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Abstract—The time-to-frequency-domain conversion is often required
in many applications of the finite-difference time-domain (FDTD)
method. This paper presents a new FDTD time-to-frequency-
domain conversion algorithm based on the optimization of nonuniform
fast Fourier transform (NUFFT) with several redundancy-reduction
techniques. The proposed algorithm can perform the FDTD conversion
at multiple desired frequencies without the limitation of uniformly
spaced frequencies in the fast Fourier transform (FFT). In addition,
with a very low storage cost, the algorithm can be much more efficient
than other FDTD conversion techniques if a moderate number of
frequencies or more are of interest. This algorithm is very useful for
some FDTD applications.

1. INTRODUCTION

The finite-difference time-domain (FDTD) method [1] has been
extensively used to provide broad-band results for electromagnetic
parameters in various applications, such as radar cross section (RCS)
calculations [2, 13], analysis of antenna radiation patterns [3], and
specific absorption rate (SAR) of the human body [4]. In these
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applications, one needs to convert a large number of FDTD sequences
to multiple frequencies which may be nonuniformly spaced. Several
FDTD time-to-frequency-domain conversion techniques have been
developed previously. They include the discrete Fourier transform
(DFT) [5], the fast Fourier transform (FFT), the recursive Goertzel
algorithm [3] and linear equation methods [6]. Despite the success
of these techniques, the problem of converting a large number of
FDTD sequences to multiple nonuniformly spaced frequencies is not
well solved yet, due to the following three reasons:

1) The DFT and the recursive Goertzel algorithm implement the
multiple-frequency conversion by equivalently performing multiple
single-frequency conversions. This is a computationally efficient
way for a few but not for many frequencies.

2) Linear equation methods need to find the inverse of a matrix.
The computational time is very small for a few frequencies, but
increases very quickly as the number of frequencies increases [6]. In
addition, they have the problem that attends a poorly-conditioned
matrix [6] if the conversion over a large number of frequencies is
required.

3) The FFT is a very efficient tool for computing the DFT for
multiple frequencies. However, the FFT cannot obtain the results
exactly located at desired nonuniformly spaced frequencies even
if zero-padding is used. In addition, the FFT algorithm requires
storage of complete time history of the FDTD sequence. This is
very expensive in disk storage for our concerned situation.

Recent developments in nonuniform fast Fourier transform
(NUFFT) algorithms [7–10] provide more efficient tools to evaluate the
DFT for nonuniformly spaced frequencies. We adopt the basic idea of
the NUFFT algorithm presented by Liu and Nguyen in [8] and [9], and
introduce several redundancy-reduction techniques to further reduce
the requirements in both computation and storage of this NUFFT
algorithm for the specific application of this paper. First, we modify
the original NUFFT of [8] to have real interpolation coefficients, which
halves the computational cost of the interpolation processing. Second,
we utilize a real-valued FFT technique [11] to reduce the oversampling
FFT computation required for the NUFFT implementation. Third, we
develop a segmentation strategy to remove the requirement of storing
the complete time histories of FDTD sequences. Consequently, the
proposed algorithm is storage and computationally efficient, and is
particularly suitable for converting a large number of FDTD sequences
to multiple frequencies. The comparison with other FDTD conversion
techniques is also given in this paper.
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2. FORMULATION AND ALGORITHM

We assume that βn = β(nΔt) is an FDTD simulation sequence to
be converted, where Δt is the sampling period (βn and Δt represent
the desampled sequence and time resolution if desampling is used).
The problem is to find the following Fourier summation for k =
0, 1, . . . , Nf − 1:

gk =
Nt−1∑
n=0

βnej2πfknΔt (1)

where j =
√−1, and {fk} are frequencies of interest and are

not necessarily uniformly spaced. Direct DFT computation requires
O(NtNf ) CPU time complexity. The NUFFT algorithms in [7–10]
can be used to speed up the computation of DFT. In particular,
the NUFFT algorithm presented in [8] and [9] calculates the least-
square error (LSE) interpolation coefficients to improve the accuracy
performance. The dominant computational complexity is about
O(μNt log2(μNt)), and the storage complexity is O(μNt), where μ is
the FFT oversampling factor. We shall show that for the case of FDTD
conversion, this cost can be further reduced by removing redundant
computation and storage in the original NUFFT algorithm.

