. Apart from these existing missions,
many other missions, e.g., COSMIC-2, are proposed to be
launched during the coming years. All these missions can and
will provide high-quality atmospheric profiles contributing to
continuous long-term RO records.
[4] The RO technique exhibits several beneficial characteris-

tics: First, its measurements are self-calibrating and long-term
stable, which makes data from multiple RO satellites highly
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consistent [Hajj et al., 2004; Schreiner et al., 2007; Foelsche
et al., 2009; Foelsche et al., 2011]. Second, RO measurements
can be performed under essentially all-weather conditions and
they are available globally. Furthermore, the retrieved atmo-
spheric profiles have a high accuracy and a high vertical reso-
lution in the upper troposphere and lower stratosphere region
[e.g., Kursinski et al., 1997; von Engeln et al., 2003].
[5] Due to the above mentioned characteristics, RO data

have been used to study the Earth’s weather and climate. For
example, RO data have been used for studying atmospheric
dynamics, performing climate monitoring and analyzing trend
detection [see Anthes, 2011; Steiner et al., 2011; for reviews].
It has also been demonstrated that the assimilation of RO data
in numerical weather prediction (NWP) systems can signifi-
cantly improve the quality of the forecast products, especially
in the polar and oceanic regions [e.g., Healy and Eyre, 2000;
Healy and Thépaut, 2006; Cucurull and Derber, 2008; Le
Marshall et al., 2010]. In addition, RO data have been success-
fully used for space weather research [see, e.g., Yue et al.,
2010; Anthes, 2011; Carter et al., 2013].
[6] Though the RO technique has been quite successful, the

quality of the retrieved bending angles decreases above about
30 km due to the effects of residual ionospheric errors [Bassiri
and Hajj, 1993; Vorob’ev and Krasil’nikova, 1994; Ladreiter
and Kirchengast, 1996; Syndergaard, 2000; Rocken et al.,
2009; Mannucci et al., 2011; Danzer et al., 2013; Liu et al.,
2013] and of other remaining observational errors [Kursinski
et al., 1997; Steiner and Kirchengast, 2005; Scherllin-
Pirscher et al., 2011a]. These errors in bending angle profiles
are propagated to refractivity profiles through an Abel integral
and are further propagated to other atmospheric profiles through
the hydrostatic integral [Rieder and Kirchengast, 2001; Steiner
and Kirchengast, 2005]. It is therefore important to carefully
initialize the bending angles at high altitudes to minimize these
error propagation effects and thereby optimize the climate mon-
itoring utility of the retrieved profiles. Statistical optimization is
a commonly used method for this purpose, it combines ob-
served and background bending angles, inversely weighted by
their error (co)variance estimates, to determine optimized bend-
ing angles [seeHo et al., 2012; Steiner et al., 2013; for an over-
view on current optimization schemes].
[7] In this study, a new dynamic statistical optimization

approach for obtaining better optimized bending angle profiles
is presented. Section 2 first briefly reviews existing statistical
optimization algorithms and then presents our new approach;
section 3 presents and evaluates the results from the new
approach, and conclusions are given in section 4.

2. Statistical Optimization

2.1. Existing Algorithms

[8] Statistical optimization was first introduced for RO data
processing by Sokolovskiy and Hunt [1996]. This method uses
the weighted average of observed bending angles and back-
ground bending angles to determine the optimal bending
angles, where the weights of the two types of bending angles
are determined by their error covariance matrices or by
approximations to it (e.g., from ignoring error correlations).
The general picture is as follows [e.g., Healy, 2001; Rieder
and Kirchengast, 2001; Gobiet et al., 2007]: At high altitudes
in the mesosphere (above about 60 km), the background errors
are smaller than the observation errors; thus, the background

bending angle contributes more to the optimized bending
angle. With decreasing altitude, the background error
increases while the observation error stays roughly constant,
so that the optimized bending angles smoothly transit from
being more weighted toward the background bending angles
to being more weighted toward the observed bending angles.
In the range below about 40 km, the observed bending angle
dominates in the optimized bending angle, due to the higher
quality of the observed bending angle.
[9] Given an unbiased background bending angle profile

and observed bending angle profile αb and αo, respectively,
and their error covariance matrices Cb and Co, the statisti-
cally optimized bending angle profile αSO can be calculated
by [Healy, 2001; Gobiet and Kirchengast, 2004]:

αSO ¼ αb þ Cb Cb þ Coð Þ�1� αo � αbð Þ: (1)

This method is a generalized least squares approach [Rodgers,
1976, 2000], weighting the bending angles by their inverse
covariances. As an illustrative and typical example, the back-
ground bending angles can be obtained from a climatological
model such as the Mass Spectrometer and Incoherent Scatter
Radar (MSIS) model [Hedin, 1991], and the background error
covariance matrix by guessing a typical relative standard error
of the model and a simple error correlation structure like
exponential falloff over about an atmospheric scale height
[e.g., Healy, 2001] or just disregarding correlations [e.g.,
Sokolovskiy and Hunt, 1996; Hocke, 1997]. Similarly, the
observation error covariance matrix can be formulated from
estimating the observation error at mesospheric altitudes
(where the signal is small as noted above) and guessing sim-
ple error correlations [e.g., Gobiet and Kirchengast, 2004;
Gobiet et al., 2007] or again just ignoring the latter.
[10] The main difficulty of effective statistical optimization

is to obtain an accurate error covariance formulation for the
background bending angles since this is neither supplied
together with common (climatological) models nor is its
construction a straightforward task. As a result, Sokolovskiy
and Hunt [1996] calculated the statistically optimized bending
angles in that pioneering work by neglecting the vertical
correlations among the background errors and among the
observation errors. Equation (1) can be expressed in this case
as an equation of inverse variance weighting,

αSO; i ¼ αb; i þ
σ2b; i

σ2b; i þ σ2o; i
αo; i � αb; i
� �

; (2)

where σb,i and σo,i are the standard deviations of the back-
ground bending angle and the observed bending angle at
the ith impact altitude level, respectively. σb is estimated as
a fixed fraction of αb and σo is empirically estimated as a
constant value at mesospheric altitudes, in line with the illus-
trative example described above.
[11] An alternative approach was adopted by Hocke [1997]

and Steiner et al. [1999] for the purpose of down-weighting out-
liers and smoothing the obtained optimized bending angles at
high altitudes:

αSO; i ¼ αb; i þ
σb; i

σb; i þ σo; i
αo; i � αb; i
� �

: (3)

This was found effective for the purpose, but from the
viewpoint of unbiased optimal estimation it can be argued
that this approach overweighs the background bending angle
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if the background error is larger than the observation error,
and it also overweighs the observed bending angle if the
observation error dominates [Healy, 2001].
[12] Healy [2001] and Rieder and Kirchengast [2001] were

the first to suggest and demonstrate the value of using full error
covariance matrices for RO statistical optimization, consider-
ing this carefully in the framework of optimal estimation
methodology [Rodgers, 2000]. We summarize the Healy
[2001] formulation here, which focuses on bending angles.
As above, the background standard deviations are assumed
to be a fixed fraction of the background bending angles and
the observation standard deviations are empirically estimated
as a constant; however, the correlations are no longer ignored.
The background error correlations were expressed by a corre-
lation function of Gaussian shape with a correlation length of
6 km, reflecting the atmospheric scale height. The observation
errors were assumed uncorrelated or correlated with a small
correlation length (about 1 km, also using a Gaussian shape
for the correlation functions). Adopting this, each element of
the background error covariance Cb is formulated as

Cb;ij ¼ σb;iσb; j exp �
ai � aj
� �2

L2

 !

; (4)

where ai and aj are the impact parameters at height indices i
and j, and L is the background error correlation length. The
formulation of the observation error covariance matrix Co

is the same as the formulation ofCb, but with σo and a shorter
correlation length.
[13] Healy [2001] demonstrated that the background error

correlation is important and helpful for smoothing the opti-
mized bending angle profile while keeping it unbiased at
the same time. If the background error correlations are
neglected, the optimized profile is bounded by the observed
and the background profile at each impact altitude level and
takes the noisy shape of the observed profile. Regarding the
shape of the correlation functions, it subsequently became
clear that exponential falloff is of numerical advantage over
Gaussian shape, since the former leads to error covariance
matrices that are robustly invertible while the inversion of
the latter is readily unstable, except if the Gaussian is approx-
imated by a suitable polynomial fit [Steiner and Kirchengast,
2005; section 6 therein].
[14] Gorbunov [2002] introduced an algorithm combining

ionospheric correction and statistical optimization. Briefly,
this method dynamically estimates signal and noise covari-
ances at individual impact altitude levels; vertical error
correlations are not accounted for. The signal covariance is
estimated from the differences between the observed bending
angle and background bending angle in a height range where
the neutral atmospheric signal prevails (i.e., lower strato-
sphere). The noise covariance is estimated from the bending
angles at the two GPS frequencies in the height range where
ionospheric signals prevail (i.e., mesosphere). With the
estimated signal and ionospheric observation covariances,
the neutral atmospheric bending angle (statistically optimized
bending angle in our context) could then be optimally
estimated and used for the calculation of refractivity. The
current retrieval at the RO processing center at Danish
Meteorological Institute (DMI) is employing this Gorbunov
[2002] approach as part of its statistical optimization
[Lauritsen et al., 2011; Ho et al., 2012].

