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A New Efficient Algorithm for Solving the Simple Temporal Problem

Lin XU and Berthe Y. CHOUEIRY

Constraint Systems Laboratory

Department of Computer Science and Engineering

University of Nebraska-Lincoln�
lxu|choueiry ✁ @cse.unl.edu

1 Abstract

In this paper we propose a new efficient algo-

rithm, the ✂ STP-solver, for computing the minimal

network of the Simple Temporal Problem (STP).

This algorithm achieves high performance by ex-

ploiting a topological property of the constraint

graph (i.e., triangulation) and a semantic property of

the constraints (i.e., convexity) in light of the results

reported by Bliek and Sam-Haroud [1], which were

presented for general CSPs and have not yet been

applied to temporal networks. Importantly, we de-

sign the constraint propagation in ✂ STP-solver to

operate on triangles instead of operating on edges

and implicitly guarantee the decomposition of the

constraint graph according to its articulation points.

We also provide extensive empirical evaluations of

all known algorithms for solving the STP on sets

of randomly generated problems. Our experiments

demonstrate significant improvements of ✂ STP-

solver, in terms of number of constraint checks

and CPU time, over previously reported algorithms

such as the Floyd-Warshall algorithm (F-W) [5;

8], Directed-Path Consistency (DPC) [8], and Par-

tial Path-Consistency (PPC) [1].

2 Introduction

Many critical applications in planning and

scheduling rely on an efficient handling of tempo-

ral information represented as a Simple Temporal

Problem (STP) [6; 8; 3]. The efficiency of the con-

straint propagation in such a network is particularly

crucial in autonomous space applications as demon-

strated by the Deep Space 1 Remote Agent experi-

ment [12]. Further, an efficient STP solver is a cru-

cial component for solving the Temporal Constraint

Satisfaction Problem (TCSP) because the search

process designed by Dechter et al. [8] for solving

the TCSP requires solving an STP at each node ex-

pansion. Thus, the performance of the overall pro-

cess depends heavily on the performance of solving

an STP. In this paper, we propose a new algorithm,

✂ STP-solver, for solving the STP and demonstrate

empirically that it constitutes a dramatic improve-

ment over previously used algorithms.

We achieve this by first combining the results

developed by Bliek and Sam-Haroud [1] for gen-

eral Constraint Satisfaction Problems (CSPs) with a

new strategy for constraint propagation, which re-

stricts the propagation effort to the triangles of the

triangulated constraint network instead of its edges.

Then, we apply the resulting mechanism to solve

the STP. The triangulation of the graph and the con-

vexity of the constraints in the STP guarantee that

✂ STP-solver is complete and sound for proving the

consistency of the STP and for finding the minimal

(and decomposable) network. This paper is struc-

tured as follows. Section 3 recalls the main prop-

erties of a CSP and shows how we use them in

our study. Section 4 discusses the algorithms for

solving the STP and explains the advantages of the

✂ STP-solver. Section 5 describes our experiments

and results, and summarizes our observations. Sec-

tion 6 concludes this paper.

3 Background

A Constraint Satisfaction Problem (CSP) is de-

fined as follows. Given a set of variables, each
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with a set of possible values defining its domain,

and a set of constraints that restrict the combina-

tions of values that the variables can be assigned at

the same time, the task is to assign a value to each

variable such that all constraints are simultaneously

satisfied. Path consistency, as we discuss below, is

an important property of a CSP. Recently Bliek and

Sam-Haroud [1] proposed the Partial Path Consis-

tency (PPC) algorithm, which determines whether

or not a network is path consistent. Since PPC op-

erates on the triangulated constraint graph 1, it re-

alizes significant computational savings over previ-

ously known algorithms, especially for sparse net-

works. In this paper, we first improve the propaga-

tion mechanism of the PPC algorithm by making it

operate on triangles instead of individual edges. We

then use the improved version to solve the STP. In

the next section, we recall the main properties of a

CSP and discuss them in light of the STP.

3.1 Main CSP properties

The general properties of constraint graphs and

the main algorithms for achieving them are outlined

below.�
Path consistency: This property ensures that given

two values for any two variables that satisfy the

constraint between these variables, we can find val-

ues for variables in any path of any length (possi-

bly infinite) that satisfy the constraints along the

path [11]. In general CSPs, path-consistency al-

gorithms PC (e.g., PC-1 [11] and PC-2 [10]) are

used to enforce path consistency by tightening the

binary constraints. (They also tighten the domains,

thus enforcing strong path-consistency.) Monta-

nari established that these algorithms, which con-

sider only paths of length two, on a complete graph2

guarantee a path-consistent network [11]. The Di-

rectional Path-Consistency (DPC) algorithm, which

achieves path consistency along a given ordering✁
of the variables in the search process, was pro-

posed by Dechter [7] as an efficient approximation

of PC; it guarantees path consistency only in the di-

rection that matters, which is that of search. Re-

cently Bliek and Sam-Haroud [1] proposed the Par-

tial Path Consistency (PPC) algorithm, which de-

1A graph is triangulated if every cycle of length strictly

greater than 3 possesses a chord.
2If the graph is not complete, it is made so by adding univer-

sal constraints between non-adjacent edges.

termines whether or not a network is path consis-

tent without necessarily producing a tight network

as with PC. Since PPC operates on the edges of the

triangulated graph (fewer than those of the complete

graph), it realizes significant computational savings,

especially in sparse networks.�
Minimality: Minimality, the central problem in

CSPs, is a property stronger than path consistency.