2.1. Modified NUFFT with Real Interpolation Coefficients

Here we modify the original NUFFT algorithm in [8] and [9] such that
the resulting interpolation coefficients are real-valued. For simplicity,
we assume that the length N of data is odd, otherwise one zero-point
can be padded to the original data. We consider the following DFT
computation

g̃k =
(N−1)/2∑

n=−(N−1)/2

βnej2πckn/N (2)

where ck = ΔtfkN . The key step of the NUFFT algorithm is
to approximate an exponential by linear combination of some other
exponentials with uniformly spaced frequencies. That is to find xr−q/2

(r = 0, 1, . . . , q) to satisfy the following condition:

snwnμc =
[μc]+q/2∑

k′=[μc]−q/2

xk′−[μc](c)w
nk′

(3)

where w = ej2π/NFFT , μ = NFFT/N (μ ≥ 1), and [μc] denotes the
integer nearest to μc. The above condition should be satisfied for
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n = (−N + 1)/2, (−N + 3)/2, . . . , (N − 1)/2. It can be proved that if
sn is conjugate-symmetric, the least-squares (LS) solution x(c) to the
above equations are real-valued (the proof is given in Appendix A).
This is different from the case of the original NUFFT algorithm in [8]
and [9] where the LS interpolation coefficients are always complex-
valued.

In practice, x(ck) (k = 0, 1, . . . , Nf − 1) can be calculated by

x(ck) = F−1a(ck) (4)

where F is a (q + 1)× (q + 1) Toeplitz matrix

Fi1i2 =

⎧⎨
⎩

N, i1 = i2
w(i2−i1)/2

[
w(i1−i2)N/2 − w(i2−i1)N/2

]
1− w(i2−i1)

, i1 �= i2
(5)

and

ar(ck) =
(N−1)/2∑

n=−(N−1)/2

sne
j 2πn

NFFT
(μck−[μck]+q/2−r)

. (6)

In particular, for an accuracy factor sn = cos πn
NFFT

,

ar(ck) = −j
∑

γ=−1,1

ejφk/N

1− ej2φk/N
sinφk (7)

where φk = π
2μ(2μck − 2[μck] + q − 2r + γ). Since the cosine accuracy

factor is symmetric, x(ck) is theoretically real. Numerical error in
the evaluation of (4), (5) and (7) results in an imaginary part that is
usually more than ten orders of magnitude smaller than the real part.
We can use only the real part of x(ck) for interpolating FFT results
onto the desired frequency-domain locations without decreasing the
accuracy. This halves storage and computational requirements of the
interpolation processing.

The modified NUFFT algorithm is described as follows:
1) Scale the input data by the accuracy factor βn ← s−1

n βn.
2) Apply FFT to evaluate

Tk =
NFFT/2−1∑

n=−NFFT/2

βnej2πnk/NFFT . (8)

3) Calculate g̃k =
q∑

r=0

Re[xr−q/2(k)]T[μck ]+r−q/2.
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Usually, the oversampling condition μ ≥ 1.5 is required for a good
accuracy. Hence, if the radix-2 FFT [12] is used, a reasonable choice is
to set NFFT = 2[log2(3N/

√
2)], so that v = NFFT/N is always between 1.5

and 3, which allows for a good balance between accuracy and efficiency.
In the above procedure, scaling the data costs N real

multiplications, (μN)-point FFT requires 0.5μN log2(μN) complex
multiplications (suppose the radix-2 algorithm [12] is used), and the
interpolation processing requires 2(q + 1)Nf real multiplications. If
we implement each complex multiplication by four real multiplications
and two additions, the total number of real multiplications for this
modified NUFFT algorithm is about 2μN log2(μN) + N + 2(q +
1)Nf (this excludes the precomputation cost). Compared with the
original NUFFT algorithm in [8], this algorithm saves 2(q + 1)Nf

multiplications.

2.2. Real-Valued FFT for Real Data

The FDTD data are real-valued. Utilizing this information can halve
the computational cost of the FFT of (8). A number of techniques
for efficiently computing the FFT of a real-valued sequence have been
presented by Sorensen et al. in [11] and other researchers. Among
them, a simple technique is to use the symmetry of the FFT to
transform two real-valued sequences simultaneously by computing one
complex-FFT. Thus, transforming two real-valued sequences costs only
the same as one complex-FFT. More details about this technique can
be found in [11]. We incorporate this technique into the modified
NUFFT algorithm for reducing the computational cost of (8). In
our concerned situation, a large number of FDTD conversions at
different locations are required. We can perform time-to-frequency-
domain conversions for two FDTD sequences simultaneously. The
cost per computation of (8) is halved. Therefore, the total number
of multiplications per modified NUFFT is reduced to μN log2(μN) +
N + 2(q + 1)Nf in this situation.