[15] Lohmann [2005] showed that if both observed and
background errors were estimated dynamically and the verti-
cal correlation was neglected, the two types of errors are not
damped equally when using the Abel transform to calculate
refractivity. To mitigate this problem, Lohmann [2005]
adjusted the magnitude of the two types of errors using a
scaling factor estimated from calculated error correlation
lengths of the two types of errors. The current retrieval of
the University Corporation for Atmospheric Research
(UCAR) RO processing center is employing this Lohmann
[2005] approach as part of its statistical optimization [Ho
et al., 2012].
[16] Gobiet and Kirchengast [2002] followed the Healy

[2001] and Rieder and Kirchengast [2001] approach of using
a full error covariance matrix for the statistical optimization.
Instead of using a Gaussian-shape function an exponential
falloff function was used to estimate the error correlation
for both background and observed bending angles. They also
used a search for that background bending angle profile in the
MSIS model space that best fits the observed profile over the
stratopause region. Gobiet and Kirchengast [2004] updated
this algorithm by performing an additional bias correction
to the background bending angle profile before the statistical
optimization, aiming at further minimizing residual biases in
the optimized bending angle profile under adverse conditions
such as during high-latitude winter. Another improvement by
Gobiet et al. [2007] introduced the use of background pro-
files from European Centre for Medium-range Weather
Forecast (ECMWF) fields rather than from the MSIS model
(avoiding also the additional bias correction noted above).
[17] The Wegener Center for Climate and Global Change

(WEGC) Occultation Processing System version 5.4 (OPSv5.4)
[Pirscher, 2010; Ho et al., 2012; Steiner et al., 2013], which
is used as reference system for this study, uses colocated
bending angle profiles extracted from ECMWF short-range
(24 h/30 h) forecast fields as background profiles. Its statistical
optimization is otherwise following Gobiet et al. [2007], as
recently summarized by Ho et al. [2012]. The ECMWF
forecast fields are used at horizontal resolution T42 (spectral
representation with triangular truncation at wave number 42),
corresponding to about 300 km, for roughly matching the
horizontal resolution of RO data. We use this OPSv5.4
algorithm as evaluation reference, since it is amongst the major
RO processing centers currently the only one employing
statistical optimization with full covariance matrices [cf. algo-
rithm descriptions by Ho et al., 2012] and since recent
intercomparison results indicate that this is a performance
advantage above about 20 km [Ho et al., 2012; Steiner et al.,
2013]. We therefore consider that we compare to a current
state-of-the-art algorithm so that any evidence of further
improvement that we may find is expected to improve also
other existing algorithms.
[18] Recently, Ao et al. [2012] and Gleisner and Healy

[2013] introduced an alternative high altitude initialization
method that can be used for preparing refractivity and
atmospheric profile climatologies without first retrieving
individual profiles that require statistical optimization with
background profiles. The method first produces averaged-
observed bending angle profiles to effectivelymitigate random
noise at high altitudes, that is climatological bending angle
profiles are first generated, from which climatological refrac-
tivity and atmospheric profiles can then be retrieved without
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further initialization. The relative quality of these climatol-
ogies, compared to climatologies averaged from individual-
profile retrievals that included initialization by statistical
optimization, will depend on the data quality (i.e., will be
different for different RO receivers such as on CHAMP,
COSMIC, and MetOp-A), the suitability of the data quality-
control and averaging scheme used, and the space-time-
averaging domain trade-offs involved. Moreover, it will depend
on the quality of the background profiles and the performance
of the statistical optimization scheme used for the individual-
profile retrievals providing the comparative results.
[19] The new dynamic optimization approach that we

introduce in this study does not look at these two avenues
as a competition but rather exploits their synergy and
combines them: averaged-observed bending angle profiles
are integral part of background bending angle estimation
and their weight in resulting background profiles will depend
on the uncertainties estimated for these averaged-observed
profiles relative to those estimated for averaged-analysis
profiles determined from ECMWF fields. The approach is
described in detail in the following subsections.

2.2. The New Dynamic Approach

[20] As can be seen from equation (1), the critical part for
effective statistical optimization is to obtain accurate back-
ground profiles and associated background error covariance
matrices, alongside with adequate observation error covari-
ance matrices. Due to the high correlation amongst the
background errors at different heights, neglecting this
correlation or using just a crude formulation of background
error covariance matrices will degrade the quality of the
optimized bending angles [Healy, 2001]. The existing
schemes summarized above share this weakness of crude
formulation. Therefore, the main focus of this study is to
introduce a new dynamic method for obtaining more
adequate background bending angles and error covariance
matrices, based on ensembles of background bending angle
profiles extracted from ECMWF short-range forecast and
analysis fields as well as of observed bending angle profiles.
Including dynamic estimation also of observation error
covariance matrices similar to the background ones here is
left as part of a follow-on study that also evaluates the new
approach on large (full month) data sets. The primary
advance is expected to come from the improved background
formulation introduced here.
[21] Figure 1 illustrates the algorithmic steps of the new

method, sequentially including the three major steps of 1)
constructing the basic daily background fields for any day
to be processed, 2) preparing the derived daily background
fields with the specific statistical quantities directly needed
for the statistical optimization, and 3) performing the actual
dynamic statistical optimization for all RO events of any
given day. We describe the method along this three-step
sequence, explaining along the way also the component tasks
indicated in Figure 1.
2.2.1. Construction of Basic Daily Background Fields

[22] In order to suitably capture the large-scale background
error dynamics as a function of latitude, longitude, (impact)
altitude, and time, we prepare once-daily fields of all basic back-
ground variables needed, globally at a 10° latitude× 20° longi-
tude grid (center of base cell/anchor gridpoint at 5°N, 10°E), at

200 representative (impact) altitude levels from 0.1 km to
80 km. This yields daily fields at a global 18×18×200 grid.
[23] The basic statistical variables that are needed for the

dynamic method in form of such gridded fields—which we
prepared into daily data files for easy use for processing all
RO events of a day—include: (i) the mean analysis bending
angle from the ensemble of analysis values for any grid point
(i.e., any of the 200 levels in each of the 18 × 18 cells) αa, (ii)
the analysis spread (standard deviation of the ensemble of
analysis values) against this mean sa, (iii) the estimated bias
(systematic uncertainty) of this mean ba, (iv) the mean fore-
cast bending angle αf , (v) the standard deviation of the fore-
cast values against this mean sf, (vi) the standard deviation of
the forecast-minus-analysis difference profiles for any grid
point sf - a, (vii) the number of values in the analysis and the
forecast ensemble for any grid point Na,f, (viii) the error cor-
relation matrix (200 × 200 correlation values) estimated from
the forecast-minus-analysis difference profiles over the entire
globe Rf - a, (ix) the mean observed bending angle from the
ensemble of observed values for any grid point αo , (x) the
standard deviation of the observed values against this mean
so, (xi) the estimated bias (systematic uncertainty) of this
mean bo, (xii) the mean colocated bending angle αc , (xiii)
the standard deviation of the colocated values against this
mean sc, and (xiv) the number of values in the observed
and the colocated ensemble for any grid point No,c.
[24] In constructing these basic variables on the daily

18 × 18 × 200 grids, we apply time-averaging over at least
five days (from two days before to two days after the day of
interest) and horizontal-averaging over geographic domains
of at least 1000 km× 1000 km size (over 10° lat × 20° lon
cells out to 60°S/60°N latitude, poleward over larger longi-
tude ranges of 25° from 60° to 70°, 40° from 70° to 80°,
90° from 80° to 90° latitude); only the daily background error
correlation matrix is constructed from horizontal-averaging
over the entire globe (yielding a robust estimation of the
200 × 200 correlation values, i.e., of the 200 vertical correla-
tion functions of all 200 altitude levels).
[25] This construction approach, and the degree of averag-

ing applied, was proven by extensive sensitivity tests with
different time- and space averages (more and less days, larger
and smaller horizontal domains, etc.) and found to be just
adequate so that the variables in the resulting fields have
essentially averaged-out all weather variability (at scales of
up to several days and including all mesoscale-sized systems)
but still neatly trace all weekly to climate-scale variations and
large-scale geographic variation patterns. The sensitivity
tests also proved that the averaging is robust (sufficiently
large number of ensemble members in the average) and not
sensitive to the exact choices of time period and geographic
size as long as at least about 5 days and 1000 km scale sizes
are utilized (e.g., 5 days to 7 days and 1000 km to 2000 km
horizontal scale sizes not making much difference; if options
of even stronger averaging are used, like up to monthly
means, some important weekly scale structures, like from
sudden stratospheric warming events as an arbitrary exam-
ple, are no longer traced by the estimated mean fields). In
other words, the averaging decides on the trade-off between
what is considered mean-field variation, which should be
dynamically traced by the background error formulation to
enable to be as unbiased as possible in a statistical sense,
and what is considered weather variability, the quasi-random
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variation of individual RO profiles in the sense of a spread, or
standard deviation around the mean.
[26] We used ECMWF analysis fields and corresponding