It guarantees that all the binary constraints are as

explicit (i.e., tight) as possible [11].�
Decomposability: Decomposability is stronger

than minimality and guarantees that a solution to the

CSP can be found backtrack-free. This is a highly

desirable property and guarantees the tractability of

the CSP.�
Consistency: In contrast to the above, the con-

sistency property guarantees only the existence of a

solution. Note that decomposability is a sufficient

condition for consistency.�
Decomposition into biconnected components:

The decomposition of the constraint graph into its

biconnected components according to its articula-

tion points3 is a known technique for enhancing the

performance of solving a CSP in general. It pro-

vides an upper bound, in the size of the largest bi-

connected component, to the search effort [9]. We

establish that the new solver we introduce, ✂ STP,

implicitly decomposes the constraint graph into its

biconnected components without using articulation

point. This important observation justifies its high

performance.

3.2 Properties of the STP

A Simple Temporal Problem (STP) is defined by

a graph ✂☎✄✝✆✟✞✡✠☞☛✌✠☞✍✏✎ where ✞ is a set of vertices ✑
representing time points; ☛ is a set of edges ✒✔✓✖✕ ✗ rep-

resenting constraints between two time points ✑ and✘
; and ✍ is a set of constraint labels for the edges;

see Figure 1 (left). A constraint label ✍✙✓✖✕ ✗ of edge

✒✚✓✛✕ ✗ is a unique interval ✜ ✢✣✠✥✤✧✦ , ✢✣✠✥✤✩★✫✪ , and de-

notes a constraint of bounded difference ✢✌✬ (
✘✡✭ ✑✮✎

✬✫✤ . A Temporal Constraint Satisfaction Problem

(TCSP) is defined by a similar graph ✂ = ✆✯✞✰✠✧☛✱✠☞✍✏✎ ,
where each edge label ✍✲✓✖✕ ✗ = ✳✵✴✷✶✹✸✻✺✓✼✗ ✠✏✴✮✶✾✽☞✺✓✼✗ , ✿✙✿✲✿ , ✴✮✶✹❀❁✺✓✼✗❃❂ is

a set of disjoint intervals denoting a disjunction of

3An articulation point of a graph is a vertex whose removal

disconnects the graph. A graph with an articulation point is sep-

arable, otherwise it is biconnected.

2



constraints of bounded differences between ✑ and
✘
,

see Figure 1 (right). We assume that the intervals in

1,2e

= {[3, 5], [6, 9], ...}1,2
I

1,2e

I = [3, 5]1,2

2

1

2

1

Figure 1. Left: STP. Right: TCSP.

a label are ordered in a canonical way. In this paper

we focus on STPs, but we are integrating our results

into an algorithm for solving TCSPs. Below, we

show how we exploit the properties of Section 3.1

in the context of the STP.�
Triangulation of network and convexity con-

straints. In addition to proposing PPC, Bliek and

Sam-Haroud also showed that when the constraints

are convex, the PC algorithm (operating on the com-

plete graph) and the PPC algorithm (operating on

the triangulated graph) yield the same labeling for

the edges common to both graphs. This impor-

tant feature of the PPC algorithm has never been

exploited before in the context of STPs, in which

the constraints– linear inequalities–are indeed con-

vex. Our ✂ STP-solver exploits this result and

yields significant savings of the computational ef-

forts over previously available techniques for estab-

lishing path consistency of the STP.�
Distribution of composition over intersection.

The two operators on binary constraints for es-

tablishing path consistency are constraint compo-

sition � and constraint intersection ✁ . Montanari

showed that when constraint composition is dis-

tributive over constraint intersection, PC guarantees

not only path consistency but also minimality and

decomposabilility [11]. In the case of the STP, con-

straint composition is interval addition, and con-

straint intersection is interval intersection, which

verify the distributivity as noted by Dechter et al.
[8]. Therefore we can deduce that the PPC algo-

rithm and the ✂ STP-solver, guarantee the minimal-

ity and decomposability of the STP. DPC does not

guarantee the path-consistency, minimality or de-

composability of the constraint network, however,

and this is an important feature, it can be used to

determine the consistency of the STP.�
Decomposition into biconnected components. In

the special case of the TCSP, and a fortiori the STP,

Dechter et al. [8] showed that each biconnected

component can be solved independently. If all the

components are found to be consistent, then the en-

tire network is consistent. If any of the components

is not consistent, then the overall temporal network

is not consistent. The minimal network of the orig-

inal problem is obtained by the union of the min-

imal networks of the individual biconnected com-

ponents. When the constraint graph is sparse, this

property is particularly attractive. This allows us to

process the components in parallel, by independent

agents. Thus, decomposition into biconnected com-

ponents is particularly attractive in the case of STPs,

especially for large problems with sparse graphs.

We show that this decomposition is implicit and au-

tomatic in our ✂ STP-solver.

4 STP algorithms

Here we discuss four different algorithms to

solve STPs. The first two solvers, F-W and DPC,

have been extensively studied. However, their

performance in combination with a decomposition

strategy according to articulation points has never

been compared before. The third STP solver we

study is PPC, which has never before been used on

temporal reasoning problems. Finally, we introduce

our new solver, ✂ STP.