2.3. Segmentation Strategy

Here we develop a segmentation strategy to remove the requirement of
storing complete time histories of FDTD sequences. This segmentation
strategy is to break the FDTD sequence into multiple small segments
and perform multiple small-size NUFFTs in instead of one Nt-point
NUFFT. Assume that Ns (an odd number) is the length of data per
segment, and L = ceil[Nt/Ns]. Thus, we can extend the original
sequence βn by padding few zeros to an (LNs)-length sequence and
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split this sequence into L segments of length of Ns. Let us define

β(l)
p = βp+lNs+(Ns−1)/2 (9)

where l = 0, 1, . . . , L−1, and p = (−Ns +1)/2, (−Ns +3)/2, . . . , (Ns−
1)/2. Substituting (9) into (1), we have

gk =
L−1∑
l=0

(Ns−1)/2∑
p=−(Ns−1)/2

β(l)
p ej2πfkΔt[p+lNs+(Ns−1)/2]. (10)

Defining
ck = ΔtfkNs (11)

and

g
(l)
k =

(Ns−1)/2∑
p=−(Ns−1)/2

β(l)
p ej2πckp/Ns (12)

we rewrite (10) as

gk = ejπck(Ns−1)/Ns

L−1∑
l=0

g
(l)
k zl

k (13)

where zk = ej2πck . Clearly, (12) has the same form as (2). Hence, g
(l)
k

can be calculated efficiently by performing Ns-point modified NUFFT.
The final results gk are just summations of all the g

(l)
k with weight of

zl
k.

This segmentation strategy can reduce the storage requirement
from O(μNt) to O(μNs). In addition, since usually Nf � Nt in the
FDTD conversion situation [5], this segmentation can also reduce the
computational requirement by choosing a suitable Ns.

2.4. The Proposed Conversion Algorithm

We incorporate the modified NUFFT algorithm and the real-valued
FFT technique into the above segmentation scheme, and construct
an efficient way of implementing the FDTD time-to-frequency-domain
conversion. The proposed algorithm is described below:

1) Set the parameters Ns and NFFT (or μ = NFFT/Ns).
2) Precompute the inverse of cosine accuracy factor s−1

p =

sec
(

πp
NFFT

)
for p = (−Ns + 1)/2, (−Ns + 3)/2, . . . , (Ns − 1)/2.
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3) Precompute xr−q/2(ck) by replacing N with Ns in (4), (5) and
(7), where r = 0, 1, . . . , q and k = 0, 1, . . . , Nf − 1. This requires
O((q + 1)2Nf ) complex multiplications.

4) Initialize ĝk = 0 for k = 0, 1, . . . , Nf−1, and for l = 0, 1, . . . , L−1:

(i) Scale FDTD data by β
(l)
p ← s−1

p β
(l)
p . This costs LNs multipli-

cations for L loops.
(ii) Apply the real-valued FFT to evaluate

Tk =
NFFT/2−1∑

p=−NFFT/2

β(l)
p ej2πpk/NFFT .

This costs about μLNs log2(μNs) multiplications.
(iii) ĝk ← z−1

k ĝk +
∑q

r=0 Re[xr−q/2(ck)]T[μck]+r−q/2. This costs
2(q + 1)LNf real multiplications and (L − 1)Nf complex
multiplications.

5) Finally ĝk ← ejπck[(2L−1)Ns−1]/Ns ĝk. This costs Nf complex
multiplications.
Since q,Nf � Nt, the time cost of O((q + 1)2Nf ) for the

precomputation is very small. Especially for our concerned situation
where a large number of conversions over the same frequency locations
are required, we just need to run the precomputation once, thus
the precomputation time is completely negligible in this situation.
Hence, the total number of multiplies is about LμNs log2(μNs)+2(q +
3)LNf + LNs (suppose we count one complex multiplications by four
real multiplications), which is approximately equal to Nt[μ log2(μNs)+
2(q + 3)Nf /Ns + 1]. Note that in the proposed algorithm, the
summation ĝk can be updated once the FDTD procedure finishes each
Nf -step simulation. Hence, the storage requirement (per each field
component) of the proposed algorithm is μNs real values for the real-
valued FFT and Nf complex conversion results.