24 h-forecast fields at T42L91 resolution (about 2.8° lat × 2.8°
lon, 91 hybrid-pressure vertical levels up to about 80 km), at
00 UTC and 12 UTC each day, as the basis to construct the
18× 18× 200 gridded fields of analysis and forecast variables.
On the observation side, we used observed RO bending angle
profiles mainly from Formosat-3/COSMIC that were obtained
from Wegener Center OPSv5.4 processing on the basis of
excess phase and orbit data obtained from UCAR/CDAAC.
These OPSv5.4 RO profiles come with colocated ECMWF
analysis profiles that we also co-use here for estimating and
taking into account the sampling error [Scherllin-Pirscher
et al., 2011b]. The approach is generic, however, and any
other source of analysis and short-range forecast fields
and observed bending angle profiles could be used as well.
We chose ECMWF and WEGC-OPS for their proven
track records of data sets of leading quality [e.g., Untch
et al., 2006; Scherllin-Pirscher et al., 2011a, 2011b;
Ho et al., 2009, 2012; Steiner et al., 2013]. As an alternative
to the ECMWF operational fields, we also consider the use

of the analysis and forecast fields from the ERA-Interim
reprocessing [Simmons et al., 2007; Dee et al., 2011].
[27] The 200 level vertical grid was defined to safely

accommodate different analysis/forecast level schemes up
to fine ones, such as ECMWF’s level schemes from L60
(before February 2006) to L137 (from June 2013), but still
keeping the level number reasonably small for the sake of
efficient data storage, considering these daily grid fields will
be needed over years of climate data processing. Practically,
the level spacing that we found useful and therefore adopted
is: 100m below 1 km, then linearly increasing from 100m at
1 km to 600m near 60 km, furthermore to 1000m at 70 km,
then kept constant at 1000m up to 80 km.
[28] The fundamental ensemble of bending angle profiles

for statistically computing all the analysis and forecast vari-
ables for each of the 18 × 18 cells was extracted from the
ECMWF T42L91 fields on a 2.5° × 2.5° native grid, for the
10 UTC time layers of five days, and at the 200 target levels.
This yields an ensemble of many hundreds of profiles per cell
(and many thousands globally for the correlation matrix),
which allows robust estimates of the statistical variables.
The GCM Atmosphere Model (GCMAtm) of the Wegener

Figure 1. Schematic illustration of the algorithmic steps of the new statistical optimization approach; for
description see section 2.2.
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Center OPS software was used for this purpose. The bending
angle is derived in the GCMAtm by forward Abelian
transformation from refractivity which in turn is derived
from the variables pressure, temperature, and humidity by
Smith-Weintraub’s refractivity equation.
[29] The ensemble of observed bending angle profiles, and

of their colocated analysis profiles, is simply adopted to
consist of all RO events that fall into each cell over the five
days, which typically leads to approximately 40 RO events
per cell. In general, should observed-profile ensemble sizes
be considered too small, for example during time periods
before mid-2006 where mainly the CHAMP satellite
provided RO data, the averaging domain can be enlarged
(primarily along longitude, secondarily in the number of
days). More details of how the statistical variables were
computed are separately described in section 2.3.
2.2.2. Preparation of Derived Daily Background Fields
[30] Using the basic background fields—read in from the

applicable daily data file before processing the RO events
of a day—we prepared those specific statistical quantities
on the 18 × 18 × 200 grid that are directly needed in the statis-
tical optimization processing of the RO events of the day.
These include (i) the forecast-minus-analysis standard devia-
tion sf - a, which represents the estimated random uncertainty
of the 24 h-forecasts and can be adopted as is, (ii) the mean
background bending angleαb, which is an optimally estimated
combination of αa and αo and where we actually use the dif-
ference of the forecast mean to the background mean Δαf-b,
and (iii) the estimated combined standard uncertainty of the
background mean ub, respectively.
[31] The background meanαb, its associated uncertainty ub,

and the forecast-minus-background mean difference Δαf-b
are computed using standard equations for variance-based
uncertainty propagation and for inverse-variance weighting
as follows,

αb ¼
u2o

u2o þ u2a
αa þ

u2a
u2a þ u2o

αo � αc � αað Þ½ �; (5)

ub ¼
u2au

2
o

u2a þ u2o

� � 1=2

; (6)

Δαf-b ¼ αf � αb; (7)

where

ua ¼ b2a þ s2a=N a;f

� �� � 1=2
(8)

and

uo ¼ b2o þ s2o=No;c

� �

þ r2resSE αc � αað Þ2
h i 1=2

(9)

are the estimated combined standard uncertainties of the
mean analysis bending angle and the mean observed bending
angle, respectively. The third term on the right-hand side of
equation (9) is the residual sampling error estimate for the
RO observations [Scherllin-Pirscher et al., 2011b], where
we set the reduction factor rresSE to 0.3 following the (conser-
vative) empirical estimate by Scherllin-Pirscher et al.
[2011b]. Due to the large ensembles with fairly high numbers
of profiles per grid cell, the bias terms (ba and bo terms)

generally dominate in equations (8) and (9) so that the
resulting background mean uncertainty ub (equation (6))
represents essentially a bias-type (systematic) uncertainty.
Further discussion of these estimates follows in section 3.
[32] Equations (5) to (9) are applied grid point wise to the

entire 18 × 18 × 200 grid so that the quantities needed for
the statistical optimization, Δαf-b, ub, and sf - a, are conve-
niently available in form of this global grid for interpolation
to any RO event location occurring during the day.
[33] Completing this once-daily preparation of variables,

the error correlation matrix of the day, Rf - a, is interpolated
from its 200-level formulation to the target vertical grid of
the statistical optimization. For the latter, we chose a 200m
equidistant grid, with 400 levels from 0.2 km to 80 km, so
that this yields a correlation matrix with up to 400 × 400
values (in this study, we apply statistical optimization down
to 30 km only, corresponding to 251 × 251 values). We
performed the interpolation linearly along the diagonal and
parallels to the diagonal (at the top and bottom boundaries
linearly along the boundaries) in order to accurately conserve
the shape of the matrix. The resulting matrix Rocc

f-a is robustly
invertible and can now be used for all RO events of the day;
further details are given in section 2.3.
2.2.3. The Dynamic Statistical Optimization
[34] For each occultation event k, assuming k=1,…,Nocc be-

ing sequentially numbered RO events of the day, we first deter-

mine the colocated profilesΔαkf-b,u
k
b, ands

k
f-a from the respective

grids Δαf-b, ub, and sf - a by bilinear latitude/longitude interpola-
tion to the RO event location and linear vertical interpolation to
the (200m spacing, 400 level) target grid of the statistical optimi-
zation. We also employ the correlation matrix Rocc

f-a = Rocc
f-a;ij for

each event k, to represent its background error correlations.
[35] Adopting now the general optimal estimation scheme

of equation (1), we cast the computation of the statistically

optimized bending angle αkSO into the form

αkSO ¼ αkb þ Ck
b Ck

b þ Ck
o

� ��1
� αko � αkb
� �

; (10)

where

αkb ¼ αkf � Δαkf-b (11)

is the colocated background bending angle, computed by
subtracting the forecast-minus-background mean difference
Δαkf-b from the colocated forecast bending angle αkf in order
to effectively reduce the residual bias in αkb to within the esti-
mated uncertainty of the background mean ukb (otherwise, as
in the existing OPSv5.4 scheme, potential biases in αkf would
survive). The background error covariance matrixCk

b =C
k
b;ij is

formulated as

Ck
b;ij ¼ uoccb;i �u

occ
b;j �R

occ
f-a;ij; (12)

where the combined standard uncertainty profile uoccb , deter-
mining the diagonal variances (uoccb;i �u

occ
b;i �1) and the off-diago-

nal covariance elements of Ck
b, is estimated as

uoccb ¼ f bcvg�u
k
b

� 	2

þ skf-a
� �2

� � 1=2

: (13)

[36] Herein we employ the bias coverage factor fbcvg
to strongly penalize the estimated bias-type uncertainty ukb
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(cf. equations (5) to (9)) relative to the estimated random un-

certaintyskf-a, in order to minimize the influence from potential
residual background biases on the resulting optimized profile

αkSO (in this study fbcvg = 5, for more discussion see section 3).

The bending angle observation error covariance matrix,Ck
o, is

modeled in this study in the same way as in the existing
OPSv5.4 scheme [Ho et al., 2012; Steiner et al., 2013]. A
brief summary of the formulation is given in subsection 2.4;

advancing it in a similar way as Ck
b is part of ongoing work.