4.1 F-W & DPC with articulation points

The Floyd-Warshall (F-W) algorithm for com-

puting all-pairs shortest-paths is a special case of

the PC algorithm. F-W is applied to the distance

graph of an STP to compute its minimal network

in ✂ ✆☎✄✝✆✙✎ . As discussed in Section 3, DPC is a sin-

gle pass algorithm and weaker than PC. It does not

necessarily yield a path consistent, minimal, or de-

composable network, but it determines if the STP

is consistent. DPC can be more efficient than F-W;

instead of ✂ ✆☎✄✝✆✙✎ , DPC can determine the consis-

tency of STP in ✞ ✆☎✄✠✟☛✡ ✆ ✁ ✎ ✽ ✎ , where ✟☛✡ ✆ ✁ ✎ is the

maximum number of parents that a node has in the

induced graph along the ordering
✁
, which can be

substantially smaller than ✄ .

We modify the F-W and DPC algorithms to ex-

ploit the existence of articulation points in the tem-

poral network. First, we identify the biconnected

components [5], then we execute a particular STP

solver on each component, independently. This

3



yields two algorithms, F-W+AP and DPC+AP, re-

spectively. It is easy to show that F-W+AP and

DPC+AP never check more constraints than F-W
and DPC. In fact, for a sparse network, our exper-

iments show that they check substantially less. We

also show empirically that, even in the absence of

articulation points, F-W+AP and DPC+AP almost

never require more CPU time than the original al-

gorithms; when they do, the difference is insignifi-

cant due to the overhead for finding the articulation

points.

4.2 PPC algorithm for STPs

PPC was introduced for general CSPs by Bliek

and Sam-Haroud [1] who showed that the path-

consistency property can be determined in con-

straint graphs by triangulating them instead of com-

pleting them. They showed a significant improve-

ment in performance in comparison to PC in sparse

networks. They also established that, for convex

constraints, both PPC and PC compute the same la-

beling for the edges common to both graphs. Since

the constraints in the STP (constraints of bounded

difference) are convex, we apply for the first time

PPC to solve a continuous domain problem and

compute the minimal network of the STP.

As specified in Figure 2, the PPC algorithm

starts by triangulating the constraint graph ✂ , then

iterates over a queue �✂✁ of all edges, including

those edges added to the temporal graph by the tri-

angulation process. It pops an arbitrary edge ✒ ✓✛✕ ✗
from the queue, recovers all triangles ✄✛✑✥✠ ✘ ✠✆☎✞✝ in

which ✒✔✓✛✕ ✗ participates, and updates its label ✍✙✓✛✕ ✗ by

composing the intervals ✍✙✓✛✕ ❀ and ✍ ❀ ✕ ✗ and intersect-

ing the result of this composition with the interval

✍ ✓✖✕ ✗ . We slightly modify the original algorithm to

allow it to update all three edges at once and to ter-

minate when the queue is empty or inconsistency is

found. The distributivity property of interval addi-

tion over interval intersection guarantees that run-

ning PPC on an STP results in the tightest possible

labeling (i.e., minimal) of the existing edges.

4.3 ✂ STP algorithm

The goal of PPC is to make the labels of the

edges of the triangulated constraint graph as tight

as possible. When the label of an edge in a triangle

PPC ( ✟ ):
Begin

consistency ✠ True✡ ✠ Triangulate ( ✟ )☛✌☞ ✠ edges in
✡

While
☛✍☞✏✎

consistency Do✑✓✒✕✔ ✖ ✠ Dequeue(
☛ ☞

)

Forall ❀ such that ✗ ✓✛✕✛✗☞✕ ❀✙✘ is a subgraph of
✡

Do✚✆✛✒✜✔ ✖ ✠ ✚ ✒✕✔ ✖✣✢ ✶ ✚ ✒✜✔ ✤✦✥ ✚ ✤✧✔ ✖ ✺
When

✚ ✛✒✕✔ ✖✩★✪ ✚ ✒✕✔ ✖ Then
✚ ✒✕✔ ✖ ✠ ✚ ✛✒✜✔ ✖ and Enqueue ✶ ✑✫✒✜✔ ✖ ✕ ☛ ☞ ✺✚ ✛✒✜✔ ✤ ✠ ✚ ✒✕✔ ✤ ✢ ✶ ✚ ✒✕✔ ✖ ✥ ✚ ✖✬✔ ✤ ✺

When
✚ ✛✒✕✔ ✤✭★✪ ✚ ✒✜✔ ✤ Then

✚ ✒✜✔ ✖ ✠ ✚ ✛✒✜✔ ✖ and Enqueue ✶ ✑ ✒✕✔ ✤ ✕ ☛ ☞ ✺✚ ✛✖✬✔ ✤ ✠ ✚ ✖✬✔ ✤ ✢ ✶ ✚ ✖✬✔ ✒ ✥ ✚ ✒✜✔ ✤ ✺
When

✚ ✛✖✬✔ ✤ ★✪ ✚ ✖✬✔ ✤ Then
✚ ✖✬✔ ✤ ✠ ✚ ✛✖✬✔ ✤ and Enqueue ✶ ✑ ✖✬✔ ✤ ✕ ☛✌☞ ✺

When
✚ ✒✕✔ ✖ ,

✚ ✒✜✔ ✤ or
✚ ✖✬✔ ✤ is empty Then consistency ✠ False

Return consistency
End

Figure 2. The PPC algorithm, slightly improved

to consider simultaneously all three edges in a tri-

angle.

is not as tight as it could be, given the labels of the

other edges in the triangle, the label is tightened ac-

cordingly. This process may require tightening the

other edges in the triangle as shown in Figure 3. In

A

B

C

[6, 9]

[2, 7]

[2, 12]
A

B

C

[6, 9]

[2, 7]

[8, 12]
A

B

C

[6, 9]

[8, 12]

[2, 6]

Figure 3. An example of updating edges. The

label of edge BC then that of AC are updated.

this example we can see that it is worth considering

all three edges of a given triangle simultaneously

and updating them sequentially. This observation

is the basis of our first improvement to PPC, and is

already integrated in the algorithm of Figure 2.