The above complexity analysis also implies that selection of
different Ns allows the proposed algorithm to have different storage
and computational requirement. In general, the best Ns in term of
computational efficiency is usually larger than Nf but smaller than
Nt. However, when the storage space is limited, Ns should be chosen
such that the storage requirement can be satisfied. An automatic
choice for the case of Nf ≥ 3 is to set NFFT = 2[log2(3Nf /

√
2)] and

Ns = 2[NFFT/3] − 1. In this case, Ns is approximately within
0.9Nf ∼ 2Nf , and μ is equal to or marginally larger than 1.5. This
choice usually gives a good balance among the computational efficiency,
storage requirement and accuracy.
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The advantages of the proposed algorithm are as follows.

• This algorithm retains the accuracy performace of the NUFFT
presented in [8] and [9]. For arbitrarily spaced frequencies
of interest, high accuracy conversions can be obtained through
precalculating the LSE interpolation kernel.

• This algorithm not only takes advantage of the computational
efficiency of the NUFFT, but also further avoids many redundant
calculations for this specific application. Consequently, this
algorithm becomes very efficient, especially when a moderate
number of frequencies or more are of interest.

• No matter how long the length of FDTD input data is, the
proposed algorithm only requires a memory space of μNs + 2Nf

real values. The parameter Ns can be determined by users.

3. PERFORMANCE TEST AND COMPARISON

3.1. Accuracy Performance

We compare results of the proposed algorithm for (1) with those of
direct summations by using the DFT. The relative errors is defined as:

E2,∞ =
‖ĝk − gk‖2,∞
‖gk‖2,∞

(14)

where ‖ · ‖2 and ‖ · ‖∞ represent the second norm and infinity norm,
respectively.
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Figure 1. Time-to-frequency-domain conversion results of the
proposed algorithm and the DFT for an x-polarized electric field
component at (0, 0.04, 0.05) m of a 0.1 m dielectric cube with εr = 4.
(a) and (b) show amplitude and phase of the spectrum, respectively.



Progress In Electromagnetics Research, PIER 92, 2009 41

As an example, the time-to-frequency-domain conversion of
electric and magnetic fields tangential to the surface of an scattering
object is considered; this problem often happens in broad-band
RCS calculation from FDTD simulation. A x̂-polarized plane wave
propagating in ẑ direction impinges on a dielectric (εr = 4) cube of
0.1×0.1×0.1m3 in the vacuum background. We assume that results at
40 nonuniformly spaced frequencies over (0.3 ∼ 5) GHz are of interest;
those frequencies in the experiment actually are generated by a random
number distributed over that frequency band. We choose a Black-
Harris window time function with a characteristic frequency of 1.5 GHz
as excitation in the FDTD simulation. The FDTD space is 42×42×42
cells (34 × 34 × 34 cells inside the cube), and the time resolution
is 4.238 × 10−12 s. The simulation takes 5267 time steps to reach
convergence for this example. The FDTD sequences are desampled by
a factor of 4. The automatic segmentation criterion gives NFFT = 64
and Ns = 41 in this case (Nf = 40). Fig. 1 shows time-to-frequency-
domain conversion results of the proposed algorithm (with q = 4)
and the DFT as well for the desampled sequence of an x-polarized
electric field component at an arbitrarily chosen observation location
(0, 0.04, 0.05) m on the cubical surface (origin at cube center). As can
be seen, the proposed algorithm achieves nearly the same conversion
results as the DFT. The errors are E2 = 1.1×10−3 and E∞ = 1.5×10−3

in this case. Fig. 2 shows the errors E2 and E∞ as functions of q and
μ (here we fixed NFFT = 64). We can see that the errors decrease
approximately exponentially as q or μ increases. Note that the total
accuracy of the NUFFT calculation remains almost the same if we
change the frequency distribution. From a large amount of numerical
tests including different input data and different frequency sampling
patterns, we found that using q = 4 at μ ≥ 1.5 always provides accurate
calculations (less than 0.5% error) for all tested cases.

Table 1. The computational and storage requirements for time-to-
frequency-domain conversion methods (NI is the number of FDTD
sequences to be converted).