The observed bending angle itself, αko , is as well used as
provided by the OPSv5.4 bending angle retrieval.
[37] Taking an overall look at this new dynamic scheme,

we may summarize the following key advancements over
existing schemes: 1) we use a 3D- and time-dependent
formulation of all key statistical variables needed in the for-

mulation of Ck
b, based on reliable ensembles of atmospheric

ECMWF forecast and analysis profiles as well as of observed
RO profiles, while existing formulations use globally static
relative errors and either climatologies (still most common;
see section 2.1) or forecasts (OPSv5.4), or observations
(climatological profile retrievals only; see section 2.1); 2)

we use a bias estimate Δαkf-b , allowing to reduce the bias in

the colocated background profile αkb, while existing schemes

use no such bias mitigation measure; 3) we use estimates of

background bias uncertainty ukb and random uncertainty skf-a ,

and penalize ukb against skf-a to minimize bias influence on

αkSO, while existing schemes use globally static relative back-
ground errors (see section 2.1); 4) we use daily updated realis-
tic empirical estimates of background error correlations, Rocc

f-a,
while existing schemes either ignore these correlations or use
crude (exponential) falloff models not representing realistic
correlation shapes.
[38] Furthermore, equations (6), (8), and (9) show that the

dynamic method is flexible in a seamless manner to either in-
clude (αa, ua) or (αo, uo) or both of them in the formulation of
background bias estimation (Δαf-b , ub), so that users of the
method can readily decide what to include according to their
context and preferences. Also, the grid definition, and the
space- and time-averaging domains per grid cell, can be flex-
ibly adjusted by users. Based on all these advantages, we ex-
pect the new method to outperform existing schemes; section
3 provides intercomparisons to the OPSv5.4 scheme.

2.3. Estimation of the Variables for the Background
Error Covariance Matrix

[39] This subsection complements the above introduction of
the new method by providing more details on the computation

of the key variables for constructing Ck
b, discussing 1) the es-

timation of the analysis- and forecast-related variables αa , sa,
αf , sf, sf - a, and Rf - a, 2) the estimation of the analysis bias ba,
and 3) the estimation of the observation-related variables
αo, so, bo, and of their associated colocated variables αc and sc.
2.3.1. EstimationofAnalysis- andForecast-RelatedVariables
[40] The first step is to extract the analysis and forecast

bending angle profiles from the respective ECMWF
T42L91 fields on a regular 2.5° × 2.5° horizontal grid, which
is comparable to the horizontal resolution of the ECMWF
T42 fields. We used 10° latitude × 20° longitude cells (more
longitude extent poleward of 60°, compensating for the
meridian convergence) and five days of ECMWF data

(containing 10 time layers, five each 00 UTC and 12 UTC),
as summarized in section 2.2.
[41] As a result, in each of the 10° × 20° cells, there are 320

analysis profiles and 320 forecast profiles (more poleward of
60°) that were used to calculate the mean profiles, αa and αf ,
and their standard deviations, sa and sf, using standard esti-
mation equations [e.g., Steiner and Kirchengast, 2004]. The
calculations of sf - a and Rf - a for each cell use the differences
between the forecast and analysis bending angles of all the
320 pairs of profiles, also following standard estimation
equations [Steiner and Kirchengast, 2004].
[42] The global-mean correlation matrix Rf - a is finally cal-

culated by averaging the individual correlation matrices of all
10° × 20° cells. While the individual matrices per cell appear
still noisy in shape, this global averaging effectively draws
from an ensemble of more than 100,000 native profiles
(320×18×18), providing a very robust estimation. Based on
our extensive testing, we found that the correlation lengths of
main peaks and the shape of the correlation functions depend
little on latitude and longitude so the averaging is well justified.
As seen in equations (12) and (13), we then useRf - a as the cor-

relation matrix for the full matrix Ck
b , including both the bias-

type uncertainty ukb and the random uncertainty skf-a , although

by constructionRf - a only represents the correlation of the errors

expressed by skf-a. While one could include some rough guess
of long-range correlation also for the bias-type errors expressed

by ukb , which are dominated by the analysis and observation

biases ba and bo (cf. equations (8) and (9)), we considered this
not needed since these correlations are quantitatively unknown
and the results are quite reasonable with just using Rf - a.
[43] Figure 2 shows the variation of the relative forecast-mi-

nus-analysis standard deviations, 100� skf-a=αa
� �

[%], on two

example days (15 January and 15 July 2008), which represent
winter in the northern and southern hemispheres, respectively.
It shows that large values of standard deviation occur in the
winter hemisphere at high latitudes. In the Arctic and
Antarctic winter, the relative standard deviations are larger
than 10% at 80 km impact altitude, decreasing to ~5% at
70 km, ~3% at 50 km, and to ~1% below 25km. In the nonpo-
lar regions, the values amount approximately to 3% to 4% near
80 km and to 1% to 2% below. This reflects that the ECMWF
24h-forecast errors (at T42L91 resolution) are in general fairly
small, much smaller than the uncertainties that typically need
to be assumed for climatologies (15% to 20%).

[44] Furthermore, in course of testing, we found the skf-a
estimates consistent with flow-dependent forecast error esti-
mates produced by ECMWF’s ensemble of data assimilations
(EDA) system [M. Bonavita, ECMWF, pers. communications,

2012; Bonavita et al., 2011; Isaksen et al., 2010]. skf-a is a

reasonable estimator for our purpose also in the sense that it
provides a tentatively conservative estimate of random forecast
errors, due to its construction from forecast and analysis
differences, which include as well random analysis errors
(being generally a minor contribution compared to the forecast
errors, though).
[45] Figure 3 illustrates exemplary error correlation func-

tions extracted from Rf - a, for three representative altitude
levels (30 km, 50 km, 70 km), as well as the correlation
length of the correlation functions for all the 200 altitude
levels (only altitude levels within 20 km to 80 km are shown).
It can be seen in the left panel that the correlation functions
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have a near-Gaussian shape at the main peak (confirmed by
fitting tests), which denotes high correlation close to the main
peak (where the correlation is unity by definition) and a rela-
tively sharp correlation decrease outward. Outside of the
main peak, there are next two somewhat asymmetric negative
side peaks, which denotes anticorrelation of the errors at
these altitude levels to the error at the main peak. Further
out from the negative peaks, the correlations gradually
decrease to zero in the far range from the main peak. The
right panel shows the variation in the error correlation length,
ranging from about 0.8 km to 6 km in the impact altitude
range from 20 km to 80 km. The background error correlation
length assumed in the OPSv5.4 is comparatively broader
[10 km throughout; e.g., Steiner et al., 2013].
2.3.2. Estimation of the Analysis Bias
[46] The relative bias in the ECMWF analysis bending

angles, 100� ba=αað Þ [%], is propagated from an estimated
analysis temperature bias ba,T.. Since we know αa , we can
then determine ba from the relative bias. Due to lack of robust
knowledge and associated lack of robust quantification capa-
bility for the analysis bias, because the “true” state is hard to
know (M. Bonavita and S. B. Healy, ECMWF, pers. commu-
nications, 2012), we formulated ba,T as a simple analytical
model with dependencies on altitude, latitude, and season
(day of year). The structure of the model largely follows the
empirical-analytical error model of Scherllin-Pirscher et al.
[2011b], equations (2) to (6) therein.

[47] The selection of the model’s fitting parameters and the
selected structure of the model is based on discussions with
ECMWF (M. Bonavita, pers. communications, 2012) and
on related ECMWF experience from intercomparison with
various analysis/forecast systems from other weather centers
and against nonbias-corrected reference data such as radio-
sondes and RO data. A particular difficulty limiting detailed
knowledge on ba,T is that accurate reference data above about
35 km (over the upper stratosphere and mesosphere) are
sparse, calling for conservative estimation.
[48] The vertical structure of the model is slightly simplified

compared to Scherllin-Pirscher et al. [2011b], equation (2)
therein, and constructed in the following way: below the bot-
tom of the upper stratosphere zUSbot, a small constant value of
s0 is set to be the bias, while above zUSbot, the bias is set to
increase linearly with altitude:

ba;T ¼
s0 for zsurf < z ≤ zUSbot

s0 þ k0 z–zUSbotð Þ for zUSbot < z < ztop

(

(14)

In equation (14), zsurf= 0.1 km and ztop= 80 km are the
bottom and the top level altitudes of the 200 vertical levels
defined in section 2.2; zUSbot is set to 30 km; and s0 and k0
are modeled as functions of latitude and season according
to Scherllin-Pirscher et al. [2011b], equations (3) to (6)
therein (modeling the time parameter τ in day-of-year form).

Figure 3. Global mean error correlation functions for three representative impact altitude levels (30 km,
50 km, and 70 km; left panel), and estimated correlation length of the correlation functions at all impact al-
titude levels from 20 km to 80 km (right panel), for 15 July 2008.