When the label of an edge in a given trian-

gle is updated, PPC triggers constraint propagation

over all the triangles in which any of the edges of

the original triangle participate. This is clearly an

overkill since only the triangles in which the up-

dated edges participate need to considered. This ob-

servation was the motivation for our new algorithm.

While all existing methods consider the tempo-

ral network as composed of edges, our new algo-

rithm considers the STP as composed of triangles

(see Figure 4). The graph of the temporal network
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D = <a, c, e>

E = <c, d, e>

C = <b, c, e>

f

e

d

cb

a

B = <a, b, e>

A = <a, b, c>

Figure 4. The temporal graph as a graph of tri-

angles.

is replaced by a graph of triangles. Each triangle

is represented by a node, and two nodes are con-

nected if and only if the triangles they represent

have a common edge. Thus ✂ STP appears as an

AC3-like algorithm [10] on this graph of triangles.

If an edge of the original constraint graph is not a

part of any triangle, it is omitted from the graph of

triangles. Indeed, an edge that does not appear in

any triangle has no effect on the constraint propaga-

tion in the STP and thus can be safely omitted from

the graph of triangles. Consequently:

Proposition 4.1. A tree-structured STP is decom-

posable and consistent, and its edge labels are min-

imal.

We call our new algorithm ✂ STP, although it

is applicable to general CSPs and would more cor-

rectly be called ✂ PPC. The new algorithm is shown

in Figure 5. First, we triangulate the temporal net-

�
STP ( ✟ ):

Begin

consistency ✠ True✡ ✠ Triangulate the graph of ✟☛✂✁ ✠ all triangles in
✡

While
☛ ✁ ✎

consistency Do☛ ☞ ✠ empty list✗ ✓✛✕✖✗☞✕ ❀ ✘ ✠ First(
☛✄✁

)✚ ✛✒✜✔ ✖ ✠ ✚ ✒✜✔ ✖ ✢ ✶ ✚ ✒✜✔ ✤✦✥ ✚ ✤✧✔ ✖ ✺
When

✚ ✛✒✕✔ ✖✩★✪ ✚ ✒✕✔ ✖ Then
✚ ✒✕✔ ✖ ✠ ✚ ✛✒✕✔ ✖ and Enqueue ✶ ✑ ✒✜✔ ✖ ✕ ☛✍☞ ✺✚ ✛✒✜✔ ✤ ✠ ✚ ✒✜✔ ✤ ✢ ✶ ✚ ✒✜✔ ✖ ✥ ✚ ✖✬✔ ✤ ✺

When
✚ ✛✒✕✔ ✤ ★✪ ✚ ✒✕✔ ✤ Then

✚ ✒✕✔ ✖ ✠ ✚ ✛✒✜✔ ✖ and Enqueue ✶ ✑ ✒✕✔ ✤ ✕ ☛ ☞ ✺✚ ✛✖✬✔ ✤ ✠ ✚ ✖✬✔ ✤ ✢ ✶ ✚ ✖✬✔ ✒ ✥ ✚ ✒✜✔ ✤ ✺
When

✚ ✛✖✬✔ ✤ ★✪ ✚ ✖✬✔ ✤ Then
✚ ✖✬✔ ✤ ✠ ✚ ✛✖✬✔ ✤ and Enqueue ✶ ✑ ✖✬✔ ✤ ✕ ☛ ☞ ✺

When
✚ ✒✕✔ ✖ ,

✚ ✒✕✔ ✤ or
✚ ✖✬✔ ✤ is empty Then consistency ✠ False

When consistency
For ✑✆☎ ✔ ✝✟✞ ☛✍☞

Do✠ ☎ ✔ ✝ ✠ all triangles containing ✑ ☎ ✔ ✝
For ✗☛✡ ✕✌☞ ✕✎✍ ✘ ✞ ✠ ☎ ✔ ✝ Do

Unless ✗☛✡ ✕✏☞ ✕✎✍ ✘ ✞ ☛✄✁
Then Enqueue( ✗✑✡ ✕✏☞ ✕✒✍ ✘ , ☛✄✁

)☛ ✁ ✠ Remove( ✗ ✓✛✕✟✗☞✕ ❀✙✘ ✕ ☛ ✁
)

Return consistency
End

Figure 5. The
✓
STP algorithm.

work, using for example the algorithm devised in
[13], which may result in new edges. We add these

edges to the original constraint graph as universal

constraints setting their label to ✆ ✭✕✔ ✠ ✔ ✎ . Then

we put all the triangles into a queue, � ✠ , of size

✞ ✆✗✖ ☛✘✖✚✙✜✛✒✢✤✣✗✛✥✛✏✆✟✂ ✎✻✎ )4. We check every triangle in the

queue. If a given triangle ✄✖✑✧✠ ✘ ✠✆☎ ✝ is not minimal,

then we update one or more of its edges. We then

retrieve all the adjacent triangles that contain any of

the updated edges and add them to � ✠ if they are

not already there. Finally, we remove ✄✛✑✥✠ ✘ ✠ ☎ ✝ from

the queue, and repeat this process until � ✠ is empty

or inconsistency is found.