Multiplications Storage Locations
DFT 2NINtNf 2NINf

Goertzel NINtNf NINf

NENU-Gauss 8NIN
3
f /3 4NIN

2
f

NENU-SVD 12NIN
3
f 4NIN

2
f

New
NINt[μ log2(μNs)
+2(q + 3)Nf/Ns + 1] NI(μNs + 2Nf )
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Figure 2. Error E2 and E∞ of the proposed algorithm. (a) Effect
of changing q at a fixed μ (NFFT = 64, Ns = 41, q = 2, 4, 6, 8).
(b) Effect of changing μ at a fixed q (NFFT = 64, q = 4, Ns =
49, 45, 41, 37, 33, 29, 25).

3.2. Comparison in the Storage and Computational
Requirements

Table 1 shows the storage and computational requirements of the
proposed algorithm and some other FDTD conversion techniques
including the DFT, the recursive Goertzel algorithm [3], and
N -equations N -unknowns methods (NENU) [6] with Gaussian
elimination or with the singular value decomposition (SVD). From
Table 1, the storage requirements for these methods can be easily
compared. If the automatic segmentation criterion is used, the
proposed algorithm requires about twice the memory space as the
DFT. This is a very low requirement if we compare with the storage
of FDTD data themselves. The comparison of the computational
requirements can be visualized more clearly if we take some typical
parameter values. For example, we do this for the above RCS
calculation case where Nf = 40, Nt = 1317 (the length of desampled
sequences), and NI = 27744 (the total number of tangential field
components on the cubic surface). Fig. 3 plots the computational
requirements of these methods (for the proposed algorithm, two
segmentation schemes are used: 1) fixing Ns = 41 and NFFT = 64;
2) using the automatic segmentation criterion). As can be seen, the
computational requirement of the NENU-Gauss method is the least
if Nf is small (Nf ≤ 21 in this case), but increases very quickly
as Nf increases. Actually when Nf gets larger, the NENU method
in general has a poorly-conditioned matrix problem and the SVD
technique should be used for a good accuracy [6]. This further
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lowers the computational efficiency (see results for the NENU-SVD).
Unlike the NENU methods, the proposed algorithm always maintains
a low computational requirement even if the number of frequencies
of interest increases to 100 (or even more). This property is very
useful in practical applications because the truly challenging problem
for computing the FDTD conversion arises when a large number
of nonuniformly spaced frequencies are of interest. This makes the
proposed algorithm robust for different FDTD applications.
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Figure 3. The computational requirements of FDTD time-to-
frequency-domain conversion techniques for the parameter values
associated with the presented RCS calculation case. Two segmentation
schemes are used for the proposed algorithm: 1) fixing Ns = 41 and
NFFT = 64; 2) using the automatic segmentation criterion.

4. CONCLUSION

We present a new FDTD time-to-frequency-domain conversion
algorithm which is based on the modification of the original
NUFFT with several redundancy-reduction techniques for improved
efficiency. The proposed algorithm can provide accurate calculations
for the desired frequencies without the limitation of uniformly spaced
frequencies required by the FFT. With a very low storage cost (the
required memory space is about twice as that of the DFT), the
proposed algorithm always maintains a relatively low computational
requirement even if the conversion over a large number of frequencies is
required. All these advantages make this algorithm robust for different
FDTD application situations.
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It is also worth noting that the modified NUFFT algorithm we
developed for this specific application can be straightforwardly used to
other applications related to the nonuniform DFT. Furthermore, the
other redundancy-reduced techniques we used for this paper may be
useful for other applications of the NUFFT.
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APPENDIX A. PROOF OF REAL-VALUED PROPERTY
OF INTERPOLATION COEFFICIENTS

Now assume that xr−q/2 (r = 0, 1, . . . , q) is the least-square error
solution of the following equations:

snwnμc =
[μc]+q/2∑

k′=[μc]−q/2

xk′−[μc](c)w
nk′

(A1)

for n = −(N − 1)/2,−(N − 1)/2 + 1, . . . , (N − 1)/2, where N is a odd
number. Taking the conjugate of the above equations, we have

s∗nw−nμc =
[μc]+q/2∑

k′=[μc]−q/2

x∗
k′−[μc](c)w

−nk′
. (A2)

And taking the reverse of the index n of (A1) , we have

s−nw−nμc =
[μc]+q/2∑

k′=[μc]−q/2

xk′−[μc](c)w
−nk′

(A3)

By comparing (A2) and (A3), we immediately obtain the following
property: if sn is conjugate-symmetric, i.e., s∗n = s−n, the interpolation
coefficients x∗

r−q/2 = xr−q/2. That is, they are real-valued.
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