Figure 2. Relative standard deviations of forecast-minus-analysis bending angle differences as function
of latitude (10° bins, zonal means) and impact altitude (200 level grid) on 15 January 2008 (left panel)
and 15 July 2008 (right panel).
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We set the basic mean magnitude parameter x0 to 0.5K and
0.05K/km for s0 and k0, respectively, and the maximum am-
plitude parameter ∆x to 0.6x0 for both parameters; the factors
f∆x0 and f∆xs, for which values between zero and unity can be
adopted, denote the fraction of ∆x allocated to latitudinal
change and seasonal variations, respectively, and they are
set to 1.0 and 0.67 in this study. The parameters φ∆xlo and
φ∆xhi are the lower and upper latitude boundaries for ensuring
that the value of the latitude-dependence function f(φ) is zero
in the latitude range from the equator to φ∆xlo, linearly in-
creasing from 0 to 1 in the latitude range from φ∆xlo to φ∆xhi,
and remaining 1 from φ∆xhi to the poles; φ∆xlo is set to 40°,
which is more conservative than 50° that was used by
Scherllin-Pirscher et al. [2011b]; φ∆xhi is set to 60°.
[49] These settings ensure that, poleward of 60°, s0 and k0

are 20% higher than their basic mean magnitude in the sum-
mer hemisphere but twice their mean magnitude in the winter
hemisphere. The temperature biases are smallest within the
±40° latitude band and at altitudes below 30 km, where the
values are equal to the basic mean magnitude of s0 (0.5K).
The basic setting of k0 enforces a 0.5K per 10 km altitude
increase of the bias from 30 km upward.
[50] After temperature biases are obtained, the relative

bending angle biases are calculated using empirically derived
conversion factors from temperature to bending angle.
Scherllin-Pirscher et al. [2011a] estimated the conversion
factor for mapping from temperature errors to relative
refractivity errors as cT2N = 0.5%/K, and the conversion fac-
tor from relative refractivity to relative bending angle error
as cN2α= 2.4%/%; these two factors together resulting in a
conversion factor from temperature errors to relative bending
angle errors of cT2α= cT2N � cN2α= 1.2 %/K. Since use of these
conversion factors is well sufficient for our simple model, we
adopt this result and compute the relative bending angle bias
in the form 100� ba=αað Þ ¼ cT2α�ba;T and in turn invoke αa to
finally obtain the estimated bending angle bias ba.
[51] Figure 4 illustrates the vertical structure of 100� ba=αað Þ

for the same two example days as used for illustrating 100�
sf-a=αað Þ in Figure 2. The bending angle biases reveal a clear
dependence on altitude, latitude, and season, in line with the
simple model adopted. For example, at any given altitude
level, the bending angle biases within ±40° latitude are con-
stant. This reflects the basic magnitude of the biases at each
height level and it amounts approximately to 3.5% at 80 km
and decreases linearly to about 1% at 30 km. The biases
increase poleward from 40° latitude, with a larger increase in
the winter hemisphere. The largest biases occur in the polar

winter region where they reach roughly 4% to 8% in the meso-
sphere, reflecting that these are the most challenging condi-
tions for the ECMWF analyses to provide accurate data.
2.3.3. Estimation of the Observation-Related
and Colocated Variables
[52] The mean observed bending angle profile for each cell

is calculated using those RO measurements from COSMIC,
GRACE, and MetOp-A missions that are located in the cell’s
domain and that are acquired during the same five days as
used for estimating the analysis- and forecast-related vari-
ables (test days from January 2008 and July 2008 used in this
study; see the results in section 3).
[53] For all satellites, we use excess phase and orbit infor-

mation provided by UCAR/CDAAC and calculate ionosphere
corrected bending angles using an advanced version of
OPSv5.4. Since the mean bending angle can be strongly
affected by outlier profiles and since we do not apply the
whole OPSv5.4 quality control mechanisms (we stop compu-
tations at bending angle level and do not check consistency of
RO refractivity and temperature profiles by comparing them to
reference profiles provided by ECMWF), we apply an addi-
tional twofold quality control approach to individual bending
angle profiles according to Foelsche and Scherllin-Pirscher
[2012]: we check individual bending angle profiles in the
impact altitude range from 50 km to 80 km and exclude pro-
files if they have bending angles larger than 40 μrad or smaller
than �40 μrad. Furthermore, we reject all profiles that have
bending angles outside of four standard deviations from the
mean in the entire impact altitude range.
[54] The mean observed bending angle profiles αo are

finally calculated from averaging over all profiles that passed
the quality checks; mean colocated bending angle profiles αc
are obtained from averaging over the corresponding
ECMWF analysis bending angle profiles colocated to the
RO events. Their associated standard deviation estimates, so
and sc, are computed from the ensemble of observed and
colocated profiles, respectively, by the same standard estima-
tion equations as used for sa and sf [e.g., Steiner and
Kirchengast, 2004].
[55] The bias of the mean observed profiles, bo, is estimated

to amount to 0.2 μrad, based on experience with analysis and
intercomparison of bending angle data at high altitudes from
different RO satellites, analyses and forecasts, and climatol-
ogies. This educated-guess value of 0.2 μrad includes errors
due to the incomplete removal of the ionospheric contribution
to the measurement, multipath errors, errors in the satellite’s
orbits and velocities, as well as clock bias estimates.

Figure 4. Estimated relative biases, based on simple analytical modeling, for ECMWF analysis bending
angles as function of latitude and impact altitude on 15 January 2008 (left panel) and 15 July 2008
(right panel).
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2.4. Formulation of the Observation Error
Covariance Matrix

[56] As mentioned in section 2.2, the bending angle obser-
vation error covariance matrix Co is used in this study in its
existing OPSv5.4 form [Ho et al., 2012; Steiner et al.,
2013]. Its formulation is therefore, for clarity, just briefly
summarized. Co =Co,ij is modeled using an estimated obser-
vation uncertainty and an exponential-falloff correlation
model as:

Co;ij ¼ uocco;i �u
occ
o;j � exp �

ai � aj












L

� �

; (15)

where ai and aj are the impact parameters at ith and jth levels,
respectively, and L is the correlation length which is set to
2 km. uocco is the observation uncertainty, with the same value
used at all altitude levels, which is basically estimated as the
standard deviation of the observed bending angle relative to
the bias-corrected MSIS bending angle profile at the impact
altitude levels from 65 km to 80 km [or to top of profile if
reached lower than 80 km; for details on the relevant
OPSv5.4 quality control see Pirscher, 2010]:

uocco ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ktop � k65












∑
ktop

i¼k65

αRO;i � αMSIS;i þ βo
� �� �2

s

: (16)

Herein ktop and k65 are the impact altitude indices for top
altitude (nominally 80 km) and 65 km, respectively, and
the bending angle bias βo is estimated by averaging the dif-
ferences between the RO bending angle αRO and the MSIS-
derived bending angle αMSIS in the impact altitude range
from 65 km to top (nominally 80 km):

βo ¼
1

ktop � k65










þ 1
∑
k top

i¼k65

αRO;i � αMSIS;i

� �

: (17)

Equation (16) cannot always reflect the real quality of
RO bending angle measurements [Gobiet et al., 2007;
Pirscher, 2010]. For such cases, the estimated observation
uncertainty uocco is modified according to additional quality
checks. A detailed description of the OPSv5.4 bending an-
gle retrieval and its statistical optimization is found in
Pirscher [2010].

3. Results and Discussion

3.1. Data Sets for the Performance Evaluation

[57] The End-to-End GNSS Occultation Performance
Simulation and Processing System (EGOPS) software ver-
sion v5.5 [Fritzer et al., 2011] was used for both generating
simulating MetOp-A data and for retrieving atmospheric pro-
files from the simulated and real observed RO events. We
note that the OPSv5.4 statistical optimization algorithm was
created as part of the EGOPS version v5.4, but is also still
used in the v5.5, so that we kept its name for convenience.
[58] The test data for evaluating the dynamic method in-

clude simulated MetOp-A data, which are called sim-
MetOp hereafter, on 15 July 2008, and real RO observations
from CHAMP and COSMIC on 15 January and also 15 July
2008. Due to the limited number of CHAMP measurements
on single days, we included CHAMP data also from the
neighbor days (14 and 16 January resp. July), in order to have

three consecutive days for more reliable statistics. The daily
background fields from the analysis, forecast, and observed
data were produced for 15 January from 13 to 17 January,
for 15 July from 13 to 17 July, respectively (five days cen-
tered on the day of interest as introduced in section 2.2.1).
COSMIC, GRACE, and MetOp-A data were used for esti-
mating the observation-related variables (cf. section 2.3.3),
thoughMetOp-A data were not available for January so those
observation-related variables were calculated from COSMIC
and GRACE only (the difference is essentially negligible, as
we confirmed by tests leaving out individual satellite data
sets also in July; the results were not sensitive to leaving
out a limited fraction of profiles from the large ensembles).
[59] The total number of sim-MetOp events generated for