4.4 Features of ✂ STP

We summarize the features of ✂ STP as follows:� ✂ STP has the same pruning power as F-W with

less effort. ✂ STP achieves minimality on the trian-

gulated graph, without requiring the completion of

the graph, which is necessary for F-W. This yields

dramatic gains in the computational effort.� ✂ STP automatically decomposes the graph into

its biconnected components. The decomposition of

the graph into its biconnected components is an ef-

fective technique to bind the search effort and en-

hance the performance of solving a CSP. Our ex-

periments of Figure 7 and 8 and Table 2 and 3 show

how such a strategy can improve the performance

of the F-W algorithm, even when the articulation

points must be explicitly identified. Because con-

straints propagate through triangles, PPC and con-

sequently ✂ STP implicitely exploit the decompo-

sition into biconnected components. Consider a tri-

angulated temporal network composed of two sets

of nodes ✦ = ✳★✧ , ✩ ✸ , ✩ ✽ , ✿✙✿✲✿ , ✩✫✪ ❂ and ✬ = ✳✗✧ , ✭ ✸ ,✭ ✽ , ✿✙✿✲✿ , ✭✜✮ ❂ , and ✧ is the articulation point. Suppose

that edges exist only between nodes in either ✦ or

✬ . Since no edges connect these two sets, there

obviously are no triangles that connect them. All

triangles are either in set ✦ or in set ✬ . As shown

in Figure 4, two triangles in the graph of triangles

can only be connected by a common edge. There-

fore, no triangle in set ✦ is connected to a triangle

in set ✬ . When PPC and consequently ✂ STP prop-

agate constraints through neighboring triangles, no

updates in set ✦ may affect triangles in set ✬ . As a

result, PPC and ✂ STP implicitly guarantee that ar-

4Note that ✯✱✰✳✲✵✴✷✶✹✸✌✴✎✴✻✺✽✼✱✾✌✾✿✰❁❀
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ticulation points in the graph (if any), are expoited,

as if the network was decomposed into its bicon-

nected components without actually decomposing

it.� ✂ STP is cheaper than PPC. ✂ STP and PPC use

the same idea of Bliek and Sam-Haroud [1]; how-

ever, ✂ STP is more careful about how updates are

propagated and thus exploits triangulation of the

graph more effectively than PPC. Although prop-

agation of PPC occurs through triangles, PPC does

not have a mechanism to record which triangles re-

ally need to be checked. This inability causes some

unnecessary constraint checks and a waste of CPU

time.�
Our improvement in solving the STP directly ben-

efits the task of solving the TCSP. TCSP is NP-hard

and is solved with backtrack search. Every node

expansion in the search tree needs to solve an STP.

Thus a good STP solver is crucial for solving the

TCSP. We are currently demonstrating this idea and

showing how the decomposition into independent

components is particularly useful in this context.

5 Empirical evaluations

We implemented the following six algorithms in

Common Lisp. Floyd-Warshall (F-W), Directed-

Path Consistency (DPC), and in combination with a

mechanism for detecting and exploiting articulation

points, F-W+AP and DPC+AP, Partial Path Con-

sistency (PPC), and our new triangle-based solver

( ✂ STP). We used three generators of random STPs:

GenSTP-1, SPRAND, and GenSTP-2. GenSTP-
1 is our own generator. We designed it to guarantee

that graphs are connected and that at least 80% of

the generated instances are consistent. SPRAND is

one class of STPs generated by the public domain

library SPLIB, [4]. All the problems we gener-

ate with SPRAND have a cycle connecting all the

nodes (i.e., a structural constraint). This guarantees

strong connectivity and the absence of any articu-

lation points. Finally, GenSTP-2 is a generator

given to us by Ioannis Tsamardinos and was used in
[14]. GenSTP-2 does not enforce the existence of

a structural constraint. The density of the temporal

network is defined as �✌✒ ✄✂✁✙✑☎✄✆✭ ✄ ✆ ✁ ✆ ✝✞✆ ✁ ☎ ✒✑✝ ✆✆ ✁ ☎✠✟☛✡ ✆ ✝☞✆ ✁ ☎ ✒ ✝ ✆ .
Table 1 summarizes the characteristics of the prob-

lems tested, including the size of the instances and

the number of samples generated for each measure-

ment point. The results, measured in terms of the

number of constraint checks and CPU time, were

averaged over the number of instances and showed a

precision of 5%. The detailed data of the above ex-

periments on the instances generated by GenSTP-
1 and SPRAND are shown in Table 2 and 3. The

CPU time measurements are made in msec, with a

clock resolution of 10 msec.

5.1 Experiments conducted

Using the 50-node problems generated by

GenSTP-1, we conducted the following experi-

ments:�
Managing the queue in ✂ STP. The manner in

which triangles are inserted in the queue affects

the performance of ✂ STP. We tested three heuris-

tics for adding the triangles to the queue: at the

front of queue ( ✂ STP-front), at the end of

queue ( ✂ STP-back), and random insertion into

the queue ( ✂ STP-random). All three strategies

resulted in the same output (i.e., the same label of

the edges). The results in terms of constraint checks

are presented in Figure 6. The results show that

✂ STP-back consistently performs the least num-

ber of constraint checks. This can be informally in-

STP-front

STP-random

STP-back

GenSTP-1: 50 nodes

Figure 6. Constraint Checks for
✓
STP-front,✓

STP-back and
✓
STP-random.

terpreted as follows. It is more effective to propa-

gate the constraints as early as possible across the

network, in a ‘sweeping’ manner. Interestingly, we

noticed that quiescence was consistently reached

in 7 or fewer iterations. We use ✂ STP-back in

the rest of our study.�
Computing the minimal network. F-W, F-W+AP,
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Table 1. Parameters of problems generated.

Problem size

Generator #Nodes Density #Edges Samples Results

Range Step Range Step per point

GenSTP-1 50, 100 [0.01, 0.1] 0.01 100 Table 2 and

50, 100 [0.2, 0.9] 0.1 100 Figure 6, 7, 8

SPRAND 50 [200, 2000] 200 100 Table 3

100 [400, 1400] 200 100

100 [1600, 2800] 400 100

257 0.016 768 5 Figure 9

513 0.008 1536 5

GenSTP-2 256 0.016 3 � 256 = 768 5 Figure 9

512 0.008 3 � 512 = 1536 5

F-W

F-W+AP

PPC

STP

GenSTP-1: 50 nodes

STP

PPC
F-W+AP

F-W

GenSTP-1: 50 nodes

Figure 7. Constraint Checks (left) and CPU time (right) for F-W, F-W+AP, PPC, and
✓
STP.

PPC and ✂ STP (but not DPC) result in the labels

of the common edges, the minimal labels. Figure 7

shows that ✂ STP clearly and significantly domi-

nates all others, for all values of density.

�
Saving on the constraint checks. DPC does not

necessarily yield the minimal network, but it can

determine whether or not the network is consistent

in significantly fewer constraint checks than F-W.

Figure 8 shows that ✂ STP, which is more powerful

in terms of pruning power and yields the minimal

network, dominates DPC-like strategies when den-

sity is less than 50%.

�
Effect of problem size. In order to compare the

performance of these different solvers on larger

problems, we tested them on larger problems gener-

ated by SPRAND and GenSTP-2. Figure 9 and 10

show the ratio of the number of constraint checks

and that of the CPU time needed for all six strate-

gies in reference to the values needed for F-W.

5.2 Observations

From the above experiments, we draw the fol-

lowing observations:�
Using articulation points. Dechter et al. [8]

showed that decomposing the temporal network

into its biconnected components is particularly ef-

fective in enhancing the performance of search. It

is worth recalling that this decomposition does not

affect the quality of the solution: the same edge

labels are found with and without decomposition.

Figure 7 and 8 show that only F-W realizes sig-

nificant savings when the density is low. In con-

trast, decompostion into biconnected components

does not benefit the DPC solver to the same ex-

tent. This can be explained by the fact that the

cost of DPC is bounded by ✞ ✆ ✄✠✟ ✡ ✆ ✁ ✎ ✽ ✎ , where

✟ ✡ ✆ ✁ ✎ is the maximum number of parents that a

node has in the induced graph. Decomposition does

not significantly change the induced width ✟ ✡ ✆ ✁ ✎ ;

the total cost of solving the subproblems is not sig-
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Table 2. Experimental results for STP solvers on random STP generated by GenSTP-1.
Random STP generated by GenSTP-1 with 50 nodes

�

F-W F-W+AP DPC DPC+AP PPC
✁
STP

Density CC CPU (s) CC CPU (s) CC CPU (s) CC CPU (s) CC CPU (s) CC CPU (s)

0.01 122200.5 0.822 29924.05 0.2091 1777.03 0.1168 744.44 0.0307 273.97 0.0039 125.75 0.0025

0.02 123001.5 0.8347 59091.93 0.4026 3572.7 0.1304 2364.62 0.0683 837.9 0.0109 409.64 0.0045

0.03 120339.99 0.8389 79195.61 0.5297 4769.95 0.1376 3833.36 0.0945 1532.55 0.02 761.71 0.0091

0.04 120044.01 0.8063 90934.63 0.6029 6411.11 0.1547 5525.58 0.1176 2529.68 0.03 1270.41 0.0115

0.05 117382.5 0.7935 99076.94 0.6591 8106.14 0.161 7510.24 0.1394 3766.13 0.0433 1910.97 0.0188

0.06 120075.49 0.8209 108975.06 0.7251 10204.46 0.1804 9746.2 0.1679 5207.57 0.0599 2622.19 0.0269

0.07 120940.51 0.8637 113426.05 0.756 11487.391 0.189 11175.431 0.1818 6679.19 0.0782 3445.79 0.0358

0.08 116800 0.7862 112267.63 0.7598 11715.94 0.1894 11447.12 0.181 7861.92 0.0879 4109 0.0424

0.09 115321.5 0.7778 112951.92 0.7525 13024.311 0.1976 12915.95 0.1986 9240.66 0.1031 4800.74 0.0531

0.1 116336.5 0.7947 114676.23 0.7617 14072.08 0.2115 13975.311 0.207 10857.08 0.1247 5705.62 0.0649

0.2 108926.5 0.7335 108852.99 0.7342 21203.27 0.2717 21203.262 0.2705 23677.2 0.2624 12631.6 0.1533

0.3 120195.99 0.8113 120195.99 0.8019 28912.988 0.347 28912.988 0.3442 41404.09 0.4637 22206.16 0.2676

0.4 106959.5 0.7213 106959.5 0.7147 27121.85 0.3313 27121.85 0.3252 43483.79 0.4958 23388.791 0.291

0.5 108896.5 0.7487 108896.5 0.732 29731.49 0.3506 29731.49 0.3514 53446.668 0.6162 28504.24 0.3553

0.6 109074.99 0.7376 109074.99 0.7314 31533.85 0.3732 31533.85 0.3692 57422.24 0.6662 30716.22 0.4083

0.7 109592 0.7502 109592 0.7294 32002.16 0.3795 32002.16 0.3725 62265.727 0.7224 33464.38 0.4269

0.8 107428.51 0.7298 107428.51 0.7116 32391.83 0.3816 32391.83 0.3719 64625.727 0.7439 34257.42 0.443