15 July was 723. The ECMWF operational analysis fields
were used for the atmospheric modeling and the NeUoG
model was used as the background ionosphere model [e.g.,
Leitinger et al., 1996; Gobiet and Kirchengast, 2004;
Steiner and Kirchengast, 2005]. Two simulations were
performed: 1) for perfect conditions in which the ionospheric
contribution to the measurements and the observational noise
were neglected, and 2) for moderate ionospheric conditions
(F10.7 solar activity index in NeUoG set to 140) and the
observational errors representing MetOp/GRAS-type receiv-
ing system errors (precise orbit determination (POD) errors,
receiver thermal noise, local multipath, clock instabilities)
following the proven settings by Steiner and Kirchengast
[2005], also recently used by Schweitzer et al. [2011]. For
these sim-MetOp data, the profiles retrieved from the first
“perfect” simulation were used as the reference profiles for
the results from the second “realistic” simulation.
[60] The total numbers of processed CHAMP RO events

for 14 to 16 January and 14 to 16 July are 580 and 663,
respectively. The total numbers of processed COSMIC RO
events for 15 January and 15 July are 2992 and 2450, respec-
tively. For profiles retrieved from these real observed RO
data, their colocated ECMWF analysis profiles were used
as reference profiles for the results.
[61] For both the simulated and the real RO data, both the new

dynamic statistical optimization schemes, termed “Dynamic
SO”, and the existing OPSv5.4 scheme, termed “OPSv5.4
SO”, were applied, in order to enable intercomparison of these
two data streams. The resulting retrieved profiles were
compared to their colocated reference profiles, focusing on re-
trieval-minus-reference differences of the statistically opti-

mized bending angle profiles αkSO and also inspecting the
subsequently retrieved refractivity and dry temperature pro-
files. Relative difference profiles (retrieved-minus-reference
divided by reference, unit [%]) were typically produced for
bending angle and refractivity, and absolute retrieved-minus-
reference difference profiles for dry temperature.
[62] These differences profiles were then used to also calcu-

late statistics for large-scale geographic regions (global and
five latitude bands; see subsection 3.3), where the mean sys-
tematic difference and its associated standard deviation of
the difference profiles were inspected in a comparative way
for the “Dynamic SO” and “OPSv5.4 SO” results. We now
first look at individual example profiles to get some basic in-
sight how the new dynamic method works (subsection 3.2),
then turn to the statistical results (subsection 3.3), and finally
specifically inspect the influence of the choice of correlation
matrix (subsection 3.4).
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3.2. Inspecting Individual Bending Angle Profiles

[63] Figure 5 shows the statistically optimized bending
angle profiles of three typical example events from sim-
MetOp, CHAMP, and COSMIC, obtained from the new
dynamic algorithm and the existing OPSv5.4. Absolute
profiles together with their reference profile (left) as well
as relative differences to the reference profile (right) are
depicted. The profiles from the Dynamic SO are evidently
smoother than those from the OPSv5.4 SO and they are
also closer to their reference profile in these three cases.
We find that there are other events, where profiles from
the OPSv5.4 SO are closer to the reference profiles than
from the Dynamic SO (not shown). However, profiles opti-
mized by the Dynamic SO are generally smoother also in
those cases.
[64] Figure 6 illustrates the results of some key intermedi-

ate variables of the new dynamic approach for the sim-
MetOp event (the upper nine panels) and the COSMIC event
(the bottom nine panels) shown in Figure 5. For each of the
two events, the first row shows the estimated uncertainty of
the mean analysis (left), mean observed (middle), and mean
background (right) bending angle, respectively (ua, equation

(8); uo, equation (9); ub, equation (6); all interpolated to the

RO event location but suppressing the upper index k, like

in ukb, for clarity here, since it does not yet occur in equations

(6), (8), and (9)). The second row shows the estimated ran-

dom uncertainty of the forecast (left), combined standard

uncertainty of the background (middle), and relative uncertainty

of the background (right) bending angle, respectively ( skf-a ,

section 2.2; uoccb , equation (13); 100� uoccb =αkb
� �

, equations (11)

and (13)). The third row shows the estimated background

(left), observed (middle), and relative uncertainty of the ob-

served (right) bending angle, respectively (αkb , equation (11);

αko, equation (10); 100� u
occ
o =αko

� �

, equations (10) and (16)).

[65] For both the sim-MetOp and COSMIC event, from
the first row, we can see that ua is smaller than uo at
altitudes above about 50 km, while below 50 km ua is
larger than uo. The background bending angle uncertainty
ub (right), thanks to optimally combining ua and uo by
inverse-variance weighting (equation (6)), neatly achieves
the least possible uncertainty over the complete altitude
range, indicating the value of this part of the new dynamic
design.

Figure 5. Statistically optimized bending angle profiles together with a reference profile (left), and their
difference to the reference profile (right), of three typical example events from sim-MetOp (sMO, top),
CHAMP (CH, middle), and COSMIC (CO, bottom) on 15 July 2008, obtained from the new dynamic al-
gorithm (“Dynamic”) and the existing OPSv5.4 algorithm (“OPSv5.4”). The reference profile (“perfect”
simulated profile for sim-MetOp or colocated ECMWF analysis profile for observed CHAMP and
COSMIC; green) enables to gauge the quality of the respective statistically optimized profiles.
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[66] From the second row, again for both the sim-MetOp

and COSMIC event, it can be seen that skf-a roughly has sim-
ilar magnitudes as ua (as also indicated by comparing
Figures 2 and 4, since ua essentially corresponds to ba), both
being very small in absolute terms above about 65 km. The
combined uncertainty uoccb , including now ub (first row, right)

penalized by the bias coverage factor fbcvg = 5, is still very
small in absolute terms near 80 km from which it increases
to within about 5 μrad to 10 μrad near 30 km; the comparison
with sf - a (second row, left) and ub (first row, right) confirms
that this increase is dominated by the conservative approach
that we strongly penalize the bias-type uncertainty ub.
[67] This makes nicely explicit the relevance of how strongly

the method’s user decides to keep bias influences into αkSO at

bay, by choosing a certain bias coverage factor (a factor of 5
to 10 appears reasonable to us; for the purpose of this introduc-
tory study, we decided for fbcvg = 5). Furthermore, this provides
a pointer to the more general discussion of the issue of how
much background information the user in general wants to

weigh in for support of the high altitude initialization of αko ,
as a separate question from the degree of (un-)certainty that is
in principle available from reliable sources of background data.
We defer this discussion to a follow-on study, where we
additionally introduce also a more advanced observation error

covariance formulation for Ck
o and larger evaluation data sets.

[68] The relative background uncertainty (second row,
right) highlights that in relative terms this uncertainty
strongly increases upward, exceeding 20% near 50 km for

Figure 6. Illustration of intermediate variables contained in the formulation of the background error co-
variance matrix, for the sim-MetOp (top nine panels) and the COSMIC event (bottom nine panels) shown in
Figure 5; for description see section 3.2.
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the sim-MetOp event and near 70 km for the COSMIC event,
respectively. Such levels of difference are typical and gener-
ally driven by geographic location: in the present case the
COSMIC event is located at southern midlatitudes near 40°S,

where both ukb=α
k
b and skf-a=α

k
b, and hence uoccb =αkb according

to equation (13), are smaller than for the sim-MetOp event
near 70°S (see Figures 2 and 4). Comparing these relative
uncertainties to the globally static and constant relative
uncertainty specifications of typically 15% or 20% in
existing statistical optimization schemes (section 2.1), we
see that the Dynamic SO provides the capability of signifi-
cantly more realistic behavior.

[69] The third row of Figure 6, again for both the sim-

MetOp and COSMIC event, confirms that αkb (left) and αko
(middle) generally go very closely together (as illustrated
more directly by Figure 5 for the 40 km to 60 km impact
altitude range already). The relative observation uncertainty

uocco =αko (right) shows that, except typically for high altitudes
in the mesosphere, its values are significantly smaller than the

relative background uncertainty uoccb =αkb (second row, right);

the “spiky” behavior of uocco =αko at the high altitudes is due to

αkowith its small absolute magnitude up there (uocco is a constant
in the current formulation; see section 2.4).

[70] The detailed observation to background uncertainty
ratio uocco =uoccb (not shown), and therefore also the transition

altitude above which the observation uncertainties exceed
the background uncertainties, depends for each RO event
on the background uncertainties but more strongly on the
quality of the observations (e.g., CHAMP vs. COSMIC vs.

MetOp); both aspects are well indicated by a comparative
look at the relative error panels of Figure 6 and well known
in principle [e.g.,Gobiet et al., 2007]. The more dynamic role
of the background, and therefore a more adequate and realis-
tic account for the available information, is a new feature
brought in by the Dynamic SO.