0.9 108566.5 0.741 108566.5 0.7207 33249.992 0.3925 33249.992 0.3796 67977.31 0.7931 36429.34 0.4616

Random STP generated by GenSTP-1 with 100 nodes

0.01 976155.06 8.3611 486223.66 4.088 21574.19 1.0156 14401.68 0.5275 4424.22 0.0586 2225.99 0.0108

0.02 955417 8.2284 737264.25 6.2037 45044.293 1.3432 39022.73 0.9329 14764.17 0.2035 7803.66 0.0772

0.03 944883 7.9927 855073.25 7.142 71363.34 1.3655 67750.06 1.2528 31849.158 0.3818 16698.209 0.1795

0.04 920881.06 7.8254 879589.9 7.3463 89384.945 1.4859 87387.805 1.4347 49463.91 0.5777 26350.969 0.3076

0.05 931483.06 7.8308 918906.56 7.71 115620.83 1.7429 114994.93 1.7121 72491.46 0.8411 38301.637 0.472

0.06 886372.94 7.5324 879934.7 7.3403 116526.336 1.6933 116144.984 1.6616 85443.125 1.0262 45141.34 0.5847

0.07 916842 7.7882 914465.9 7.6159 145073.03 1.9288 144846.11 1.9396 113607.77 1.3013 61303.09 0.8185

0.08 924955.94 7.907 924361.94 7.7039 148479.61 1.9416 148393.72 1.9335 129904.16 1.4633 70892.98 0.9267

0.09 935953 7.9439 935805.6 7.7978 167192.17 2.1092 167192.17 2.1225 161399.25 1.8614 86110.63 1.1857

0.1 895177 7.7186 894583 7.4615 165887.34 2.086 165803.48 2.0561 165634.69 1.9312 90790.92 1.2733

0.2 883597 7.5387 883597 7.3604 218225.31 2.4666 218225.31 2.4527 320976.06 3.7723 175113.86 2.6166

0.3 860400 7.4074 860400 7.1667 232372.25 2.5446 232372.25 2.5384 396075.3 4.7658 219178.31 3.3071

0.4 833850 7.1203 833850 6.9936 240254.4 2.6094 240254.4 2.5553 446748.47 5.4984 247012.77 3.805

0.5 879490.06 7.554 879490.06 7.3287 262964.03 2.8133 262964.03 2.7976 520176.78 6.4435 287163 4.4565

0.6 891914.06 7.6565 891914.06 7.4904 276184.53 2.9108 276184.53 2.8815 564749.56 6.734 309157.75 4.7986

0.7 866636 7.4485 866636 7.3051 267027.4 2.8092 267027.4 2.8233 554381.6 6.5875 303306.12 4.7356

0.8 847892 7.3271 847892 7.2994 258738.61 2.733 258738.61 2.6769 552344.1 6.4986 299997.22 4.8764

0.9 854969 7.3954 854969 7.3383 266861.47 2.8032 266861.47 2.7704 568128.25 6.7406 309514.87 4.9663

nificantly smaller than that of solving the original

problem. When density is high, the network can-

not be decomposed, and F-W+AP and DPC+AP per-

form almost the same as F-W and DPC, respectively.

The problems generated by SPRAND cannot be de-

composed because of the existence of a cycle that

connects all nodes (i.e., structural constraint). In-

deed, Table 3 shows the same number of constraint

checks for the algorithms with and without articula-

tion points. However, the required effort for finding

these articulation points is negligible, as CPU times

are the same within the resolution of the clock.�
Improvements due to PPC: Given the constraint

semantics, PPC is guaranteed to yield the same la-

bels as F-W and F-W+AP on their common edges.

Since PPC operates on the triangulated graph, it

performs significantly better for low density values

than F-W, which operates on the complete graph,

and even F-W+AP, which exploits the existence of

articulation points. When the constraint density in-

creases, the number of triangles in the graph also

increases and so does the cost of PPC. However,

the number of constraint checks and, to some ex-

tent, the CPU time for PPC remain less than those

for F-W and F-W+AP, which quickly reach a stable

value, ✂ ✆☎✄✝✆✙✎ . For the larger problems generated by

SPRAND and GenSTP-2), Figure 9 and 10 show

the PPC outperforms DPC and DPC+AP, which in

turn outperform F-W and F-W+AP. Note, however,

that DPC and DPC+AP do not yield the tightest net-

work. A comparison of Figure 9 and 10 shows

that the performance of PPC is better on problems

generated by GenSTP-2 than on those generated

by SPRAND. This is due to the existence of a cy-

cle connecting all the nodes in problems generated

by SPRAND, which prevents decompositions and

causes the triangulation process to add relatively

more edges.�
Improvements due to ✂ STP. As a refinement of

PPC, ✂ STP exploits the benefits of triangulation

to a greater degree than PPC does. Experimental

results show that ✂ STP has always better perfor-

mance than PPC in all experiments we performed

(Figure7 and Table 2 and 3). For high density val-

ues, ✂ STP can show a worse performance than

DPC (Figure 8). However, this slight degradation is

misleading since it does not account for the output

of these two algorithms. Indeed, ✂ STP guarantees

the minimal network and DPC does not. Hence, the

performance of the former remains superior. The
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Table 3. Experimental results for STP solvers on random STP generated by SPRAND.
Random STP generated by SPRAND with 50 nodes

Number of
�

F-W F-W+AP DPC DPC+AP PPC
✁
STP

Edges CC CPU (s) CC CPU (s) CC CPU (s) CC CPU (s) CC CPU (s) CC CPU (s)