3.3. Statistical Results Based on the Daily Data Sets

[71] In this section, the performance of the two statistical
optimization approaches is evaluated for the full ensembles
of profiles from the January and July test data sets introduced
in section 3.1. The mean systematic differences in bending
angle, refractivity, and temperature profiles between re-
trieved and reference profiles, and the associated standard de-
viations are analyzed. For quality control of statistical results,
profiles with bending angle spikes beyond ±40 μrad above
50 km, where signals are up to about 15 μrad (near 50 km)
or much smaller, are rejected (as also done in preparing the
observation-related variables for the daily background fields;
cf. section 2.3). In addition, refractivity profiles are compared
to colocated ECMWF refractivity profiles between 5 km and
35 km, and profiles differing from colocated ECMWF pro-
files at any altitude level by more than 10% are rejected
[Pirscher, 2010]. Temperature profiles are also compared
with their colocated ECMWF profiles within 8 km to
25 km, and profiles differing from colocated ECMWF pro-
files at any altitude level by more than 20K are rejected.
This is closely similar to the so-called external quality control
of the OPSv5.4 processing [e.g., Ho et al., 2012; Steiner
et al., 2013]. Based on the complete OPSv5.4 quality control

Figure 7. Systematic differences (SysDiff, light lines) and standard deviations (StDev, heavy lines) of
statistically optimized bending angles, relative to “perfect” simulated bending angles used as reference,
of the ensemble of sim-MetOp (sMO) events on 15 July 2008. Statistics for both the dynamic method
(red) and the existing OPSv5.4 method (black) are shown for six different latitude regions: Global (90°S
to 90°N), Tropics (20°S to 20°N), SHSM (southern hemisphere subtropics and midlatitudes; 20°S to 60°S),
NHSM (northern hemisphere subtropics and midlatitudes; 20°N to 60°N), SHP (southern hemisphere
polar latitudes; 60°S to 90°S), and NHP (northern hemisphere polar latitudes; 60°N to 90°N). The num-
ber of sim-MetOp events used to calculate the statistics in each region (N_sMO) is also indicated.

LI ET AL.: OPTIMIZATION OF RO BENDING ANGLES

13,034



[Pirscher, 2010; Steiner et al., 2013] and the checks above,
about 2% of the sim-MetOp profiles and more than 30% of
the observed CHAMP and COSMIC profiles are identified
as bad quality profiles and thus removed.
[72] Figure 7 shows the systematic difference and standard

deviation profiles of all the sim-MetOp events on 15 July
2008 for six latitude regions: the whole globe (90°S to 90°N,
Global), low latitudes (20°S to 20°N, Tropics), medium lati-
tudes (20°S/N to 60°S/N, SHSM/NHSM= southern/northern

hemisphere subtropics and midlatitudes), and high latitudes
(60°S/N to 90°S/N, SHP/NHP = southern/northern hemi-
sphere high latitudes). It is clear that in all these regions the
bending angle standard deviation above about 40 km
retrieved from the new Dynamic SO is significantly smaller.
The global mean standard deviation from the OPSv5.4 SO is
larger than 6% near 60 km, which is more than twice the
magnitude from the Dynamic SO being about 2.5% near
60 km. Also, and importantly, the bending angle systematic

Figure 8. Systematic difference (SysDiff, light lines) and standard deviations (StDev, heavy lines) of sta-
tistically optimized bending angles, relative to colocated ECMWF analysis bending angles, of the ensem-
bles of CHAMP (CH) and COSMIC (CO) RO events from January 2008 (top six panels) and July 2008
(bottom six panels). Statistics of both the dynamic method (magenta and orange for CHAMP resp.
COSMIC) and the existing OPSv5.4 method (blue and cyan for CHAMP resp. COSMIC) are shown for
the same six latitude regions as in Figure 7. The number of CHAMP and COSMIC events used to calculate
the statistics in each region (N_CH resp. N_CO) is also indicated.
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difference from the new method is smoother and otherwise
essentially equal or somewhat smaller. These results for the
end-to-end simulated RO events, which enable to evaluate
the basic potential of the new dynamic method since the
“true” reference is closely known, are very encouraging
and confirm the basic capabilities of the Dynamic SO.
[73] Figure 8 shows the statistical results for the ensembles

of CHAMP and COSMIC events available on the January
and July test days. Due to the larger number of the
COSMIC RO events and the better quality of the COSMIC
receiver, COSMIC error profiles are less noisy compared to
CHAMP. Intercomparing the two methods, one can see that
the bending angle standard deviation from the Dynamic SO
is again distinctively smaller than that from the OPSv5.4
SO in all the latitude bands both in January and July.
[74] For CHAMP data, the best improvement made by the

new approach is found between about 35 km and 45 km with
a reduction in the global-mean standard deviation to roughly
half its value. Above about 45 km, the improvements made
by the Dynamic SO decrease with height, and at 60 km both
algorithms yield the same results (i.e., the background informa-
tion fully dominates in both algorithms). For COSMIC data,
the reduction in the standard deviation amounts to roughly
one third of the values from OPSv5.4 in the impact altitude
range from about 35 km up to 60 km. At the high latitudes of
the winter hemisphere (NHP in January and SHP in July),
where both the background and observation errors are large,
the new approach shows comparatively little improvement.
[75] We note that these standard deviation results also point

to the influence of the choice of bias coverage factor fbcvg, i.e.,
the degree of intentionally inflating the bias-type uncertainty

in equation (13) in order to safeguard αkSO from becoming
biased: the standard deviation reduction is stronger if fbcvg is
comparatively smaller (for the safeguarding argument, we do

not recommend a factor below 5, though, as noted in section
3.2). In tests varying fbcvg up to a factor of 10 (not shown),
we found that the standard deviation reduction over the upper
stratosphere becomes smaller; the systematic difference is
essentially insensitive to this range of choices of fbcvg, how-
ever. More discussion of potentially most adequate weightings
is left to follow-on work; our current illustrative choice with
fbcvg= 5 shows what we consider like the strongest
reasonable standard deviation reduction.
[76] Furthermore, Figure 8 shows similar systematic differ-

ences of the RO bending angle profiles relative to the ECMWF
reference profiles for both algorithms. The somewhat
smoother systematic difference profiles resulting from the
new algorithm, especially for CHAMP, derive from the gener-
ally smoother individual bending angle profiles from the new
method (cf. Figure 5). Despite we cannot know the “truth”
from these data, it is encouraging for the Dynamic SO, that
despite its significant reductions in standard deviations it does
not show any suspicious degradation of systematic differ-
ences; this indicates that the Dynamic SO is in principle robust
against “overconstraining” with background information and
that the background profiles themselves, together with their
uncertainty estimates, are indeed of adequate quality.
[77] Figure 8 also reveals small “spikes” at 30 km in

CHAMP’s bending angle standard deviation profiles, while
such spikes are not visible in COSMIC’s. This is because at
30 km, the signal-to-noise ratio of COSMIC profiles is signif-
icantly higher than that of CHAMP (being the “worst case” in
this respect given it was a pioneering early receiver), due to
the higher quality of COSMIC’s onboard receivers (though
detailed inspection shows that spikes also exist for some
COSMIC profiles). In this study, the statistical optimization
was applied exactly down to 30 km (as is the setting in
OPSv5.4) so that the bending angles below 30 km are purely

Figure 9. (Top) Refractivity and (bottom) temperature systematic differences (SysDiff, light lines) and
standard deviations (StDev, heavy lines), relative to “perfect” simulated or colocated ECMWF analyses,
for the global ensemble of sim-MetOp events of July 2008 (left), CHAMP and COSMIC events of
January 2008 (middle), and CHAMP and COSMIC events of July 2008 (right), respectively. The figure
panels are shown in the same layout as in Figures 7 and 8.
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observed bending angles. Spikes therefore occur since espe-
cially the CHAMP data quality is such that this is too high
a bottom altitude for part of the profiles; or alternatively more
error needs to be allowed [e.g., Gobiet et al., 2007].
[78] In order to mitigate the spikes of bending angle stan-

dard deviations near 30 km, we slightly amplified the back-
ground uncertainties relative to the observation uncertainties
in the altitude range from 30km to 40 km, so that the observed
bending angles would receive more weight in the resulting

αkSO in this altitude range; this adjustment made a smoother
transition of the CHAMP profiles above 30 km (as shown in
Figure 8, otherwise the spikes would be sharper). A more con-
solidated future solution will include variable bottom altitudes
of the statistical optimization and robust observation-to-back-
ground uncertainty ratio constraints enabling higher error from
comparatively more noisy profiles in a controlled way.
[79] Figure 9 shows the global-mean errors of refractivity

and temperature profiles obtained from all the three missions
and the two methods. The sim-MetOp systematic differences
in refractivity and their standard deviations resulting from the
new method are somewhat smaller, with the largest improve-
ment at high altitudes but consistent small improvement
overall. Slight but systematic improvement is also found for
the systematic differences for sim-MetOp temperature
profiles; this is again encouraging for the climatological
utility of the Dynamic SO. Due to the downward propagation
of errors by the Abelian integral and the hydrostatic
integral [e.g., Rieder and Kirchengast, 2001; Gobiet and
Kirchengast, 2004; Steiner and Kirchengast, 2005], the
absolute improvement in these retrieved variables is limited
for sim-MetOp, since the OPSv5.4 SO already achieves a
temperature bias of within 1K at 40 km for these high-quality
simulated data.

[80] The results for CHAMP and COSMIC thus look differ-
ent and no conclusions can be made from these data on
whether the systematic differences have been improved in
the retrieved refractivities and temperatures, since we have
no sufficiently accurate “truth” as reference. We can therefore
note at this point that the climatological performance of the
Dynamic SO in the retrieved variables appears at least as good
as from the OPSv5.4 SO, with the capability to improve upon
as indicated by the sim-MetOp results. The standard devia-
tions are clearly reduced also in refractivity and temperature,
in particular in the upper stratosphere, though the reduction
is less salient than in the bending angle, again due to the down-
ward integrations by the Abelian and hydrostatic integrals. The
temperature standard deviations for CHAMP and COSMIC be-
low 30km are seen to be higher from Dynamic SO than from
OPSv5.4 SO. Tests showed that this appears to be a side effect
of the above discussed “spikes” in bending angles near 30 km,
from the current simplified bottom altitude treatment, which
tends to leave more standard deviation in retrieved tempera-
tures. We note that the effect vanishes when using a more con-
solidated bottom altitude treatment (including improved
formulation of observation error correlations, as we introduce
in follow-on work), so we do not discuss it further here.

3.4. Effect of Realistic Relative to Exponential-Falloff
Correlation Functions

[81] Here we investigate the differences in the RO
retrievals caused by two different background error correla-
tion matrices: 1) the empirically estimated global-mean cor-

relation matrix Rf - a of the new dynamic method described

in sections 2.2 and 2.3, and 2) the simple analytical correla-

tion matrix constructed by exponential-falloff correlation

Figure 10. (Left) Bending angle, (middle) refractivity, and (right) temperature systematic differences
(SysDiff, light lines) and standard deviations (StDev, heavy lines), relative to their “perfect simulated” or
colocated ECMWF analysis data used as reference, of the global ensemble of (top) sim-MetOp and (bot-
tom) COSMIC events from 15 July 2008, using either the realistic global-mean correlation matrix of the
new dynamic method (“full correlation”) or simple exponential-falloff correlation as in the existing
OPSv5.4 (“exp.falloff only”). The figure panels are shown in the same layout as in Figures 7 and 8.
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functions (i.e., the exponent term in equation (15)) with a

background error correlation length of 10 km as used in the
existing OPSv5.4 scheme. The Dynamic SO scheme is run
for this specific investigation, for case 1 just as is and for case
2 with Rf - a replaced by the exponential-falloff correlation
matrix but otherwise identical settings to case 1; so the only
difference is the different correlation matrix.
[82] Figure 10 displays the comparison of the statistically

optimized bending angle, refractivity, and temperature
results from sim-MetOp and COSMIC for the two different
cases. We see that the bending angle standard deviations,
and to a smaller degree also the systematic differences, of
sim-MetOp and COSMIC (left panels) are significantly
reduced when using the realistic Rf - a instead of the simple
exponential-falloff formulation. For example, sim-MetOp
standard deviations are reduced to roughly half their values
within 50 km to 60 km, and COSMIC standard deviations
to roughly 80% of their values. This indicates the value of
an appropriate specification of the background error correla-
tion functions, consistent with the error characteristics of the
(ECMWF) background profiles used.
[83] Compared to the improvements in bending angles

from the realistic Rf - a, the associated improvements in
refractivity (middle panels) and temperature (right panels)
are smaller but still clearly visible for the refractivity; for
the temperature, they are very small. A closer look at the
refractivity, also compared to the respective panels in
Figure 9 in particular for sim-MetOp, reveals that the system-
atic difference benefits less than the standard deviation, since
the former is more dependent on the downward propagation
of bending angle errors via the Abelian integral rather than
the details of the correlations (the matrix diagonal is the same
in cases 1 and 2). The reason for the very small improve-
ments in temperature retrievals is that temperatures are again
more sensitive to the downward propagation of bias-type
errors rather than to details of error correlations, since there
is additionally the hydrostatic integration.
[84] Overall, these effects of the correlation function

formulations, realistic vs. simple exponential-falloff, clearly
indicate that the use of a realistic empirically estimated back-
ground error correlation matrix as part of the new dynamic
method is definitely useful.

4. Summary and Conclusions

[85] This study introduced a new dynamic approach of
estimating the background bending angle and its associated
error covariance matrix for obtaining statistically optimized
RO bending angle profiles by an optimal estimation scheme
combining this background information with the observed
information. The dynamic method accounts for dependencies
of background variables and their uncertainties on latitude,
longitude, altitude, and day of year. It uses bending angles
from multiple days of ECMWF short-range forecast and
analysis fields, together with mean observed bending angles,
to obtain background profiles and associated error covariance
matrices with geographically and vertically varying back-
ground uncertainty estimates on a daily updated basis.
[86] We described the new dynamic method in detail,

which consists of three main algorithmic steps, including:
1) construction of basic daily background fields of key anal-
ysis-, forecast-, and observation-related variables on a global

latitude-longitude-altitude grid for any day to be processed,
2) preparation of derived daily background fields with the
specific statistical quantities directly needed for the statistical
optimization, and 3) performing the actual dynamic statistical
optimization for all RO events of any given day.
[87] We discussed the key advancements the new dynamic

scheme over existing statistical optimization schemes, which
include: 1) we use a 3D- and time-dependent formulation of
all key statistical variables needed in the formulation of the
background error covariance matrix, based on reliable ensem-
bles of atmospheric forecast and analysis profiles as well as
of observed profiles, while existing formulations use globally
static relative errors and either climatologies (still most com-
mon) or forecasts (OPSv5.4) or observations (climatological
profile retrievals only); 2) we use background bias estimation,
allowing to actively reduce biases in the colocated background
profile, while existing schemes use no such bias mitigation
measure; 3) we use estimates of background bias uncertainty
and random uncertainty, and penalize the former against the
latter to minimize bias influence on the resulting optimized
profile, while existing schemes use globally static relative
background errors; 4) we use a daily updated realistic back-
ground error correlation matrix, empirically estimated from
forecast-minus-analysis difference profiles, while existing
schemes either ignore these correlations or use crude (exponen-
tial) falloff models not representing realistic correlation shapes.
[88] We showed furthermore that the dynamic method is

flexible in a seamless manner to either include mean-analysis
or mean-observed bending angle profiles and associated
uncertainties or both of them together in the formulation of
mean-background profile and uncertainty estimation. Based
on this versatility, users of the method can readily decide which
information to include according to their context and
preferences. Also, the grid definition, and the space- and
time-averaging domains per grid cell, can be flexibly adjusted
by users.
[89] Based on all this set of advantages, we expect the new

dynamic scheme to outperform existing schemes and
performed first intercomparisons and an evaluation against
the existing Wegener Center OPSv5.4 scheme, which is a
leading existing scheme and therefore a suitable reference.
We operated both algorithms, the new dynamic and the
existing OPSv5.4 one, down to 30 km and used several days
of simulated MetOp and observed CHAMP and COSMIC
data, for January and July conditions, as test data set for this
first performance evaluation.
[90] Our findings for the new method’s performance

compared to OPSv5.4 include: 1) the dynamic method
significantly reduces random uncertainties (standard devia-
tions) in the resulting statistically optimized profiles and also
leaves less or about equal residual systematic uncertainties
(biases); 2) the realistic dynamic (daily) estimate of the back-
ground error correlation matrix alone already systematically
improves the quality of the optimized bending angles,
compared to using simply exponential-falloff correlations;
3) the subsequently retrieved refractivity profiles and
atmospheric (temperature) profiles, while seeing reduced
magnitude of improvement due to the filtering through the
Abelian and hydrostatic integrals, clearly benefit from the
improved error characteristics of the optimized bending
angles. In summary, the evidence from this first evaluation
of the new method suggests that it already now outperforms
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the existing OPSv5.4 method, while at the same time having
considerable further development potential.
[91] Tapping on this further potential, and encouraged by

the promising results of this first study, our current follow-
on work focuses on employing similar dynamic error covari-
ance estimation also for the observed bending angles and to
apply the method to full months, for testing more rigorously
the performance over weekly scales and in monthly means.
Also, the issue of providing the most adequate level of
background information in support of the high altitude
initialization of the observed RO information for the various
different missions with different receiver performances is a
relevant aspect of the further developments. After consolida-
tion of the dynamic algorithm, we intend to apply it as one of
the essential new algorithmic components in the next
Wegener Center reprocessing of the entire RO climate
record, which aims at unprecedented quality of the data up
into the mesosphere.
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