200 125000 0.8467 125000 0.8255 21824.031 0.2798 21824.031 0.2847 20247.77 0.236 12111.471 0.1595

400 125000 0.8492 125000 0.8301 30981.5 0.3677 30981.5 0.3732 42313.25 0.4893 25902.35 0.347

600 125000 0.8441 125000 0.8244 34524.73 0.4044 34524.73 0.4035 56231.418 0.6606 34142.043 0.4656

800 125000 0.8467 125000 0.8274 36254.89 0.4255 36254.89 0.4176 64894.547 0.7594 39436.86 0.5334

1000 125000 0.8457 125000 0.8281 37302.24 0.4369 37302.24 0.4318 69790.15 0.825 42623.07 0.5697

1200 125000 0.8521 125000 0.8242 38020.63 0.4473 38020.63 0.4382 73899.914 0.8671 44889.09 0.5796

1400 125000 0.8501 125000 0.8243 38502.508 0.4556 38502.508 0.4442 76743 0.9067 46354.59 0.608

1600 125000 0.8513 125000 0.8331 38902.95 0.4647 38902.95 0.4458 79116.336 0.927 47597.69 0.6287

1800 125000 0.8553 125000 0.8343 39166.152 0.4694 39166.152 0.4532 80540.03 0.9526 48321.05 0.6306

2000 125000 0.8621 125000 0.8363 39381.36 0.4577 39381.36 0.4519 81024.4 0.9536 48789.93 0.6291

Random STP generated by SPRAND with 100 nodes

400 1000000 8.5076 1000000 8.3707 167877.39 2.1703 167877.39 2.1947 144819.36 1.7659 85055.414 1.4427

600 1000000 8.5019 1000000 8.3572 218599.22 2.5686 218599.22 2.5723 241016.73 2.8585 146966.83 2.5927

800 1000000 8.5177 1000000 8.3523 245378.12 2.775 245378.12 2.7759 318725.3 3.7333 198716.12 3.441

1000 1000000 8.5218 1000000 8.3476 263177.97 2.9213 263177.97 2.9205 380805.94 4.4388 236103.58 4.1202

1200 1000000 8.6507 1000000 8.3242 275036.7 3.0351 275036.7 3.0053 434212.72 5.0349 268235.28 4.6083

1400 1000000 8.6643 1000000 8.3216 283548.44 3.0986 283548.44 3.0367 474789.12 5.4202 292905.87 4.886

1600 1000000 8.7028 1000000 8.3169 289520.4 3.1461 289520.4 3.082 512087.9 6.1406 313113.25 5.4773

2000 1000000 8.7978 1000000 8.3284 298104.53 3.2074 298104.53 3.148 565111.94 6.9515 343748.66 6.0293

2400 1000000 8.5296 1000000 8.3569 303608.8 3.2493 303608.8 3.2088 599295 6.7189 365377.84 5.9462

2800 1000000 8.8195 1000000 8.341 307894.12 3.2842 307894.12 3.2199 631238.44 7.3478 382691 6.1807

STP

DPC

DPC+AP

GenSTP-1: 50 nodes

DPC

DPC+AP

STP

GenSTP-1: 50 nodes

Figure 8. Constraint Checks (left) and CPU time (right) for DPC, DPC+AP, and
✓
STP.

experiments on large problems, shown in Figure 9

and 10, demonstrate that ✂ STP is the absolute win-

ner over all algorithms. A comparison of Figure 9

and 10 shows that ✂ STP, like PPC, is sensitive to

the structure of the temporal graph (i.e., the exis-

tence of a cycle). It is more effective on problems

generated with GenSTP-2 than on those generated

with SPRAND.

5.3 Significance of our results

In practice, most real-world applications exhibit

typically STPs with large size and low density [2].

The performance of an STP solver in these situa-

tions becomes extremely important. ✂ STP is per-

fect for this kind of job. Its outstanding performance

under low density is particularly advantageous and

makes it the best algorithm developed to date. Fur-

ther, when solving a TCSP with search, the STP ex-

amined at each node in the search tree is a subgraph

of the original TCSP and thus has a lower den-

sity than the TCSP. This supports the importance

of an efficient STP solver for low density networks.

We expect the combination of ✂ STP with a TCSP

solver to improve dramatically the performance of

current TCSP solvers.

6 Conclusion and future work

We introduced ✂ STP, a new efficient algorithm

for solving the STP. Our algorithm advantageously

exploits previous results reported in the literature

and binds them via a new strategy for constraint

propagation based on triangles. We demonstrated

that this algorithm outperforms all previous ones

in terms of pruning power and performance. We

are currently integrating our new STP solver with

a TCSP solver to improve the performance of the

latter. More importantly, ✂ STP solver provides us
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GenSTP-2: 256 nodes

                  512 nodes

Constraint Checks

GenSTP-2: 256 nodes

                  512 nodes

CPU time

Figure 9. Constraint Checks (left) and CPU time (right) for STP solvers, problems generated by GenSTP-2.

SPRAND:  257 nodes

                  513 nodes

Constraint Checks

SPRAND:  257 nodes

                  513 nodes

CPU time

Figure 10. Constraint Checks (left) and CPU time (right) for STP solvers, problems generated by SPRAND.

with a new perspective on temporal problems as

composed by a set of triangles, where two triangles

are connected if and only if they have one common

edge. Constraint propagation can be carried out ac-

cording to this new graph of triangles. We are ex-

ploiting this idea to improve the search performance

of the TCSP solver.
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